"""Python wrappers around TensorFlow ops. This file is MACHINE GENERATED! Do not edit. """ import collections from tensorflow.python import pywrap_tfe as pywrap_tfe from tensorflow.python.eager import context as _context from tensorflow.python.eager import core as _core from tensorflow.python.eager import execute as _execute from tensorflow.python.framework import dtypes as _dtypes from tensorflow.security.fuzzing.py import annotation_types as _atypes from tensorflow.python.framework import op_def_registry as _op_def_registry from tensorflow.python.framework import ops as _ops from tensorflow.python.framework import op_def_library as _op_def_library from tensorflow.python.util.deprecation import deprecated_endpoints from tensorflow.python.util import dispatch as _dispatch from tensorflow.python.util.tf_export import tf_export from typing import TypeVar, List, Any from typing_extensions import Annotated @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('a') def a(name=None) -> Annotated[Any, _atypes.Float32]: r"""TODO: add doc. Args: name: A name for the operation (optional). Returns: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "A", name) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_a( (name,), None) if _result is not NotImplemented: return _result return a_eager_fallback( name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( a, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_a( (name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "A", name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( a, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "A", _inputs_flat, _attrs, _result) _result, = _result return _result A = tf_export("raw_ops.A")(_ops.to_raw_op(a)) _dispatcher_for_a = a._tf_type_based_dispatcher.Dispatch def a_eager_fallback(name, ctx) -> Annotated[Any, _atypes.Float32]: _inputs_flat = [] _attrs = None _result = _execute.execute(b"A", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "A", _inputs_flat, _attrs, _result) _result, = _result return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('attr') def attr(a: int, name=None): r"""TODO: add doc. Args: a: An `int`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "Attr", name, "a", a) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_attr( (a, name,), None) if _result is not NotImplemented: return _result return attr_eager_fallback( a=a, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( attr, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_attr( (a, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. a = _execute.make_int(a, "a") try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "Attr", a=a, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( attr, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op Attr = tf_export("raw_ops.Attr")(_ops.to_raw_op(attr)) _dispatcher_for_attr = attr._tf_type_based_dispatcher.Dispatch def attr_eager_fallback(a: int, name, ctx): a = _execute.make_int(a, "a") _inputs_flat = [] _attrs = ("a", a) _result = _execute.execute(b"Attr", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('attr_bool') def attr_bool(a: bool, name=None): r"""TODO: add doc. Args: a: A `bool`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "AttrBool", name, "a", a) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_attr_bool( (a, name,), None) if _result is not NotImplemented: return _result return attr_bool_eager_fallback( a=a, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( attr_bool, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_attr_bool( (a, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. a = _execute.make_bool(a, "a") try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "AttrBool", a=a, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( attr_bool, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op AttrBool = tf_export("raw_ops.AttrBool")(_ops.to_raw_op(attr_bool)) _dispatcher_for_attr_bool = attr_bool._tf_type_based_dispatcher.Dispatch def attr_bool_eager_fallback(a: bool, name, ctx): a = _execute.make_bool(a, "a") _inputs_flat = [] _attrs = ("a", a) _result = _execute.execute(b"AttrBool", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('attr_bool_list') def attr_bool_list(a, name=None): r"""TODO: add doc. Args: a: A list of `bools`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "AttrBoolList", name, "a", a) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_attr_bool_list( (a, name,), None) if _result is not NotImplemented: return _result return attr_bool_list_eager_fallback( a=a, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( attr_bool_list, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_attr_bool_list( (a, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if not isinstance(a, (list, tuple)): raise TypeError( "Expected list for 'a' argument to " "'attr_bool_list' Op, not %r." % a) a = [_execute.make_bool(_b, "a") for _b in a] try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "AttrBoolList", a=a, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( attr_bool_list, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op AttrBoolList = tf_export("raw_ops.AttrBoolList")(_ops.to_raw_op(attr_bool_list)) _dispatcher_for_attr_bool_list = attr_bool_list._tf_type_based_dispatcher.Dispatch def attr_bool_list_eager_fallback(a, name, ctx): if not isinstance(a, (list, tuple)): raise TypeError( "Expected list for 'a' argument to " "'attr_bool_list' Op, not %r." % a) a = [_execute.make_bool(_b, "a") for _b in a] _inputs_flat = [] _attrs = ("a", a) _result = _execute.execute(b"AttrBoolList", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('attr_default') def attr_default(a:str="banana", name=None): r"""TODO: add doc. Args: a: An optional `string`. Defaults to `"banana"`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "AttrDefault", name, "a", a) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_attr_default( (a, name,), None) if _result is not NotImplemented: return _result return attr_default_eager_fallback( a=a, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( attr_default, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_attr_default( (a, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if a is None: a = "banana" a = _execute.make_str(a, "a") try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "AttrDefault", a=a, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( attr_default, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op AttrDefault = tf_export("raw_ops.AttrDefault")(_ops.to_raw_op(attr_default)) _dispatcher_for_attr_default = attr_default._tf_type_based_dispatcher.Dispatch def attr_default_eager_fallback(a: str, name, ctx): if a is None: a = "banana" a = _execute.make_str(a, "a") _inputs_flat = [] _attrs = ("a", a) _result = _execute.execute(b"AttrDefault", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('attr_empty_list_default') def attr_empty_list_default(a=[], name=None): r"""TODO: add doc. Args: a: An optional list of `floats`. Defaults to `[]`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "AttrEmptyListDefault", name, "a", a) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_attr_empty_list_default( (a, name,), None) if _result is not NotImplemented: return _result return attr_empty_list_default_eager_fallback( a=a, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( attr_empty_list_default, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_attr_empty_list_default( (a, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if a is None: a = [] if not isinstance(a, (list, tuple)): raise TypeError( "Expected list for 'a' argument to " "'attr_empty_list_default' Op, not %r." % a) a = [_execute.make_float(_f, "a") for _f in a] try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "AttrEmptyListDefault", a=a, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( attr_empty_list_default, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op AttrEmptyListDefault = tf_export("raw_ops.AttrEmptyListDefault")(_ops.to_raw_op(attr_empty_list_default)) _dispatcher_for_attr_empty_list_default = attr_empty_list_default._tf_type_based_dispatcher.Dispatch def attr_empty_list_default_eager_fallback(a, name, ctx): if a is None: a = [] if not isinstance(a, (list, tuple)): raise TypeError( "Expected list for 'a' argument to " "'attr_empty_list_default' Op, not %r." % a) a = [_execute.make_float(_f, "a") for _f in a] _inputs_flat = [] _attrs = ("a", a) _result = _execute.execute(b"AttrEmptyListDefault", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('attr_enum') def attr_enum(a: str, name=None): r"""TODO: add doc. Args: a: A `string` from: `"apples", "oranges"`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "AttrEnum", name, "a", a) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_attr_enum( (a, name,), None) if _result is not NotImplemented: return _result return attr_enum_eager_fallback( a=a, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( attr_enum, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_attr_enum( (a, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. a = _execute.make_str(a, "a") try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "AttrEnum", a=a, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( attr_enum, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op AttrEnum = tf_export("raw_ops.AttrEnum")(_ops.to_raw_op(attr_enum)) _dispatcher_for_attr_enum = attr_enum._tf_type_based_dispatcher.Dispatch def attr_enum_eager_fallback(a: str, name, ctx): a = _execute.make_str(a, "a") _inputs_flat = [] _attrs = ("a", a) _result = _execute.execute(b"AttrEnum", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('attr_enum_list') def attr_enum_list(a, name=None): r"""TODO: add doc. Args: a: A list of `strings` from: `"apples", "oranges"`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "AttrEnumList", name, "a", a) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_attr_enum_list( (a, name,), None) if _result is not NotImplemented: return _result return attr_enum_list_eager_fallback( a=a, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( attr_enum_list, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_attr_enum_list( (a, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if not isinstance(a, (list, tuple)): raise TypeError( "Expected list for 'a' argument to " "'attr_enum_list' Op, not %r." % a) a = [_execute.make_str(_s, "a") for _s in a] try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "AttrEnumList", a=a, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( attr_enum_list, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op AttrEnumList = tf_export("raw_ops.AttrEnumList")(_ops.to_raw_op(attr_enum_list)) _dispatcher_for_attr_enum_list = attr_enum_list._tf_type_based_dispatcher.Dispatch def attr_enum_list_eager_fallback(a, name, ctx): if not isinstance(a, (list, tuple)): raise TypeError( "Expected list for 'a' argument to " "'attr_enum_list' Op, not %r." % a) a = [_execute.make_str(_s, "a") for _s in a] _inputs_flat = [] _attrs = ("a", a) _result = _execute.execute(b"AttrEnumList", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('attr_float') def attr_float(a: float, name=None): r"""TODO: add doc. Args: a: A `float`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "AttrFloat", name, "a", a) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_attr_float( (a, name,), None) if _result is not NotImplemented: return _result return attr_float_eager_fallback( a=a, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( attr_float, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_attr_float( (a, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. a = _execute.make_float(a, "a") try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "AttrFloat", a=a, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( attr_float, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op AttrFloat = tf_export("raw_ops.AttrFloat")(_ops.to_raw_op(attr_float)) _dispatcher_for_attr_float = attr_float._tf_type_based_dispatcher.Dispatch def attr_float_eager_fallback(a: float, name, ctx): a = _execute.make_float(a, "a") _inputs_flat = [] _attrs = ("a", a) _result = _execute.execute(b"AttrFloat", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('attr_list_default') def attr_list_default(a=[5, 15], name=None): r"""TODO: add doc. Args: a: An optional list of `ints`. Defaults to `[5, 15]`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "AttrListDefault", name, "a", a) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_attr_list_default( (a, name,), None) if _result is not NotImplemented: return _result return attr_list_default_eager_fallback( a=a, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( attr_list_default, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_attr_list_default( (a, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if a is None: a = [5, 15] if not isinstance(a, (list, tuple)): raise TypeError( "Expected list for 'a' argument to " "'attr_list_default' Op, not %r." % a) a = [_execute.make_int(_i, "a") for _i in a] try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "AttrListDefault", a=a, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( attr_list_default, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op AttrListDefault = tf_export("raw_ops.AttrListDefault")(_ops.to_raw_op(attr_list_default)) _dispatcher_for_attr_list_default = attr_list_default._tf_type_based_dispatcher.Dispatch def attr_list_default_eager_fallback(a, name, ctx): if a is None: a = [5, 15] if not isinstance(a, (list, tuple)): raise TypeError( "Expected list for 'a' argument to " "'attr_list_default' Op, not %r." % a) a = [_execute.make_int(_i, "a") for _i in a] _inputs_flat = [] _attrs = ("a", a) _result = _execute.execute(b"AttrListDefault", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('attr_list_min') def attr_list_min(a, name=None): r"""TODO: add doc. Args: a: A list of `ints` that has length `>= 2`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "AttrListMin", name, "a", a) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_attr_list_min( (a, name,), None) if _result is not NotImplemented: return _result return attr_list_min_eager_fallback( a=a, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( attr_list_min, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_attr_list_min( (a, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if not isinstance(a, (list, tuple)): raise TypeError( "Expected list for 'a' argument to " "'attr_list_min' Op, not %r." % a) a = [_execute.make_int(_i, "a") for _i in a] try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "AttrListMin", a=a, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( attr_list_min, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op AttrListMin = tf_export("raw_ops.AttrListMin")(_ops.to_raw_op(attr_list_min)) _dispatcher_for_attr_list_min = attr_list_min._tf_type_based_dispatcher.Dispatch def attr_list_min_eager_fallback(a, name, ctx): if not isinstance(a, (list, tuple)): raise TypeError( "Expected list for 'a' argument to " "'attr_list_min' Op, not %r." % a) a = [_execute.make_int(_i, "a") for _i in a] _inputs_flat = [] _attrs = ("a", a) _result = _execute.execute(b"AttrListMin", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result TV_AttrListTypeDefault_T = TypeVar("TV_AttrListTypeDefault_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('attr_list_type_default') def attr_list_type_default(a: Annotated[List[Any], TV_AttrListTypeDefault_T], b: Annotated[List[Any], TV_AttrListTypeDefault_T], name=None): r"""TODO: add doc. Args: a: A list of at least 1 `Tensor` objects with the same type. b: A list with the same length as `a` of `Tensor` objects with the same type as `a`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "AttrListTypeDefault", name, a, b) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_attr_list_type_default( (a, b, name,), None) if _result is not NotImplemented: return _result return attr_list_type_default_eager_fallback( a, b, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( attr_list_type_default, (), dict(a=a, b=b, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_attr_list_type_default( (a, b, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if not isinstance(a, (list, tuple)): raise TypeError( "Expected list for 'a' argument to " "'attr_list_type_default' Op, not %r." % a) _attr_N = len(a) if not isinstance(b, (list, tuple)): raise TypeError( "Expected list for 'b' argument to " "'attr_list_type_default' Op, not %r." % b) if len(b) != _attr_N: raise ValueError( "List argument 'b' to 'attr_list_type_default' Op with length %d " "must match length %d of argument 'a'." % (len(b), _attr_N)) try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "AttrListTypeDefault", a=a, b=b, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( attr_list_type_default, (), dict(a=a, b=b, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op AttrListTypeDefault = tf_export("raw_ops.AttrListTypeDefault")(_ops.to_raw_op(attr_list_type_default)) _dispatcher_for_attr_list_type_default = attr_list_type_default._tf_type_based_dispatcher.Dispatch def attr_list_type_default_eager_fallback(a: Annotated[List[Any], TV_AttrListTypeDefault_T], b: Annotated[List[Any], TV_AttrListTypeDefault_T], name, ctx): if not isinstance(a, (list, tuple)): raise TypeError( "Expected list for 'a' argument to " "'attr_list_type_default' Op, not %r." % a) _attr_N = len(a) if not isinstance(b, (list, tuple)): raise TypeError( "Expected list for 'b' argument to " "'attr_list_type_default' Op, not %r." % b) if len(b) != _attr_N: raise ValueError( "List argument 'b' to 'attr_list_type_default' Op with length %d " "must match length %d of argument 'a'." % (len(b), _attr_N)) _attr_T, _inputs_T = _execute.args_to_matching_eager(list(a) + list(b), ctx, [], _dtypes.int32) _inputs_T = [_inputs_T[:_attr_N]] + _inputs_T[_attr_N:] _inputs_T = _inputs_T[:1] + [_inputs_T[1:]] (a, b) = _inputs_T _inputs_flat = list(a) + list(b) _attrs = ("T", _attr_T, "N", _attr_N) _result = _execute.execute(b"AttrListTypeDefault", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('attr_min') def attr_min(a: int, name=None): r"""TODO: add doc. Args: a: An `int` that is `>= 5`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "AttrMin", name, "a", a) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_attr_min( (a, name,), None) if _result is not NotImplemented: return _result return attr_min_eager_fallback( a=a, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( attr_min, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_attr_min( (a, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. a = _execute.make_int(a, "a") try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "AttrMin", a=a, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( attr_min, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op AttrMin = tf_export("raw_ops.AttrMin")(_ops.to_raw_op(attr_min)) _dispatcher_for_attr_min = attr_min._tf_type_based_dispatcher.Dispatch def attr_min_eager_fallback(a: int, name, ctx): a = _execute.make_int(a, "a") _inputs_flat = [] _attrs = ("a", a) _result = _execute.execute(b"AttrMin", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('attr_partial_shape') def attr_partial_shape(a, name=None): r"""TODO: add doc. Args: a: A `tf.TensorShape` or list of `ints`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "AttrPartialShape", name, "a", a) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_attr_partial_shape( (a, name,), None) if _result is not NotImplemented: return _result return attr_partial_shape_eager_fallback( a=a, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( attr_partial_shape, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_attr_partial_shape( (a, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. a = _execute.make_shape(a, "a") try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "AttrPartialShape", a=a, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( attr_partial_shape, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op AttrPartialShape = tf_export("raw_ops.AttrPartialShape")(_ops.to_raw_op(attr_partial_shape)) _dispatcher_for_attr_partial_shape = attr_partial_shape._tf_type_based_dispatcher.Dispatch def attr_partial_shape_eager_fallback(a, name, ctx): a = _execute.make_shape(a, "a") _inputs_flat = [] _attrs = ("a", a) _result = _execute.execute(b"AttrPartialShape", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('attr_partial_shape_list') def attr_partial_shape_list(a, name=None): r"""TODO: add doc. Args: a: A list of shapes (each a `tf.TensorShape` or list of `ints`). name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "AttrPartialShapeList", name, "a", a) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_attr_partial_shape_list( (a, name,), None) if _result is not NotImplemented: return _result return attr_partial_shape_list_eager_fallback( a=a, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( attr_partial_shape_list, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_attr_partial_shape_list( (a, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if not isinstance(a, (list, tuple)): raise TypeError( "Expected list for 'a' argument to " "'attr_partial_shape_list' Op, not %r." % a) a = [_execute.make_shape(_s, "a") for _s in a] try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "AttrPartialShapeList", a=a, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( attr_partial_shape_list, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op AttrPartialShapeList = tf_export("raw_ops.AttrPartialShapeList")(_ops.to_raw_op(attr_partial_shape_list)) _dispatcher_for_attr_partial_shape_list = attr_partial_shape_list._tf_type_based_dispatcher.Dispatch def attr_partial_shape_list_eager_fallback(a, name, ctx): if not isinstance(a, (list, tuple)): raise TypeError( "Expected list for 'a' argument to " "'attr_partial_shape_list' Op, not %r." % a) a = [_execute.make_shape(_s, "a") for _s in a] _inputs_flat = [] _attrs = ("a", a) _result = _execute.execute(b"AttrPartialShapeList", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('attr_shape') def attr_shape(a, name=None): r"""TODO: add doc. Args: a: A `tf.TensorShape` or list of `ints`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "AttrShape", name, "a", a) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_attr_shape( (a, name,), None) if _result is not NotImplemented: return _result return attr_shape_eager_fallback( a=a, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( attr_shape, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_attr_shape( (a, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. a = _execute.make_shape(a, "a") try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "AttrShape", a=a, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( attr_shape, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op AttrShape = tf_export("raw_ops.AttrShape")(_ops.to_raw_op(attr_shape)) _dispatcher_for_attr_shape = attr_shape._tf_type_based_dispatcher.Dispatch def attr_shape_eager_fallback(a, name, ctx): a = _execute.make_shape(a, "a") _inputs_flat = [] _attrs = ("a", a) _result = _execute.execute(b"AttrShape", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('attr_shape_list') def attr_shape_list(a, name=None): r"""TODO: add doc. Args: a: A list of shapes (each a `tf.TensorShape` or list of `ints`). name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "AttrShapeList", name, "a", a) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_attr_shape_list( (a, name,), None) if _result is not NotImplemented: return _result return attr_shape_list_eager_fallback( a=a, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( attr_shape_list, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_attr_shape_list( (a, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if not isinstance(a, (list, tuple)): raise TypeError( "Expected list for 'a' argument to " "'attr_shape_list' Op, not %r." % a) a = [_execute.make_shape(_s, "a") for _s in a] try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "AttrShapeList", a=a, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( attr_shape_list, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op AttrShapeList = tf_export("raw_ops.AttrShapeList")(_ops.to_raw_op(attr_shape_list)) _dispatcher_for_attr_shape_list = attr_shape_list._tf_type_based_dispatcher.Dispatch def attr_shape_list_eager_fallback(a, name, ctx): if not isinstance(a, (list, tuple)): raise TypeError( "Expected list for 'a' argument to " "'attr_shape_list' Op, not %r." % a) a = [_execute.make_shape(_s, "a") for _s in a] _inputs_flat = [] _attrs = ("a", a) _result = _execute.execute(b"AttrShapeList", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result TV_AttrTypeDefault_T = TypeVar("TV_AttrTypeDefault_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('attr_type_default') def attr_type_default(a: Annotated[Any, TV_AttrTypeDefault_T], name=None): r"""TODO: add doc. Args: a: A `Tensor`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "AttrTypeDefault", name, a) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_attr_type_default( (a, name,), None) if _result is not NotImplemented: return _result return attr_type_default_eager_fallback( a, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( attr_type_default, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_attr_type_default( (a, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "AttrTypeDefault", a=a, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( attr_type_default, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op AttrTypeDefault = tf_export("raw_ops.AttrTypeDefault")(_ops.to_raw_op(attr_type_default)) _dispatcher_for_attr_type_default = attr_type_default._tf_type_based_dispatcher.Dispatch def attr_type_default_eager_fallback(a: Annotated[Any, TV_AttrTypeDefault_T], name, ctx): _attr_T, (a,) = _execute.args_to_matching_eager([a], ctx, [], _dtypes.int32) _inputs_flat = [a] _attrs = ("T", _attr_T) _result = _execute.execute(b"AttrTypeDefault", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('b') def b(name=None) -> Annotated[Any, _atypes.Float32]: r"""TODO: add doc. Args: name: A name for the operation (optional). Returns: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "B", name) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_b( (name,), None) if _result is not NotImplemented: return _result return b_eager_fallback( name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( b, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_b( (name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "B", name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( b, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "B", _inputs_flat, _attrs, _result) _result, = _result