# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Operations that generate constants. See the [constants guide](https://tensorflow.org/api_guides/python/constant_op). """ # Must be separate from array_ops to avoid a cyclic dependency. from typing import Union import numpy as np from tensorflow.core.framework import types_pb2 from tensorflow.core.protobuf import struct_pb2 from tensorflow.python.eager import context from tensorflow.python.eager import execute # Import constant_tensor_conversion.py to register tensor conversion functions # for builtins. These functions were previously in this file, but were # refactored out so they can be registered at TF import time without importing # all of constant_op.py. from tensorflow.python.framework import constant_tensor_conversion # pylint: disable=unused-import from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor as tensor_lib from tensorflow.python.framework import tensor_conversion_registry from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_util from tensorflow.python.profiler import trace from tensorflow.python.saved_model import nested_structure_coder from tensorflow.python.util.tf_export import tf_export def _eager_reshape(tensor, shape, ctx): """Eager-only version of Reshape op; requires tensor is an eager Tensor.""" attr_t = tensor._datatype_enum() # pylint: disable=protected-access attr_tshape, (shape,) = execute.args_to_matching_eager( [shape], ctx, [dtypes.int32, dtypes.int64], dtypes.int32) inputs_flat = [tensor, shape] attrs = ("T", attr_t, "Tshape", attr_tshape) [result] = execute.execute( b"Reshape", 1, inputs=inputs_flat, attrs=attrs, ctx=ctx) return result def _eager_fill(dims, value, ctx): """Eager-only version of Fill op; requires value is an eager Tensor.""" attr_t = value.dtype.as_datatype_enum dims = convert_to_eager_tensor(dims, ctx, dtypes.int32) inputs_flat = [dims, value] attrs = ("T", attr_t, "index_type", types_pb2.DT_INT32) [result] = execute.execute( b"Fill", 1, inputs=inputs_flat, attrs=attrs, ctx=ctx) return result def _eager_identity(tensor, ctx): """Eager-only version of Identity op; requires tensor is an eager Tensor.""" attrs = ("T", tensor.dtype.as_datatype_enum) [result] = execute.execute( b"Identity", 1, inputs=[tensor], attrs=attrs, ctx=ctx) return result def convert_to_eager_tensor(value, ctx, dtype=None) -> ops._EagerTensorBase: """Converts the given `value` to an `EagerTensor`. Note that this function could return cached copies of created constants for performance reasons. Args: value: value to convert to EagerTensor. ctx: value of context.context(). dtype: optional desired dtype of the converted EagerTensor. Returns: EagerTensor created from value. Raises: TypeError: if `dtype` is not compatible with the type of t. """ if isinstance(value, np.ndarray): # Make a copy explicitly because the EagerTensor might share the underlying # memory with the input array. Without this copy, users will be able to # modify the EagerTensor after its creation by changing the input array. value = value.copy() if isinstance(value, ops.EagerTensor): if dtype is not None and value.dtype != dtype: raise TypeError(f"Expected tensor {value} with dtype {dtype!r}, but got " f"dtype {value.dtype!r}.") return value if dtype is not None: try: dtype = dtype.as_datatype_enum except AttributeError: dtype = dtypes.as_dtype(dtype).as_datatype_enum ctx.ensure_initialized() return ops.EagerTensor(value, ctx.device_name, dtype) @tf_export(v1=["constant"]) def constant_v1( value, dtype=None, shape=None, name="Const", verify_shape=False ) -> Union[ops.Operation, ops._EagerTensorBase]: """Creates a constant tensor. The resulting tensor is populated with values of type `dtype`, as specified by arguments `value` and (optionally) `shape` (see examples below). The argument `value` can be a constant value, or a list of values of type `dtype`. If `value` is a list, then the length of the list must be less than or equal to the number of elements implied by the `shape` argument (if specified). In the case where the list length is less than the number of elements specified by `shape`, the last element in the list will be used to fill the remaining entries. The argument `shape` is optional. If present, it specifies the dimensions of the resulting tensor. If not present, the shape of `value` is used. If the argument `dtype` is not specified, then the type is inferred from the type of `value`. For example: ```python # Constant 1-D Tensor populated with value list. tensor = tf.constant([1, 2, 3, 4, 5, 6, 7]) => [1 2 3 4 5 6 7] # Constant 2-D tensor populated with scalar value -1. tensor = tf.constant(-1.0, shape=[2, 3]) => [[-1. -1. -1.] [-1. -1. -1.]] ``` `tf.constant` differs from `tf.fill` in a few ways: * `tf.constant` supports arbitrary constants, not just uniform scalar Tensors like `tf.fill`. * `tf.constant` creates a `Const` node in the computation graph with the exact value at graph construction time. On the other hand, `tf.fill` creates an Op in the graph that is expanded at runtime. * Because `tf.constant` only embeds constant values in the graph, it does not support dynamic shapes based on other runtime Tensors, whereas `tf.fill` does. Args: value: A constant value (or list) of output type `dtype`. dtype: The type of the elements of the resulting tensor. shape: Optional dimensions of resulting tensor. name: Optional name for the tensor. verify_shape: Boolean that enables verification of a shape of values. Returns: A Constant Tensor. Raises: TypeError: if shape is incorrectly specified or unsupported. """ return _constant_impl(value, dtype, shape, name, verify_shape=verify_shape, allow_broadcast=False) @tf_export("constant", v1=[]) def constant( value, dtype=None, shape=None, name="Const" ) -> Union[ops.Operation, ops._EagerTensorBase]: """Creates a constant tensor from a tensor-like object. Note: All eager `tf.Tensor` values are immutable (in contrast to `tf.Variable`). There is nothing especially _constant_ about the value returned from `tf.constant`. This function is not fundamentally different from `tf.convert_to_tensor`. The name `tf.constant` comes from the `value` being embedded in a `Const` node in the `tf.Graph`. `tf.constant` is useful for asserting that the value can be embedded that way. If the argument `dtype` is not specified, then the type is inferred from the type of `value`. >>> # Constant 1-D Tensor from a python list. >>> tf.constant([1, 2, 3, 4, 5, 6]) >>> # Or a numpy array >>> a = np.array([[1, 2, 3], [4, 5, 6]]) >>> tf.constant(a) If `dtype` is specified, the resulting tensor values are cast to the requested `dtype`. >>> tf.constant([1, 2, 3, 4, 5, 6], dtype=tf.float64) If `shape` is set, the `value` is reshaped to match. Scalars are expanded to fill the `shape`: >>> tf.constant(0, shape=(2, 3)) >>> tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3]) `tf.constant` has no effect if an eager Tensor is passed as the `value`, it even transmits gradients: >>> v = tf.Variable([0.0]) >>> with tf.GradientTape() as g: ... loss = tf.constant(v + v) >>> g.gradient(loss, v).numpy() array([2.], dtype=float32) But, since `tf.constant` embeds the value in the `tf.Graph` this fails for symbolic tensors: >>> with tf.compat.v1.Graph().as_default(): ... i = tf.compat.v1.placeholder(shape=[None, None], dtype=tf.float32) ... t = tf.constant(i) Traceback (most recent call last): ... TypeError: ... `tf.constant` will create tensors on the current device. Inputs which are already tensors maintain their placements unchanged. Related Ops: * `tf.convert_to_tensor` is similar but: * It has no `shape` argument. * Symbolic tensors are allowed to pass through. >>> with tf.compat.v1.Graph().as_default(): ... i = tf.compat.v1.placeholder(shape=[None, None], dtype=tf.float32) ... t = tf.convert_to_tensor(i) * `tf.fill`: differs in a few ways: * `tf.constant` supports arbitrary constants, not just uniform scalar Tensors like `tf.fill`. * `tf.fill` creates an Op in the graph that is expanded at runtime, so it can efficiently represent large tensors. * Since `tf.fill` does not embed the value, it can produce dynamically sized outputs. Args: value: A constant value (or list) of output type `dtype`. dtype: The type of the elements of the resulting tensor. shape: Optional dimensions of resulting tensor. name: Optional name for the tensor. Returns: A Constant Tensor. Raises: TypeError: if shape is incorrectly specified or unsupported. ValueError: if called on a symbolic tensor. """ return _constant_impl(value, dtype, shape, name, verify_shape=False, allow_broadcast=True) def _constant_impl( value, dtype, shape, name, verify_shape, allow_broadcast ) -> Union[ops.Operation, ops._EagerTensorBase]: """Implementation of constant.""" ctx = context.context() if ctx.executing_eagerly(): if trace.enabled: with trace.Trace("tf.constant"): return _constant_eager_impl(ctx, value, dtype, shape, verify_shape) return _constant_eager_impl(ctx, value, dtype, shape, verify_shape) const_tensor = ops._create_graph_constant( # pylint: disable=protected-access value, dtype, shape, name, verify_shape, allow_broadcast ) return const_tensor def _constant_eager_impl( ctx, value, dtype, shape, verify_shape ) -> ops._EagerTensorBase: """Creates a constant on the current device.""" t = convert_to_eager_tensor(value, ctx, dtype) if shape is None: return t shape = tensor_shape.as_shape(shape) if shape == t.shape: return t if verify_shape: raise TypeError(f"Expected Tensor {t} (converted from {value}) with shape " f"{tuple(shape)}, but got shape {tuple(t.shape)}.") num_t = t.shape.num_elements() # TODO(josh11b): Implement shape -> eager tensor conversion. if num_t == shape.num_elements(): return _eager_reshape(t, shape.as_list(), ctx) if num_t == 1: if t.dtype == dtypes.bool: # We don't have a Fill kernel for bool dtype on GPU. So we first run # Fill on CPU and then copy to GPU if needed. with ops.device("/device:CPU:0"): x = _eager_fill(shape.as_list(), _eager_identity(t, ctx), ctx) return _eager_identity(x, ctx) else: return _eager_fill(shape.as_list(), t, ctx) raise TypeError("Eager execution of tf.constant with unsupported shape. " f"Tensor {t} (converted from {value}) has {num_t:d} " f"elements, but got `shape` {shape} with " f"{shape.num_elements()} elements).") def is_constant(tensor_or_op): if isinstance(tensor_or_op, tensor_lib.Tensor): op = tensor_or_op.op else: op = tensor_or_op return op.type == "Const" def _tensor_shape_tensor_conversion_function(s, dtype=None, name=None, as_ref=False): """Function to convert TensorShape to Tensor.""" _ = as_ref if not s.is_fully_defined(): raise ValueError( f"Cannot convert a partially known TensorShape {s} to a Tensor.") s_list = s.as_list() int64_value = 0 for dim in s_list: if dim >= 2**31: int64_value = dim break if dtype is not None: if dtype not in (dtypes.int32, dtypes.int64): raise TypeError(f"Cannot convert TensorShape {s} to dtype {dtype}. " "Allowed dtypes are tf.int32 and tf.int64.") if dtype == dtypes.int32 and int64_value: raise ValueError(f"Cannot convert TensorShape {s} to dtype int32; " f"a dimension is too large. Consider using tf.int64.") else: dtype = dtypes.int64 if int64_value else dtypes.int32 if name is None: name = "shape_as_tensor" return constant(s_list, dtype=dtype, name=name) tensor_conversion_registry.register_tensor_conversion_function( tensor_shape.TensorShape, _tensor_shape_tensor_conversion_function, 100) def _dimension_tensor_conversion_function(d, dtype=None, name=None, as_ref=False): """Function to convert Dimension to Tensor.""" _ = as_ref if d.value is None: raise ValueError(f"Cannot convert unknown Dimension {d} to a Tensor.") if dtype is not None: if dtype not in (dtypes.int32, dtypes.int64): raise TypeError(f"Cannot convert Dimension {d} to dtype {dtype}. " "Allowed dtypes are tf.int32 and tf.int64.") else: dtype = dtypes.int32 if name is None: name = "shape_as_tensor" return constant(d.value, dtype=dtype, name=name) tensor_conversion_registry.register_tensor_conversion_function( tensor_shape.Dimension, _dimension_tensor_conversion_function, 100) class _ConstantTensorCodec: """Codec for Tensor.""" def can_encode(self, pyobj): return isinstance(pyobj, tensor_lib.Tensor) def do_encode(self, tensor_value, encode_fn): """Returns an encoded `TensorProto` for the given `tf.Tensor`.""" del encode_fn encoded_tensor = struct_pb2.StructuredValue() if isinstance(tensor_value, ops.EagerTensor): encoded_tensor.tensor_value.CopyFrom( tensor_util.make_tensor_proto(tensor_value.numpy()) ) else: if tensor_value.op.type == "Const": encoded_tensor.tensor_value.CopyFrom(tensor_value.op.get_attr("value")) else: raise nested_structure_coder.NotEncodableError( f"No encoder for object {str(tensor_value)} of type" f" {type(tensor_value)}." ) return encoded_tensor def can_decode(self, value): return value.HasField("tensor_value") def do_decode(self, value, decode_fn): """Returns the `tf.Tensor` encoded by the proto `value`.""" del decode_fn tensor_proto = value.tensor_value tensor = constant(tensor_util.MakeNdarray(tensor_proto)) return tensor nested_structure_coder.register_codec(_ConstantTensorCodec()) class _NumpyCodec: """Codec for Numpy.""" def can_encode(self, pyobj): return isinstance(pyobj, np.ndarray) def do_encode(self, numpy_value, encode_fn): """Returns an encoded `TensorProto` for `np.ndarray`.""" del encode_fn encoded_numpy = struct_pb2.StructuredValue() encoded_numpy.numpy_value.CopyFrom( tensor_util.make_tensor_proto(numpy_value) ) return encoded_numpy def can_decode(self, value): return value.HasField("numpy_value") def do_decode(self, value, decode_fn): """Returns the `np.ndarray` encoded by the proto `value`.""" del decode_fn tensor_proto = value.numpy_value numpy = tensor_util.MakeNdarray(tensor_proto) return numpy nested_structure_coder.register_codec(_NumpyCodec())