return _result B = tf_export("raw_ops.B")(_ops.to_raw_op(b)) _dispatcher_for_b = b._tf_type_based_dispatcher.Dispatch def b_eager_fallback(name, ctx) -> Annotated[Any, _atypes.Float32]: _inputs_flat = [] _attrs = None _result = _execute.execute(b"B", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "B", _inputs_flat, _attrs, _result) _result, = _result return _result TV_Binary_T = TypeVar("TV_Binary_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('binary') def binary(a: Annotated[Any, TV_Binary_T], b: Annotated[Any, TV_Binary_T], name=None) -> Annotated[Any, TV_Binary_T]: r"""TODO: add doc. Args: a: A `Tensor`. b: A `Tensor`. Must have the same type as `a`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `a`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "Binary", name, a, b) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_binary( (a, b, name,), None) if _result is not NotImplemented: return _result return binary_eager_fallback( a, b, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( binary, (), dict(a=a, b=b, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_binary( (a, b, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "Binary", a=a, b=b, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( binary, (), dict(a=a, b=b, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "Binary", _inputs_flat, _attrs, _result) _result, = _result return _result Binary = tf_export("raw_ops.Binary")(_ops.to_raw_op(binary)) _dispatcher_for_binary = binary._tf_type_based_dispatcher.Dispatch def binary_eager_fallback(a: Annotated[Any, TV_Binary_T], b: Annotated[Any, TV_Binary_T], name, ctx) -> Annotated[Any, TV_Binary_T]: _attr_T, _inputs_T = _execute.args_to_matching_eager([a, b], ctx, []) (a, b) = _inputs_T _inputs_flat = [a, b] _attrs = ("T", _attr_T) _result = _execute.execute(b"Binary", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "Binary", _inputs_flat, _attrs, _result) _result, = _result return _result _ComplexStructOutput = collections.namedtuple( "ComplexStruct", ["a", "b", "c"]) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('complex_struct') def complex_struct(n_a: int, n_b: int, t_c, name=None): r"""TODO: add doc. Args: n_a: An `int` that is `>= 0`. n_b: An `int` that is `>= 0`. t_c: A list of `tf.DTypes`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (a, b, c). a: A list of `n_a` `Tensor` objects with type `int32`. b: A list of `n_b` `Tensor` objects with type `int64`. c: A list of `Tensor` objects of type `t_c`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "ComplexStruct", name, "n_a", n_a, "n_b", n_b, "t_c", t_c) _result = _ComplexStructOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_complex_struct( (n_a, n_b, t_c, name,), None) if _result is not NotImplemented: return _result return complex_struct_eager_fallback( n_a=n_a, n_b=n_b, t_c=t_c, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( complex_struct, (), dict(n_a=n_a, n_b=n_b, t_c=t_c, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_complex_struct( (n_a, n_b, t_c, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. n_a = _execute.make_int(n_a, "n_a") n_b = _execute.make_int(n_b, "n_b") if not isinstance(t_c, (list, tuple)): raise TypeError( "Expected list for 't_c' argument to " "'complex_struct' Op, not %r." % t_c) t_c = [_execute.make_type(_t, "t_c") for _t in t_c] try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "ComplexStruct", n_a=n_a, n_b=n_b, t_c=t_c, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( complex_struct, (), dict(n_a=n_a, n_b=n_b, t_c=t_c, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("n_a", _op._get_attr_int("n_a"), "n_b", _op._get_attr_int("n_b"), "t_c", _op.get_attr("t_c")) _inputs_flat = _op.inputs _execute.record_gradient( "ComplexStruct", _inputs_flat, _attrs, _result) _result = [_result[:n_a]] + _result[n_a:] _result = _result[:1] + [_result[1:1 + n_b]] + _result[1 + n_b:] _result = _result[:2] + [_result[2:]] _result = _ComplexStructOutput._make(_result) return _result ComplexStruct = tf_export("raw_ops.ComplexStruct")(_ops.to_raw_op(complex_struct)) _dispatcher_for_complex_struct = complex_struct._tf_type_based_dispatcher.Dispatch def complex_struct_eager_fallback(n_a: int, n_b: int, t_c, name, ctx): n_a = _execute.make_int(n_a, "n_a") n_b = _execute.make_int(n_b, "n_b") if not isinstance(t_c, (list, tuple)): raise TypeError( "Expected list for 't_c' argument to " "'complex_struct' Op, not %r." % t_c) t_c = [_execute.make_type(_t, "t_c") for _t in t_c] _inputs_flat = [] _attrs = ("n_a", n_a, "n_b", n_b, "t_c", t_c) _result = _execute.execute(b"ComplexStruct", n_a + n_b + len(t_c), inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "ComplexStruct", _inputs_flat, _attrs, _result) _result = [_result[:n_a]] + _result[n_a:] _result = _result[:1] + [_result[1:1 + n_b]] + _result[1 + n_b:] _result = _result[:2] + [_result[2:]] _result = _ComplexStructOutput._make(_result) return _result TV_CopyOp_T = TypeVar("TV_CopyOp_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('copy_op') def copy_op(a: Annotated[Any, TV_CopyOp_T], name=None) -> Annotated[Any, TV_CopyOp_T]: r"""TODO: add doc. Args: a: A `Tensor`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `a`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "CopyOp", name, a) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_copy_op( (a, name,), None) if _result is not NotImplemented: return _result return copy_op_eager_fallback( a, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( copy_op, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_copy_op( (a, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "CopyOp", a=a, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( copy_op, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "CopyOp", _inputs_flat, _attrs, _result) _result, = _result return _result CopyOp = tf_export("raw_ops.CopyOp")(_ops.to_raw_op(copy_op)) _dispatcher_for_copy_op = copy_op._tf_type_based_dispatcher.Dispatch def copy_op_eager_fallback(a: Annotated[Any, TV_CopyOp_T], name, ctx) -> Annotated[Any, TV_CopyOp_T]: _attr_T, (a,) = _execute.args_to_matching_eager([a], ctx, []) _inputs_flat = [a] _attrs = ("T", _attr_T) _result = _execute.execute(b"CopyOp", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "CopyOp", _inputs_flat, _attrs, _result) _result, = _result return _result TV_DefaultAttrs_type_val = TypeVar("TV_DefaultAttrs_type_val", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('default_attrs') def default_attrs(string_val:str="abc", string_list_val=["abc", ""], int_val:int=123, int_list_val=[1, 2, 3], float_val:float=10, float_list_val=[10], bool_val:bool=True, bool_list_val=[True, False], type_val:TV_DefaultAttrs_type_val=_dtypes.int32, type_list_val=[_dtypes.int32, _dtypes.float32], shape_val=[2, 1], shape_list_val=[[], [1]], tensor_val=_execute.make_tensor("""dtype: DT_INT32 tensor_shape { } int_val: 1 """, "tensor_val"), tensor_list_val=[_execute.make_tensor(_pb, "tensor_list_val") for _pb in ("""dtype: DT_INT32 tensor_shape { } int_val: 1 """,)], name=None): r"""TODO: add doc. Args: string_val: An optional `string`. Defaults to `"abc"`. string_list_val: An optional list of `strings`. Defaults to `["abc", ""]`. int_val: An optional `int`. Defaults to `123`. int_list_val: An optional list of `ints`. Defaults to `[1, 2, 3]`. float_val: An optional `float`. Defaults to `10`. float_list_val: An optional list of `floats`. Defaults to `[10]`. bool_val: An optional `bool`. Defaults to `True`. bool_list_val: An optional list of `bools`. Defaults to `[True, False]`. type_val: An optional `tf.DType`. Defaults to `tf.int32`. type_list_val: An optional list of `tf.DTypes`. Defaults to `[tf.int32, tf.float32]`. shape_val: An optional `tf.TensorShape` or list of `ints`. Defaults to `[2, 1]`. shape_list_val: An optional list of shapes (each a `tf.TensorShape` or list of `ints`). Defaults to `[[], [1]]`. tensor_val: An optional `tf.TensorProto`. Defaults to `dtype: DT_INT32 tensor_shape { } int_val: 1`. tensor_list_val: An optional list of `tf.TensorProto` objects. Defaults to `[dtype: DT_INT32 tensor_shape { } int_val: 1]`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "DefaultAttrs", name, "string_val", string_val, "string_list_val", string_list_val, "int_val", int_val, "int_list_val", int_list_val, "float_val", float_val, "float_list_val", float_list_val, "bool_val", bool_val, "bool_list_val", bool_list_val, "type_val", type_val, "type_list_val", type_list_val, "shape_val", shape_val, "shape_list_val", shape_list_val, "tensor_val", tensor_val, "tensor_list_val", tensor_list_val) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_default_attrs( (string_val, string_list_val, int_val, int_list_val, float_val, float_list_val, bool_val, bool_list_val, type_val, type_list_val, shape_val, shape_list_val, tensor_val, tensor_list_val, name,), None) if _result is not NotImplemented: return _result return default_attrs_eager_fallback( string_val=string_val, string_list_val=string_list_val, int_val=int_val, int_list_val=int_list_val, float_val=float_val, float_list_val=float_list_val, bool_val=bool_val, bool_list_val=bool_list_val, type_val=type_val, type_list_val=type_list_val, shape_val=shape_val, shape_list_val=shape_list_val, tensor_val=tensor_val, tensor_list_val=tensor_list_val, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( default_attrs, (), dict(string_val=string_val, string_list_val=string_list_val, int_val=int_val, int_list_val=int_list_val, float_val=float_val, float_list_val=float_list_val, bool_val=bool_val, bool_list_val=bool_list_val, type_val=type_val, type_list_val=type_list_val, shape_val=shape_val, shape_list_val=shape_list_val, tensor_val=tensor_val, tensor_list_val=tensor_list_val, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_default_attrs( (string_val, string_list_val, int_val, int_list_val, float_val, float_list_val, bool_val, bool_list_val, type_val, type_list_val, shape_val, shape_list_val, tensor_val, tensor_list_val, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if string_val is None: string_val = "abc" string_val = _execute.make_str(string_val, "string_val") if string_list_val is None: string_list_val = ["abc", ""] if not isinstance(string_list_val, (list, tuple)): raise TypeError( "Expected list for 'string_list_val' argument to " "'default_attrs' Op, not %r." % string_list_val) string_list_val = [_execute.make_str(_s, "string_list_val") for _s in string_list_val] if int_val is None: int_val = 123 int_val = _execute.make_int(int_val, "int_val") if int_list_val is None: int_list_val = [1, 2, 3] if not isinstance(int_list_val, (list, tuple)): raise TypeError( "Expected list for 'int_list_val' argument to " "'default_attrs' Op, not %r." % int_list_val) int_list_val = [_execute.make_int(_i, "int_list_val") for _i in int_list_val] if float_val is None: float_val = 10 float_val = _execute.make_float(float_val, "float_val") if float_list_val is None: float_list_val = [10] if not isinstance(float_list_val, (list, tuple)): raise TypeError( "Expected list for 'float_list_val' argument to " "'default_attrs' Op, not %r." % float_list_val) float_list_val = [_execute.make_float(_f, "float_list_val") for _f in float_list_val] if bool_val is None: bool_val = True bool_val = _execute.make_bool(bool_val, "bool_val") if bool_list_val is None: bool_list_val = [True, False] if not isinstance(bool_list_val, (list, tuple)): raise TypeError( "Expected list for 'bool_list_val' argument to " "'default_attrs' Op, not %r." % bool_list_val) bool_list_val = [_execute.make_bool(_b, "bool_list_val") for _b in bool_list_val] if type_val is None: type_val = _dtypes.int32 type_val = _execute.make_type(type_val, "type_val") if type_list_val is None: type_list_val = [_dtypes.int32, _dtypes.float32] if not isinstance(type_list_val, (list, tuple)): raise TypeError( "Expected list for 'type_list_val' argument to " "'default_attrs' Op, not %r." % type_list_val) type_list_val = [_execute.make_type(_t, "type_list_val") for _t in type_list_val] if shape_val is None: shape_val = [2, 1] shape_val = _execute.make_shape(shape_val, "shape_val") if shape_list_val is None: shape_list_val = [[], [1]] if not isinstance(shape_list_val, (list, tuple)): raise TypeError( "Expected list for 'shape_list_val' argument to " "'default_attrs' Op, not %r." % shape_list_val) shape_list_val = [_execute.make_shape(_s, "shape_list_val") for _s in shape_list_val] if tensor_val is None: tensor_val = _execute.make_tensor("""dtype: DT_INT32 tensor_shape { } int_val: 1 """, "tensor_val") tensor_val = _execute.make_tensor(tensor_val, "tensor_val") if tensor_list_val is None: tensor_list_val = [_execute.make_tensor(_pb, "tensor_list_val") for _pb in ("""dtype: DT_INT32 tensor_shape { } int_val: 1 """,)] if not isinstance(tensor_list_val, (list, tuple)): raise TypeError( "Expected list for 'tensor_list_val' argument to " "'default_attrs' Op, not %r." % tensor_list_val) tensor_list_val = [_execute.make_tensor(_t, "tensor_list_val") for _t in tensor_list_val] try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "DefaultAttrs", string_val=string_val, string_list_val=string_list_val, int_val=int_val, int_list_val=int_list_val, float_val=float_val, float_list_val=float_list_val, bool_val=bool_val, bool_list_val=bool_list_val, type_val=type_val, type_list_val=type_list_val, shape_val=shape_val, shape_list_val=shape_list_val, tensor_val=tensor_val, tensor_list_val=tensor_list_val, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( default_attrs, (), dict(string_val=string_val, string_list_val=string_list_val, int_val=int_val, int_list_val=int_list_val, float_val=float_val, float_list_val=float_list_val, bool_val=bool_val, bool_list_val=bool_list_val, type_val=type_val, type_list_val=type_list_val, shape_val=shape_val, shape_list_val=shape_list_val, tensor_val=tensor_val, tensor_list_val=tensor_list_val, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op DefaultAttrs = tf_export("raw_ops.DefaultAttrs")(_ops.to_raw_op(default_attrs)) _dispatcher_for_default_attrs = default_attrs._tf_type_based_dispatcher.Dispatch def default_attrs_eager_fallback(string_val: str, string_list_val, int_val: int, int_list_val, float_val: float, float_list_val, bool_val: bool, bool_list_val, type_val: TV_DefaultAttrs_type_val, type_list_val, shape_val, shape_list_val, tensor_val, tensor_list_val, name, ctx): if string_val is None: string_val = "abc" string_val = _execute.make_str(string_val, "string_val") if string_list_val is None: string_list_val = ["abc", ""] if not isinstance(string_list_val, (list, tuple)): raise TypeError( "Expected list for 'string_list_val' argument to " "'default_attrs' Op, not %r." % string_list_val) string_list_val = [_execute.make_str(_s, "string_list_val") for _s in string_list_val] if int_val is None: int_val = 123 int_val = _execute.make_int(int_val, "int_val") if int_list_val is None: int_list_val = [1, 2, 3] if not isinstance(int_list_val, (list, tuple)): raise TypeError( "Expected list for 'int_list_val' argument to " "'default_attrs' Op, not %r." % int_list_val) int_list_val = [_execute.make_int(_i, "int_list_val") for _i in int_list_val] if float_val is None: float_val = 10 float_val = _execute.make_float(float_val, "float_val") if float_list_val is None: float_list_val = [10] if not isinstance(float_list_val, (list, tuple)): raise TypeError( "Expected list for 'float_list_val' argument to " "'default_attrs' Op, not %r." % float_list_val) float_list_val = [_execute.make_float(_f, "float_list_val") for _f in float_list_val] if bool_val is None: bool_val = True bool_val = _execute.make_bool(bool_val, "bool_val") if bool_list_val is None: bool_list_val = [True, False] if not isinstance(bool_list_val, (list, tuple)): raise TypeError( "Expected list for 'bool_list_val' argument to " "'default_attrs' Op, not %r." % bool_list_val) bool_list_val = [_execute.make_bool(_b, "bool_list_val") for _b in bool_list_val] if type_val is None: type_val = _dtypes.int32 type_val = _execute.make_type(type_val, "type_val") if type_list_val is None: type_list_val = [_dtypes.int32, _dtypes.float32] if not isinstance(type_list_val, (list, tuple)): raise TypeError( "Expected list for 'type_list_val' argument to " "'default_attrs' Op, not %r." % type_list_val) type_list_val = [_execute.make_type(_t, "type_list_val") for _t in type_list_val] if shape_val is None: shape_val = [2, 1] shape_val = _execute.make_shape(shape_val, "shape_val") if shape_list_val is None: shape_list_val = [[], [1]] if not isinstance(shape_list_val, (list, tuple)): raise TypeError( "Expected list for 'shape_list_val' argument to " "'default_attrs' Op, not %r." % shape_list_val) shape_list_val = [_execute.make_shape(_s, "shape_list_val") for _s in shape_list_val] if tensor_val is None: tensor_val = _execute.make_tensor("""dtype: DT_INT32 tensor_shape { } int_val: 1 """, "tensor_val") tensor_val = _execute.make_tensor(tensor_val, "tensor_val") if tensor_list_val is None: tensor_list_val = [_execute.make_tensor(_pb, "tensor_list_val") for _pb in ("""dtype: DT_INT32 tensor_shape { } int_val: 1 """,)] if not isinstance(tensor_list_val, (list, tuple)): raise TypeError( "Expected list for 'tensor_list_val' argument to " "'default_attrs' Op, not %r." % tensor_list_val) tensor_list_val = [_execute.make_tensor(_t, "tensor_list_val") for _t in tensor_list_val] _inputs_flat = [] _attrs = ("string_val", string_val, "string_list_val", string_list_val, "int_val", int_val, "int_list_val", int_list_val, "float_val", float_val, "float_list_val", float_list_val, "bool_val", bool_val, "bool_list_val", bool_list_val, "type_val", type_val, "type_list_val", type_list_val, "shape_val", shape_val, "shape_list_val", shape_list_val, "tensor_val", tensor_val, "tensor_list_val", tensor_list_val) _result = _execute.execute(b"DefaultAttrs", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('device_placement_op') def device_placement_op(name=None) -> Annotated[Any, _atypes.String]: r"""TODO: add doc. Args: name: A name for the operation (optional). Returns: A `Tensor` of type `string`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "DevicePlacementOp", name) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_device_placement_op( (name,), None) if _result is not NotImplemented: return _result return device_placement_op_eager_fallback( name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( device_placement_op, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_device_placement_op( (name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "DevicePlacementOp", name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( device_placement_op, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "DevicePlacementOp", _inputs_flat, _attrs, _result) _result, = _result return _result DevicePlacementOp = tf_export("raw_ops.DevicePlacementOp")(_ops.to_raw_op(device_placement_op)) _dispatcher_for_device_placement_op = device_placement_op._tf_type_based_dispatcher.Dispatch def device_placement_op_eager_fallback(name, ctx) -> Annotated[Any, _atypes.String]: _inputs_flat = [] _attrs = None _result = _execute.execute(b"DevicePlacementOp", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "DevicePlacementOp", _inputs_flat, _attrs, _result) _result, = _result return _result TV_DtypeWithDefaultOp_T = TypeVar("TV_DtypeWithDefaultOp_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('dtype_with_default_op') def dtype_with_default_op(in_: Annotated[Any, TV_DtypeWithDefaultOp_T], name=None) -> Annotated[Any, _atypes.String]: r"""TODO: add doc. Args: in_: A `Tensor`. name: A name for the operation (optional). Returns: A `Tensor` of type `string`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "DtypeWithDefaultOp", name, in_) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_dtype_with_default_op( (in_, name,), None) if _result is not NotImplemented: return _result return dtype_with_default_op_eager_fallback( in_, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( dtype_with_default_op, (), dict(in_=in_, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_dtype_with_default_op( (in_, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "DtypeWithDefaultOp", in_=in_, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( dtype_with_default_op, (), dict(in_=in_, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "DtypeWithDefaultOp", _inputs_flat, _attrs, _result) _result, = _result return _result DtypeWithDefaultOp = tf_export("raw_ops.DtypeWithDefaultOp")(_ops.to_raw_op(dtype_with_default_op)) _dispatcher_for_dtype_with_default_op = dtype_with_default_op._tf_type_based_dispatcher.Dispatch def dtype_with_default_op_eager_fallback(in_: Annotated[Any, TV_DtypeWithDefaultOp_T], name, ctx) -> Annotated[Any, _atypes.String]: _attr_T, (in_,) = _execute.args_to_matching_eager([in_], ctx, [], _dtypes.uint8) _inputs_flat = [in_] _attrs = ("T", _attr_T) _result = _execute.execute(b"DtypeWithDefaultOp", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "DtypeWithDefaultOp", _inputs_flat, _attrs, _result) _result, = _result return _result _FiveFloatOutputsOutput = collections.namedtuple( "FiveFloatOutputs", ["a", "b", "c", "d", "e"]) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('five_float_outputs') def five_float_outputs(name=None): r"""TODO: add doc. Args: name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (a, b, c, d, e). a: A `Tensor` of type `float32`. b: A `Tensor` of type `float32`. c: A `Tensor` of type `float32`. d: A `Tensor` of type `float32`. e: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "FiveFloatOutputs", name) _result = _FiveFloatOutputsOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_five_float_outputs( (name,), None) if _result is not NotImplemented: return _result return five_float_outputs_eager_fallback( name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( five_float_outputs, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_five_float_outputs( (name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "FiveFloatOutputs", name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( five_float_outputs, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "FiveFloatOutputs", _inputs_flat, _attrs, _result) _result = _FiveFloatOutputsOutput._make(_result) return _result FiveFloatOutputs = tf_export("raw_ops.FiveFloatOutputs")(_ops.to_raw_op(five_float_outputs)) _dispatcher_for_five_float_outputs = five_float_outputs._tf_type_based_dispatcher.Dispatch def five_float_outputs_eager_fallback(name, ctx): _inputs_flat = [] _attrs = None _result = _execute.execute(b"FiveFloatOutputs", 5, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "FiveFloatOutputs", _inputs_flat, _attrs, _result) _result = _FiveFloatOutputsOutput._make(_result) return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('float_input') def float_input(a: Annotated[Any, _atypes.Float32], name=None): r"""TODO: add doc. Args: a: A `Tensor` of type `float32`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "FloatInput", name, a) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_float_input( (a, name,), None) if _result is not NotImplemented: return _result return float_input_eager_fallback( a, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( float_input, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_float_input( (a, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "FloatInput", a=a, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( float_input, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op FloatInput = tf_export("raw_ops.FloatInput")(_ops.to_raw_op(float_input)) _dispatcher_for_float_input = float_input._tf_type_based_dispatcher.Dispatch def float_input_eager_fallback(a: Annotated[Any, _atypes.Float32], name, ctx): a = _ops.convert_to_tensor(a, _dtypes.float32) _inputs_flat = [a] _attrs = None _result = _execute.execute(b"FloatInput", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('float_output') def float_output(name=None) -> Annotated[Any, _atypes.Float32]: r"""TODO: add doc. Args: name: A name for the operation (optional). Returns: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "FloatOutput", name) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_float_output( (name,), None) if _result is not NotImplemented: return _result return float_output_eager_fallback( name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( float_output, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_float_output( (name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "FloatOutput", name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( float_output, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "FloatOutput", _inputs_flat, _attrs, _result) _result, = _result return _result FloatOutput = tf_export("raw_ops.FloatOutput")(_ops.to_raw_op(float_output)) _dispatcher_for_float_output = float_output._tf_type_based_dispatcher.Dispatch def float_output_eager_fallback(name, ctx) -> Annotated[Any, _atypes.Float32]: _inputs_flat = [] _attrs = None _result = _execute.execute(b"FloatOutput", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "FloatOutput", _inputs_flat, _attrs, _result) _result, = _result return _result _FloatOutputStringOutputOutput = collections.namedtuple( "FloatOutputStringOutput", ["a", "b"]) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('float_output_string_output') def float_output_string_output(name=None): r"""TODO: add doc. Args: name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (a, b). a: A `Tensor` of type `float32`. b: A `Tensor` of type `string`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "FloatOutputStringOutput", name) _result = _FloatOutputStringOutputOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_float_output_string_output( (name,), None) if _result is not NotImplemented: return _result return float_output_string_output_eager_fallback( name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( float_output_string_output, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_float_output_string_output( (name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "FloatOutputStringOutput", name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( float_output_string_output, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "FloatOutputStringOutput", _inputs_flat, _attrs, _result) _result = _FloatOutputStringOutputOutput._make(_result) return _result FloatOutputStringOutput = tf_export("raw_ops.FloatOutputStringOutput")(_ops.to_raw_op(float_output_string_output)) _dispatcher_for_float_output_string_output = float_output_string_output._tf_type_based_dispatcher.Dispatch def float_output_string_output_eager_fallback(name, ctx): _inputs_flat = [] _attrs = None _result = _execute.execute(b"FloatOutputStringOutput", 2, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "FloatOutputStringOutput", _inputs_flat, _attrs, _result) _result = _FloatOutputStringOutputOutput._make(_result) return _result _Foo1Output = collections.namedtuple( "Foo1", ["d", "e"]) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('foo1') def foo1(a: Annotated[Any, _atypes.Float32], b: Annotated[Any, _atypes.Int32], c: Annotated[Any, _atypes.Int32], name=None): r"""TODO: add doc. Args: a: A `Tensor` of type `float32`. b: A `Tensor` of type `int32`. c: A `Tensor` of type `int32`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (d, e). d: A `Tensor` of type `float32`. e: A `Tensor` of type `int32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "Foo1", name, a, b, c) _result = _Foo1Output._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_foo1( (a, b, c, name,), None) if _result is not NotImplemented: return _result return foo1_eager_fallback( a, b, c, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( foo1, (), dict(a=a, b=b, c=c, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_foo1( (a, b, c, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "Foo1", a=a, b=b, c=c, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( foo1, (), dict(a=a, b=b, c=c, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "Foo1", _inputs_flat, _attrs, _result) _result = _Foo1Output._make(_result) return _result Foo1 = tf_export("raw_ops.Foo1")(_ops.to_raw_op(foo1)) _dispatcher_for_foo1 = foo1._tf_type_based_dispatcher.Dispatch def foo1_eager_fallback(a: Annotated[Any, _atypes.Float32], b: Annotated[Any, _atypes.Int32], c: Annotated[Any, _atypes.Int32], name, ctx): a = _ops.convert_to_tensor(a, _dtypes.float32) b = _ops.convert_to_tensor(b, _dtypes.int32) c = _ops.convert_to_tensor(c, _dtypes.int32) _inputs_flat = [a, b, c] _attrs = None _result = _execute.execute(b"Foo1", 2, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "Foo1", _inputs_flat, _attrs, _result) _result = _Foo1Output._make(_result) return _result _Foo2Output = collections.namedtuple( "Foo2", ["d", "e"]) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('foo2') def foo2(a: Annotated[Any, _atypes.Float32], b: Annotated[Any, _atypes.String], c: Annotated[Any, _atypes.String], name=None): r"""TODO: add doc. Args: a: A `Tensor` of type `float32`. b: A `Tensor` of type `string`. c: A `Tensor` of type `string`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (d, e). d: A `Tensor` of type `float32`. e: A `Tensor` of type `int32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "Foo2", name, a, b, c) _result = _Foo2Output._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_foo2( (a, b, c, name,), None) if _result is not NotImplemented: return _result return foo2_eager_fallback( a, b, c, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( foo2, (), dict(a=a, b=b, c=c, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_foo2( (a, b, c, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "Foo2", a=a, b=b, c=c, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( foo2, (), dict(a=a, b=b, c=c, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "Foo2", _inputs_flat, _attrs, _result) _result = _Foo2Output._make(_result) return _result Foo2 = tf_export("raw_ops.Foo2")(_ops.to_raw_op(foo2)) _dispatcher_for_foo2 = foo2._tf_type_based_dispatcher.Dispatch def foo2_eager_fallback(a: Annotated[Any, _atypes.Float32], b: Annotated[Any, _atypes.String], c: Annotated[Any, _atypes.String], name, ctx): a = _ops.convert_to_tensor(a, _dtypes.float32) b = _ops.convert_to_tensor(b, _dtypes.string) c = _ops.convert_to_tensor(c, _dtypes.string) _inputs_flat = [a, b, c] _attrs = None _result = _execute.execute(b"Foo2", 2, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "Foo2", _inputs_flat, _attrs, _result) _result = _Foo2Output._make(_result) return _result _Foo3Output = collections.namedtuple( "Foo3", ["d", "e"]) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('foo3') def foo3(a: Annotated[Any, _atypes.Float32], b: Annotated[Any, _atypes.String], c: Annotated[Any, _atypes.Float32], name=None): r"""TODO: add doc. Args: a: A `Tensor` of type `float32`. b: A `Tensor` of type `string`. c: A `Tensor` of type `float32`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (d, e). d: A `Tensor` of type `float32`. e: A `Tensor` of type `int32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "Foo3", name, a, b, c) _result = _Foo3Output._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_foo3( (a, b, c, name,), None) if _result is not NotImplemented: return _result return foo3_eager_fallback( a, b, c, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( foo3, (), dict(a=a, b=b, c=c, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_foo3( (a, b, c, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "Foo3", a=a, b=b, c=c, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( foo3, (), dict(a=a, b=b, c=c, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "Foo3", _inputs_flat, _attrs, _result) _result = _Foo3Output._make(_result) return _result Foo3 = tf_export("raw_ops.Foo3")(_ops.to_raw_op(foo3)) _dispatcher_for_foo3 = foo3._tf_type_based_dispatcher.Dispatch def foo3_eager_fallback(a: Annotated[Any, _atypes.Float32], b: Annotated[Any, _atypes.String], c: Annotated[Any, _atypes.Float32], name, ctx): a = _ops.convert_to_tensor(a, _dtypes.float32) b = _ops.convert_to_tensor(b, _dtypes.string) c = _ops.convert_to_tensor(c, _dtypes.float32) _inputs_flat = [a, b, c] _attrs = None _result = _execute.execute(b"Foo3", 2, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "Foo3", _inputs_flat, _attrs, _result) _result = _Foo3Output._make(_result) return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('func_attr') def func_attr(f, name=None): r"""TODO: add doc. Args: f: A function decorated with @Defun. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "FuncAttr", name, "f", f) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_func_attr( (f, name,), None) if _result is not NotImplemented: return _result return func_attr_eager_fallback( f=f, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( func_attr, (), dict(f=f, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_func_attr( (f, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "FuncAttr", f=f, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( func_attr, (), dict(f=f, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op FuncAttr = tf_export("raw_ops.FuncAttr")(_ops.to_raw_op(func_attr)) _dispatcher_for_func_attr = func_attr._tf_type_based_dispatcher.Dispatch def func_attr_eager_fallback(f, name, ctx): _inputs_flat = [] _attrs = ("f", f) _result = _execute.execute(b"FuncAttr", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('func_list_attr') def func_list_attr(f, name=None): r"""TODO: add doc. Args: f: A list of functions decorated with @Defun. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "FuncListAttr", name, "f", f) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_func_list_attr( (f, name,), None) if _result is not NotImplemented: return _result return func_list_attr_eager_fallback( f=f, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( func_list_attr, (), dict(f=f, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_func_list_attr( (f, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if not isinstance(f, (list, tuple)): raise TypeError( "Expected list for 'f' argument to " "'func_list_attr' Op, not %r." % f) try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "FuncListAttr", f=f, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( func_list_attr, (), dict(f=f, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op FuncListAttr = tf_export("raw_ops.FuncListAttr")(_ops.to_raw_op(func_list_attr)) _dispatcher_for_func_list_attr = func_list_attr._tf_type_based_dispatcher.Dispatch def func_list_attr_eager_fallback(f, name, ctx): if not isinstance(f, (list, tuple)): raise TypeError( "Expected list for 'f' argument to " "'func_list_attr' Op, not %r." % f) _inputs_flat = [] _attrs = ("f", f) _result = _execute.execute(b"FuncListAttr", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('get_deadline') def get_deadline(name=None) -> Annotated[Any, _atypes.Int64]: r"""TODO: add doc. Args: name: A name for the operation (optional). Returns: A `Tensor` of type `int64`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "GetDeadline", name) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_get_deadline( (name,), None) if _result is not NotImplemented: return _result return get_deadline_eager_fallback( name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( get_deadline, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_get_deadline( (name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "GetDeadline", name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( get_deadline, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "GetDeadline", _inputs_flat, _attrs, _result) _result, = _result return _result GetDeadline = tf_export("raw_ops.GetDeadline")(_ops.to_raw_op(get_deadline)) _dispatcher_for_get_deadline = get_deadline._tf_type_based_dispatcher.Dispatch def get_deadline_eager_fallback(name, ctx) -> Annotated[Any, _atypes.Int64]: _inputs_flat = [] _attrs = None _result = _execute.execute(b"GetDeadline", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "GetDeadline", _inputs_flat, _attrs, _result) _result, = _result return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('graph_def_version') def graph_def_version(name=None) -> Annotated[Any, _atypes.Int32]: r"""TODO: add doc. Args: name: A name for the operation (optional). Returns: A `Tensor` of type `int32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "GraphDefVersion", name) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_graph_def_version( (name,), None) if _result is not NotImplemented: return _result return graph_def_version_eager_fallback( name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( graph_def_version, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_graph_def_version( (name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "GraphDefVersion", name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( graph_def_version, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "GraphDefVersion", _inputs_flat, _attrs, _result) _result, = _result return _result GraphDefVersion = tf_export("raw_ops.GraphDefVersion")(_ops.to_raw_op(graph_def_version)) _dispatcher_for_graph_def_version = graph_def_version._tf_type_based_dispatcher.Dispatch def graph_def_version_eager_fallback(name, ctx) -> Annotated[Any, _atypes.Int32]: _inputs_flat = [] _attrs = None _result = _execute.execute(b"GraphDefVersion", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "GraphDefVersion", _inputs_flat, _attrs, _result) _result, = _result return _result TV_InPolymorphicTwice_T = TypeVar("TV_InPolymorphicTwice_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('in_polymorphic_twice') def in_polymorphic_twice(a: Annotated[List[Any], TV_InPolymorphicTwice_T], b: Annotated[List[Any], TV_InPolymorphicTwice_T], name=None): r"""TODO: add doc. Args: a: A list of `Tensor` objects with the same type. b: A list of `Tensor` objects with the same type as `a`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "InPolymorphicTwice", name, a, b) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_in_polymorphic_twice( (a, b, name,), None) if _result is not NotImplemented: return _result return in_polymorphic_twice_eager_fallback( a, b, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( in_polymorphic_twice, (), dict(a=a, b=b, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_in_polymorphic_twice( (a, b, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if not isinstance(a, (list, tuple)): raise TypeError( "Expected list for 'a' argument to " "'in_polymorphic_twice' Op, not %r." % a) _attr_N = len(a) if not isinstance(b, (list, tuple)): raise TypeError( "Expected list for 'b' argument to " "'in_polymorphic_twice' Op, not %r." % b) _attr_M = len(b) try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "InPolymorphicTwice", a=a, b=b, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( in_polymorphic_twice, (), dict(a=a, b=b, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op InPolymorphicTwice = tf_export("raw_ops.InPolymorphicTwice")(_ops.to_raw_op(in_polymorphic_twice)) _dispatcher_for_in_polymorphic_twice = in_polymorphic_twice._tf_type_based_dispatcher.Dispatch def in_polymorphic_twice_eager_fallback(a: Annotated[List[Any], TV_InPolymorphicTwice_T], b: Annotated[List[Any], TV_InPolymorphicTwice_T], name, ctx): if not isinstance(a, (list, tuple)): raise TypeError( "Expected list for 'a' argument to " "'in_polymorphic_twice' Op, not %r." % a) _attr_N = len(a) if not isinstance(b, (list, tuple)): raise TypeError( "Expected list for 'b' argument to " "'in_polymorphic_twice' Op, not %r." % b) _attr_M = len(b) _attr_T, _inputs_T = _execute.args_to_matching_eager(list(a) + list(b), ctx, [], _dtypes.int32) _inputs_T = [_inputs_T[:_attr_N]] + _inputs_T[_attr_N:] _inputs_T = _inputs_T[:1] + [_inputs_T[1:]] (a, b) = _inputs_T _inputs_flat = list(a) + list(b) _attrs = ("T", _attr_T, "N", _attr_N, "M", _attr_M) _result = _execute.execute(b"InPolymorphicTwice", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('int64_output') def int64_output(name=None) -> Annotated[Any, _atypes.Int64]: r"""TODO: add doc. Args: name: A name for the operation (optional). Returns: A `Tensor` of type `int64`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "Int64Output", name) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_int64_output( (name,), None) if _result is not NotImplemented: return _result return int64_output_eager_fallback( name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( int64_output, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_int64_output( (name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "Int64Output", name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( int64_output, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "Int64Output", _inputs_flat, _attrs, _result) _result, = _result return _result Int64Output = tf_export("raw_ops.Int64Output")(_ops.to_raw_op(int64_output)) _dispatcher_for_int64_output = int64_output._tf_type_based_dispatcher.Dispatch def int64_output_eager_fallback(name, ctx) -> Annotated[Any, _atypes.Int64]: _inputs_flat = [] _attrs = None _result = _execute.execute(b"Int64Output", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "Int64Output", _inputs_flat, _attrs, _result) _result, = _result return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('int_attr') def int_attr(foo:int=1, name=None) -> Annotated[Any, _atypes.Int64]: r"""TODO: add doc. Args: foo: An optional `int`. Defaults to `1`. name: A name for the operation (optional). Returns: A `Tensor` of type `int64`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "IntAttr", name, "foo", foo) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_int_attr( (foo, name,), None) if _result is not NotImplemented: return _result return int_attr_eager_fallback( foo=foo, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( int_attr, (), dict(foo=foo, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_int_attr( (foo, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if foo is None: foo = 1 foo = _execute.make_int(foo, "foo") try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "IntAttr", foo=foo, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( int_attr, (), dict(foo=foo, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("foo", _op._get_attr_int("foo")) _inputs_flat = _op.inputs _execute.record_gradient( "IntAttr", _inputs_flat, _attrs, _result) _result, = _result return _result IntAttr = tf_export("raw_ops.IntAttr")(_ops.to_raw_op(int_attr)) _dispatcher_for_int_attr = int_attr._tf_type_based_dispatcher.Dispatch def int_attr_eager_fallback(foo: int, name, ctx) -> Annotated[Any, _atypes.Int64]: if foo is None: foo = 1 foo = _execute.make_int(foo, "foo") _inputs_flat = [] _attrs = ("foo", foo) _result = _execute.execute(b"IntAttr", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "IntAttr", _inputs_flat, _attrs, _result) _result, = _result return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('int_input') def int_input(a: Annotated[Any, _atypes.Int32], name=None): r"""TODO: add doc. Args: a: A `Tensor` of type `int32`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "IntInput", name, a) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_int_input( (a, name,), None) if _result is not NotImplemented: return _result return int_input_eager_fallback( a, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( int_input, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_int_input( (a, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "IntInput", a=a, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( int_input, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op IntInput = tf_export("raw_ops.IntInput")(_ops.to_raw_op(int_input)) _dispatcher_for_int_input = int_input._tf_type_based_dispatcher.Dispatch def int_input_eager_fallback(a: Annotated[Any, _atypes.Int32], name, ctx): a = _ops.convert_to_tensor(a, _dtypes.int32) _inputs_flat = [a] _attrs = None _result = _execute.execute(b"IntInput", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('int_input_float_input') def int_input_float_input(a: Annotated[Any, _atypes.Int32], b: Annotated[Any, _atypes.Float32], name=None): r"""TODO: add doc. Args: a: A `Tensor` of type `int32`. b: A `Tensor` of type `float32`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "IntInputFloatInput", name, a, b) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_int_input_float_input( (a, b, name,), None) if _result is not NotImplemented: return _result return int_input_float_input_eager_fallback( a, b, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( int_input_float_input, (), dict(a=a, b=b, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_int_input_float_input( (a, b, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "IntInputFloatInput", a=a, b=b, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( int_input_float_input, (), dict(a=a, b=b, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op IntInputFloatInput = tf_export("raw_ops.IntInputFloatInput")(_ops.to_raw_op(int_input_float_input)) _dispatcher_for_int_input_float_input = int_input_float_input._tf_type_based_dispatcher.Dispatch def int_input_float_input_eager_fallback(a: Annotated[Any, _atypes.Int32], b: Annotated[Any, _atypes.Float32], name, ctx): a = _ops.convert_to_tensor(a, _dtypes.int32) b = _ops.convert_to_tensor(b, _dtypes.float32) _inputs_flat = [a, b] _attrs = None _result = _execute.execute(b"IntInputFloatInput", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('int_input_int_output') def int_input_int_output(a: Annotated[Any, _atypes.Int32], name=None) -> Annotated[Any, _atypes.Int32]: r"""TODO: add doc. Args: a: A `Tensor` of type `int32`. name: A name for the operation (optional). Returns: A `Tensor` of type `int32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "IntInputIntOutput", name, a) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_int_input_int_output( (a, name,), None) if _result is not NotImplemented: return _result return int_input_int_output_eager_fallback( a, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( int_input_int_output, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_int_input_int_output( (a, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "IntInputIntOutput", a=a, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( int_input_int_output, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "IntInputIntOutput", _inputs_flat, _attrs, _result) _result, = _result return _result IntInputIntOutput = tf_export("raw_ops.IntInputIntOutput")(_ops.to_raw_op(int_input_int_output)) _dispatcher_for_int_input_int_output = int_input_int_output._tf_type_based_dispatcher.Dispatch def int_input_int_output_eager_fallback(a: Annotated[Any, _atypes.Int32], name, ctx) -> Annotated[Any, _atypes.Int32]: a = _ops.convert_to_tensor(a, _dtypes.int32) _inputs_flat = [a] _attrs = None _result = _execute.execute(b"IntInputIntOutput", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "IntInputIntOutput", _inputs_flat, _attrs, _result) _result, = _result return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('int_output') def int_output(name=None) -> Annotated[Any, _atypes.Int32]: r"""TODO: add doc. Args: name: A name for the operation (optional). Returns: A `Tensor` of type `int32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "IntOutput", name) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_int_output( (name,), None) if _result is not NotImplemented: return _result return int_output_eager_fallback( name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( int_output, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_int_output( (name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "IntOutput", name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( int_output, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "IntOutput", _inputs_flat, _attrs, _result) _result, = _result return _result IntOutput = tf_export("raw_ops.IntOutput")(_ops.to_raw_op(int_output)) _dispatcher_for_int_output = int_output._tf_type_based_dispatcher.Dispatch def int_output_eager_fallback(name, ctx) -> Annotated[Any, _atypes.Int32]: _inputs_flat = [] _attrs = None _result = _execute.execute(b"IntOutput", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "IntOutput", _inputs_flat, _attrs, _result) _result, = _result return _result _IntOutputFloatOutputOutput = collections.namedtuple( "IntOutputFloatOutput", ["a", "b"]) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('int_output_float_output') def int_output_float_output(name=None): r"""TODO: add doc. Args: name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (a, b). a: A `Tensor` of type `int32`. b: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "IntOutputFloatOutput", name) _result = _IntOutputFloatOutputOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_int_output_float_output( (name,), None) if _result is not NotImplemented: return _result return int_output_float_output_eager_fallback( name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( int_output_float_output, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_int_output_float_output( (name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "IntOutputFloatOutput", name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( int_output_float_output, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "IntOutputFloatOutput", _inputs_flat, _attrs, _result) _result = _IntOutputFloatOutputOutput._make(_result) return _result IntOutputFloatOutput = tf_export("raw_ops.IntOutputFloatOutput")(_ops.to_raw_op(int_output_float_output)) _dispatcher_for_int_output_float_output = int_output_float_output._tf_type_based_dispatcher.Dispatch def int_output_float_output_eager_fallback(name, ctx): _inputs_flat = [] _attrs = None _result = _execute.execute(b"IntOutputFloatOutput", 2, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "IntOutputFloatOutput", _inputs_flat, _attrs, _result) _result = _IntOutputFloatOutputOutput._make(_result) return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('is_resource_handle_ref_counting') def is_resource_handle_ref_counting(handle: Annotated[Any, _atypes.Resource], name=None) -> Annotated[Any, _atypes.Bool]: r"""TODO: add doc. Args: handle: A `Tensor` of type `resource`. name: A name for the operation (optional). Returns: A `Tensor` of type `bool`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "IsResourceHandleRefCounting", name, handle) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_is_resource_handle_ref_counting( (handle, name,), None) if _result is not NotImplemented: return _result return is_resource_handle_ref_counting_eager_fallback( handle, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( is_resource_handle_ref_counting, (), dict(handle=handle, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_is_resource_handle_ref_counting( (handle, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "IsResourceHandleRefCounting", handle=handle, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( is_resource_handle_ref_counting, (), dict(handle=handle, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "IsResourceHandleRefCounting", _inputs_flat, _attrs, _result) _result, = _result return _result IsResourceHandleRefCounting = tf_export("raw_ops.IsResourceHandleRefCounting")(_ops.to_raw_op(is_resource_handle_ref_counting)) _dispatcher_for_is_resource_handle_ref_counting = is_resource_handle_ref_counting._tf_type_based_dispatcher.Dispatch def is_resource_handle_ref_counting_eager_fallback(handle: Annotated[Any, _atypes.Resource], name, ctx) -> Annotated[Any, _atypes.Bool]: handle = _ops.convert_to_tensor(handle, _dtypes.resource) _inputs_flat = [handle] _attrs = None _result = _execute.execute(b"IsResourceHandleRefCounting", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "IsResourceHandleRefCounting", _inputs_flat, _attrs, _result) _result, = _result return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('is_tensor_float32_enabled') def is_tensor_float32_enabled(name=None) -> Annotated[Any, _atypes.Bool]: r"""TODO: add doc. Args: name: A name for the operation (optional). Returns: A `Tensor` of type `bool`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "IsTensorFloat32Enabled", name) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_is_tensor_float32_enabled( (name,), None) if _result is not NotImplemented: return _result return is_tensor_float32_enabled_eager_fallback( name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( is_tensor_float32_enabled, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_is_tensor_float32_enabled( (name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "IsTensorFloat32Enabled", name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( is_tensor_float32_enabled, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "IsTensorFloat32Enabled", _inputs_flat, _attrs, _result) _result, = _result return _result IsTensorFloat32Enabled = tf_export("raw_ops.IsTensorFloat32Enabled")(_ops.to_raw_op(is_tensor_float32_enabled)) _dispatcher_for_is_tensor_float32_enabled = is_tensor_float32_enabled._tf_type_based_dispatcher.Dispatch def is_tensor_float32_enabled_eager_fallback(name, ctx) -> Annotated[Any, _atypes.Bool]: _inputs_flat = [] _attrs = None _result = _execute.execute(b"IsTensorFloat32Enabled", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "IsTensorFloat32Enabled", _inputs_flat, _attrs, _result) _result, = _result return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('kernel_label') def kernel_label(name=None) -> Annotated[Any, _atypes.String]: r"""TODO: add doc. Args: name: A name for the operation (optional). Returns: A `Tensor` of type `string`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "KernelLabel", name) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_kernel_label( (name,), None) if _result is not NotImplemented: return _result return kernel_label_eager_fallback( name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( kernel_label, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_kernel_label( (name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "KernelLabel", name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( kernel_label, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "KernelLabel", _inputs_flat, _attrs, _result) _result, = _result return _result KernelLabel = tf_export("raw_ops.KernelLabel")(_ops.to_raw_op(kernel_label)) _dispatcher_for_kernel_label = kernel_label._tf_type_based_dispatcher.Dispatch def kernel_label_eager_fallback(name, ctx) -> Annotated[Any, _atypes.String]: _inputs_flat = [] _attrs = None _result = _execute.execute(b"KernelLabel", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "KernelLabel", _inputs_flat, _attrs, _result) _result, = _result return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('kernel_label_required') def kernel_label_required(input: Annotated[Any, _atypes.Int32], name=None) -> Annotated[Any, _atypes.String]: r"""TODO: add doc. Args: input: A `Tensor` of type `int32`. name: A name for the operation (optional). Returns: A `Tensor` of type `string`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "KernelLabelRequired", name, input) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_kernel_label_required( (input, name,), None) if _result is not NotImplemented: return _result return kernel_label_required_eager_fallback( input, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( kernel_label_required, (), dict(input=input, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_kernel_label_required( (input, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "KernelLabelRequired", input=input, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( kernel_label_required, (), dict(input=input, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "KernelLabelRequired", _inputs_flat, _attrs, _result) _result, = _result return _result KernelLabelRequired = tf_export("raw_ops.KernelLabelRequired")(_ops.to_raw_op(kernel_label_required)) _dispatcher_for_kernel_label_required = kernel_label_required._tf_type_based_dispatcher.Dispatch def kernel_label_required_eager_fallback(input: Annotated[Any, _atypes.Int32], name, ctx) -> Annotated[Any, _atypes.String]: input = _ops.convert_to_tensor(input, _dtypes.int32) _inputs_flat = [input] _attrs = None _result = _execute.execute(b"KernelLabelRequired", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "KernelLabelRequired", _inputs_flat, _attrs, _result) _result, = _result return _result TV_ListInput_T = TypeVar("TV_ListInput_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('list_input') def list_input(a: Annotated[List[Any], TV_ListInput_T], name=None): r"""TODO: add doc. Args: a: A list of at least 1 `Tensor` objects with the same type. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "ListInput", name, a) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_list_input( (a, name,), None) if _result is not NotImplemented: return _result return list_input_eager_fallback( a, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( list_input, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_list_input( (a, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if not isinstance(a, (list, tuple)): raise TypeError( "Expected list for 'a' argument to " "'list_input' Op, not %r." % a) _attr_N = len(a) try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "ListInput", a=a, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( list_input, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op ListInput = tf_export("raw_ops.ListInput")(_ops.to_raw_op(list_input)) _dispatcher_for_list_input = list_input._tf_type_based_dispatcher.Dispatch def list_input_eager_fallback(a: Annotated[List[Any], TV_ListInput_T], name, ctx): if not isinstance(a, (list, tuple)): raise TypeError( "Expected list for 'a' argument to " "'list_input' Op, not %r." % a) _attr_N = len(a) _attr_T, a = _execute.args_to_matching_eager(list(a), ctx, []) _inputs_flat = list(a) _attrs = ("N", _attr_N, "T", _attr_T) _result = _execute.execute(b"ListInput", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('list_output') def list_output(T, name=None): r"""TODO: add doc. Args: T: A list of `tf.DTypes` that has length `>= 1`. name: A name for the operation (optional). Returns: A list of `Tensor` objects of type `T`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "ListOutput", name, "T", T) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_list_output( (T, name,), None) if _result is not NotImplemented: return _result return list_output_eager_fallback( T=T, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( list_output, (), dict(T=T, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_list_output( (T, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if not isinstance(T, (list, tuple)): raise TypeError( "Expected list for 'T' argument to " "'list_output' Op, not %r." % T) T = [_execute.make_type(_t, "T") for _t in T] try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "ListOutput", T=T, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( list_output, (), dict(T=T, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op.get_attr("T")) _inputs_flat = _op.inputs _execute.record_gradient( "ListOutput", _inputs_flat, _attrs, _result) return _result ListOutput = tf_export("raw_ops.ListOutput")(_ops.to_raw_op(list_output)) _dispatcher_for_list_output = list_output._tf_type_based_dispatcher.Dispatch def list_output_eager_fallback(T, name, ctx): if not isinstance(T, (list, tuple)): raise TypeError( "Expected list for 'T' argument to " "'list_output' Op, not %r." % T) T = [_execute.make_type(_t, "T") for _t in T] _inputs_flat = [] _attrs = ("T", T) _result = _execute.execute(b"ListOutput", len(T), inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "ListOutput", _inputs_flat, _attrs, _result) return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('make_weak_resource_handle') def make_weak_resource_handle(handle: Annotated[Any, _atypes.Resource], name=None) -> Annotated[Any, _atypes.Resource]: r"""TODO: add doc. Args: handle: A `Tensor` of type `resource`. name: A name for the operation (optional). Returns: A `Tensor` of type `resource`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "MakeWeakResourceHandle", name, handle) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_make_weak_resource_handle( (handle, name,), None) if _result is not NotImplemented: return _result return make_weak_resource_handle_eager_fallback( handle, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( make_weak_resource_handle, (), dict(handle=handle, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_make_weak_resource_handle( (handle, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "MakeWeakResourceHandle", handle=handle, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( make_weak_resource_handle, (), dict(handle=handle, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "MakeWeakResourceHandle", _inputs_flat, _attrs, _result) _result, = _result return _result MakeWeakResourceHandle = tf_export("raw_ops.MakeWeakResourceHandle")(_ops.to_raw_op(make_weak_resource_handle)) _dispatcher_for_make_weak_resource_handle = make_weak_resource_handle._tf_type_based_dispatcher.Dispatch def make_weak_resource_handle_eager_fallback(handle: Annotated[Any, _atypes.Resource], name, ctx) -> Annotated[Any, _atypes.Resource]: handle = _ops.convert_to_tensor(handle, _dtypes.resource) _inputs_flat = [handle] _attrs = None _result = _execute.execute(b"MakeWeakResourceHandle", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "MakeWeakResourceHandle", _inputs_flat, _attrs, _result) _result, = _result return _result _MixedStructOutput = collections.namedtuple( "MixedStruct", ["a", "b"]) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('mixed_struct') def mixed_struct(n_a: int, name=None): r"""TODO: add doc. Args: n_a: An `int` that is `>= 0`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (a, b). a: A list of `n_a` `Tensor` objects with type `int32`. b: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "MixedStruct", name, "n_a", n_a) _result = _MixedStructOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_mixed_struct( (n_a, name,), None) if _result is not NotImplemented: return _result return mixed_struct_eager_fallback( n_a=n_a, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( mixed_struct, (), dict(n_a=n_a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_mixed_struct( (n_a, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. n_a = _execute.make_int(n_a, "n_a") try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "MixedStruct", n_a=n_a, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( mixed_struct, (), dict(n_a=n_a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("n_a", _op._get_attr_int("n_a")) _inputs_flat = _op.inputs _execute.record_gradient( "MixedStruct", _inputs_flat, _attrs, _result) _result = [_result[:n_a]] + _result[n_a:] _result = _MixedStructOutput._make(_result) return _result MixedStruct = tf_export("raw_ops.MixedStruct")(_ops.to_raw_op(mixed_struct)) _dispatcher_for_mixed_struct = mixed_struct._tf_type_based_dispatcher.Dispatch def mixed_struct_eager_fallback(n_a: int, name, ctx): n_a = _execute.make_int(n_a, "n_a") _inputs_flat = [] _attrs = ("n_a", n_a) _result = _execute.execute(b"MixedStruct", n_a + 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "MixedStruct", _inputs_flat, _attrs, _result) _result = [_result[:n_a]] + _result[n_a:] _result = _MixedStructOutput._make(_result) return _result TV_NInPolymorphicTwice_T = TypeVar("TV_NInPolymorphicTwice_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('n_in_polymorphic_twice') def n_in_polymorphic_twice(a: Annotated[List[Any], TV_NInPolymorphicTwice_T], b: Annotated[List[Any], TV_NInPolymorphicTwice_T], name=None): r"""TODO: add doc. Args: a: A list of `Tensor` objects with the same type. b: A list with the same length as `a` of `Tensor` objects with the same type as `a`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "NInPolymorphicTwice", name, a, b) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_n_in_polymorphic_twice( (a, b, name,), None) if _result is not NotImplemented: return _result return n_in_polymorphic_twice_eager_fallback( a, b, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( n_in_polymorphic_twice, (), dict(a=a, b=b, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_n_in_polymorphic_twice( (a, b, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if not isinstance(a, (list, tuple)): raise TypeError( "Expected list for 'a' argument to " "'n_in_polymorphic_twice' Op, not %r." % a) _attr_N = len(a) if not isinstance(b, (list, tuple)): raise TypeError( "Expected list for 'b' argument to " "'n_in_polymorphic_twice' Op, not %r." % b) if len(b) != _attr_N: raise ValueError( "List argument 'b' to 'n_in_polymorphic_twice' Op with length %d " "must match length %d of argument 'a'." % (len(b), _attr_N)) try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "NInPolymorphicTwice", a=a, b=b, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( n_in_polymorphic_twice, (), dict(a=a, b=b, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op NInPolymorphicTwice = tf_export("raw_ops.NInPolymorphicTwice")(_ops.to_raw_op(n_in_polymorphic_twice)) _dispatcher_for_n_in_polymorphic_twice = n_in_polymorphic_twice._tf_type_based_dispatcher.Dispatch def n_in_polymorphic_twice_eager_fallback(a: Annotated[List[Any], TV_NInPolymorphicTwice_T], b: Annotated[List[Any], TV_NInPolymorphicTwice_T], name, ctx): if not isinstance(a, (list, tuple)): raise TypeError( "Expected list for 'a' argument to " "'n_in_polymorphic_twice' Op, not %r." % a) _attr_N = len(a) if not isinstance(b, (list, tuple)): raise TypeError( "Expected list for 'b' argument to " "'n_in_polymorphic_twice' Op, not %r." % b) if len(b) != _attr_N: raise ValueError( "List argument 'b' to 'n_in_polymorphic_twice' Op with length %d " "must match length %d of argument 'a'." % (len(b), _attr_N)) _attr_T, _inputs_T = _execute.args_to_matching_eager(list(a) + list(b), ctx, []) _inputs_T = [_inputs_T[:_attr_N]] + _inputs_T[_attr_N:] _inputs_T = _inputs_T[:1] + [_inputs_T[1:]] (a, b) = _inputs_T _inputs_flat = list(a) + list(b) _attrs = ("T", _attr_T, "N", _attr_N) _result = _execute.execute(b"NInPolymorphicTwice", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('n_in_twice') def n_in_twice(a: Annotated[List[Any], _atypes.Int32], b: Annotated[List[Any], _atypes.String], name=None): r"""TODO: add doc. Args: a: A list of `Tensor` objects with type `int32`. b: A list with the same length as `a` of `Tensor` objects with type `string`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "NInTwice", name, a, b) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_n_in_twice( (a, b, name,), None) if _result is not NotImplemented: return _result return n_in_twice_eager_fallback( a, b, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( n_in_twice, (), dict(a=a, b=b, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_n_in_twice( (a, b, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if not isinstance(a, (list, tuple)): raise TypeError( "Expected list for 'a' argument to " "'n_in_twice' Op, not %r." % a) _attr_N = len(a) if not isinstance(b, (list, tuple)): raise TypeError( "Expected list for 'b' argument to " "'n_in_twice' Op, not %r." % b) if len(b) != _attr_N: raise ValueError( "List argument 'b' to 'n_in_twice' Op with length %d " "must match length %d of argument 'a'." % (len(b), _attr_N)) try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "NInTwice", a=a, b=b, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( n_in_twice, (), dict(a=a, b=b, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op NInTwice = tf_export("raw_ops.NInTwice")(_ops.to_raw_op(n_in_twice)) _dispatcher_for_n_in_twice = n_in_twice._tf_type_based_dispatcher.Dispatch def n_in_twice_eager_fallback(a: Annotated[List[Any], _atypes.Int32], b: Annotated[List[Any], _atypes.String], name, ctx): if not isinstance(a, (list, tuple)): raise TypeError( "Expected list for 'a' argument to " "'n_in_twice' Op, not %r." % a) _attr_N = len(a) if not isinstance(b, (list, tuple)): raise TypeError( "Expected list for 'b' argument to " "'n_in_twice' Op, not %r." % b) if len(b) != _attr_N: raise ValueError( "List argument 'b' to 'n_in_twice' Op with length %d " "must match length %d of argument 'a'." % (len(b), _attr_N)) a = _ops.convert_n_to_tensor(a, _dtypes.int32) b = _ops.convert_n_to_tensor(b, _dtypes.string) _inputs_flat = list(a) + list(b) _attrs = ("N", _attr_N) _result = _execute.execute(b"NInTwice", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result TV_NInTwoTypeVariables_S = TypeVar("TV_NInTwoTypeVariables_S", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) TV_NInTwoTypeVariables_T = TypeVar("TV_NInTwoTypeVariables_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('n_in_two_type_variables') def n_in_two_type_variables(a: Annotated[List[Any], TV_NInTwoTypeVariables_S], b: Annotated[List[Any], TV_NInTwoTypeVariables_T], name=None): r"""TODO: add doc. Args: a: A list of `Tensor` objects with the same type. b: A list with the same length as `a` of `Tensor` objects with the same type. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "NInTwoTypeVariables", name, a, b) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_n_in_two_type_variables( (a, b, name,), None) if _result is not NotImplemented: return _result return n_in_two_type_variables_eager_fallback( a, b, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( n_in_two_type_variables, (), dict(a=a, b=b, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_n_in_two_type_variables( (a, b, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if not isinstance(a, (list, tuple)): raise TypeError( "Expected list for 'a' argument to " "'n_in_two_type_variables' Op, not %r." % a) _attr_N = len(a) if not isinstance(b, (list, tuple)): raise TypeError( "Expected list for 'b' argument to " "'n_in_two_type_variables' Op, not %r." % b) if len(b) != _attr_N: raise ValueError( "List argument 'b' to 'n_in_two_type_variables' Op with length %d " "must match length %d of argument 'a'." % (len(b), _attr_N)) try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "NInTwoTypeVariables", a=a, b=b, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( n_in_two_type_variables, (), dict(a=a, b=b, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op NInTwoTypeVariables = tf_export("raw_ops.NInTwoTypeVariables")(_ops.to_raw_op(n_in_two_type_variables)) _dispatcher_for_n_in_two_type_variables = n_in_two_type_variables._tf_type_based_dispatcher.Dispatch def n_in_two_type_variables_eager_fallback(a: Annotated[List[Any], TV_NInTwoTypeVariables_S], b: Annotated[List[Any], TV_NInTwoTypeVariables_T], name, ctx): if not isinstance(a, (list, tuple)): raise TypeError( "Expected list for 'a' argument to " "'n_in_two_type_variables' Op, not %r." % a) _attr_N = len(a) if not isinstance(b, (list, tuple)): raise TypeError( "Expected list for 'b' argument to " "'n_in_two_type_variables' Op, not %r." % b) if len(b) != _attr_N: raise ValueError( "List argument 'b' to 'n_in_two_type_variables' Op with length %d " "must match length %d of argument 'a'." % (len(b), _attr_N)) _attr_S, a = _execute.args_to_matching_eager(list(a), ctx, []) _attr_T, b = _execute.args_to_matching_eager(list(b), ctx, []) _inputs_flat = list(a) + list(b) _attrs = ("S", _attr_S, "T", _attr_T, "N", _attr_N) _result = _execute.execute(b"NInTwoTypeVariables", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('n_ints_in') def n_ints_in(a: Annotated[List[Any], _atypes.Int32], name=None): r"""TODO: add doc. Args: a: A list of at least 2 `Tensor` objects with type `int32`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "NIntsIn", name, a) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_n_ints_in( (a, name,), None) if _result is not NotImplemented: return _result return n_ints_in_eager_fallback( a, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( n_ints_in, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_n_ints_in( (a, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if not isinstance(a, (list, tuple)): raise TypeError( "Expected list for 'a' argument to " "'n_ints_in' Op, not %r." % a) _attr_N = len(a) try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "NIntsIn", a=a, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( n_ints_in, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op NIntsIn = tf_export("raw_ops.NIntsIn")(_ops.to_raw_op(n_ints_in)) _dispatcher_for_n_ints_in = n_ints_in._tf_type_based_dispatcher.Dispatch def n_ints_in_eager_fallback(a: Annotated[List[Any], _atypes.Int32], name, ctx): if not isinstance(a, (list, tuple)): raise TypeError( "Expected list for 'a' argument to " "'n_ints_in' Op, not %r." % a) _attr_N = len(a) a = _ops.convert_n_to_tensor(a, _dtypes.int32) _inputs_flat = list(a) _attrs = ("N", _attr_N) _result = _execute.execute(b"NIntsIn", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('n_ints_out') def n_ints_out(N: int, name=None): r"""TODO: add doc. Args: N: An `int` that is `>= 2`. name: A name for the operation (optional). Returns: A list of `N` `Tensor` objects with type `int32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "NIntsOut", name, "N", N) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_n_ints_out( (N, name,), None) if _result is not NotImplemented: return _result return n_ints_out_eager_fallback( N=N, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( n_ints_out, (), dict(N=N, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_n_ints_out( (N, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. N = _execute.make_int(N, "N") try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "NIntsOut", N=N, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( n_ints_out, (), dict(N=N, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("N", _op._get_attr_int("N")) _inputs_flat = _op.inputs _execute.record_gradient( "NIntsOut", _inputs_flat, _attrs, _result) return _result NIntsOut = tf_export("raw_ops.NIntsOut")(_ops.to_raw_op(n_ints_out)) _dispatcher_for_n_ints_out = n_ints_out._tf_type_based_dispatcher.Dispatch def n_ints_out_eager_fallback(N: int, name, ctx): N = _execute.make_int(N, "N") _inputs_flat = [] _attrs = ("N", N) _result = _execute.execute(b"NIntsOut", N, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "NIntsOut", _inputs_flat, _attrs, _result) return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('n_ints_out_default') def n_ints_out_default(N:int=3, name=None): r"""TODO: add doc. Args: N: An optional `int` that is `>= 2`. Defaults to `3`. name: A name for the operation (optional). Returns: A list of `N` `Tensor` objects with type `int32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "NIntsOutDefault", name, "N", N) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_n_ints_out_default( (N, name,), None) if _result is not NotImplemented: return _result return n_ints_out_default_eager_fallback( N=N, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( n_ints_out_default, (), dict(N=N, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_n_ints_out_default( (N, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if N is None: N = 3 N = _execute.make_int(N, "N") try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "NIntsOutDefault", N=N, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( n_ints_out_default, (), dict(N=N, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("N", _op._get_attr_int("N")) _inputs_flat = _op.inputs _execute.record_gradient( "NIntsOutDefault", _inputs_flat, _attrs, _result) return _result NIntsOutDefault = tf_export("raw_ops.NIntsOutDefault")(_ops.to_raw_op(n_ints_out_default)) _dispatcher_for_n_ints_out_default = n_ints_out_default._tf_type_based_dispatcher.Dispatch def n_ints_out_default_eager_fallback(N: int, name, ctx): if N is None: N = 3 N = _execute.make_int(N, "N") _inputs_flat = [] _attrs = ("N", N) _result = _execute.execute(b"NIntsOutDefault", N, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "NIntsOutDefault", _inputs_flat, _attrs, _result) return _result TV_NPolymorphicIn_T = TypeVar("TV_NPolymorphicIn_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('n_polymorphic_in') def n_polymorphic_in(a: Annotated[List[Any], TV_NPolymorphicIn_T], name=None): r"""TODO: add doc. Args: a: A list of at least 2 `Tensor` objects with the same type. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "NPolymorphicIn", name, a) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_n_polymorphic_in( (a, name,), None) if _result is not NotImplemented: return _result return n_polymorphic_in_eager_fallback( a, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( n_polymorphic_in, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_n_polymorphic_in( (a, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if not isinstance(a, (list, tuple)): raise TypeError( "Expected list for 'a' argument to " "'n_polymorphic_in' Op, not %r." % a) _attr_N = len(a) try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "NPolymorphicIn", a=a, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( n_polymorphic_in, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op NPolymorphicIn = tf_export("raw_ops.NPolymorphicIn")(_ops.to_raw_op(n_polymorphic_in)) _dispatcher_for_n_polymorphic_in = n_polymorphic_in._tf_type_based_dispatcher.Dispatch def n_polymorphic_in_eager_fallback(a: Annotated[List[Any], TV_NPolymorphicIn_T], name, ctx): if not isinstance(a, (list, tuple)): raise TypeError( "Expected list for 'a' argument to " "'n_polymorphic_in' Op, not %r." % a) _attr_N = len(a) _attr_T, a = _execute.args_to_matching_eager(list(a), ctx, []) _inputs_flat = list(a) _attrs = ("T", _attr_T, "N", _attr_N) _result = _execute.execute(b"NPolymorphicIn", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result TV_NPolymorphicOut_T = TypeVar("TV_NPolymorphicOut_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('n_polymorphic_out') def n_polymorphic_out(T: TV_NPolymorphicOut_T, N: int, name=None): r"""TODO: add doc. Args: T: A `tf.DType`. N: An `int` that is `>= 2`. name: A name for the operation (optional). Returns: A list of `N` `Tensor` objects with type `T`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "NPolymorphicOut", name, "T", T, "N", N) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_n_polymorphic_out( (T, N, name,), None) if _result is not NotImplemented: return _result return n_polymorphic_out_eager_fallback( T=T, N=N, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( n_polymorphic_out, (), dict(T=T, N=N, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_n_polymorphic_out( (T, N, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. T = _execute.make_type(T, "T") N = _execute.make_int(N, "N") try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "NPolymorphicOut", T=T, N=N, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( n_polymorphic_out, (), dict(T=T, N=N, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "N", _op._get_attr_int("N")) _inputs_flat = _op.inputs _execute.record_gradient( "NPolymorphicOut", _inputs_flat, _attrs, _result) return _result NPolymorphicOut = tf_export("raw_ops.NPolymorphicOut")(_ops.to_raw_op(n_polymorphic_out)) _dispatcher_for_n_polymorphic_out = n_polymorphic_out._tf_type_based_dispatcher.Dispatch def n_polymorphic_out_eager_fallback(T: TV_NPolymorphicOut_T, N: int, name, ctx): T = _execute.make_type(T, "T") N = _execute.make_int(N, "N") _inputs_flat = [] _attrs = ("T", T, "N", N) _result = _execute.execute(b"NPolymorphicOut", N, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "NPolymorphicOut", _inputs_flat, _attrs, _result) return _result TV_NPolymorphicOutDefault_T = TypeVar("TV_NPolymorphicOutDefault_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('n_polymorphic_out_default') def n_polymorphic_out_default(T:TV_NPolymorphicOutDefault_T=_dtypes.bool, N:int=2, name=None): r"""TODO: add doc. Args: T: An optional `tf.DType`. Defaults to `tf.bool`. N: An optional `int` that is `>= 2`. Defaults to `2`. name: A name for the operation (optional). Returns: A list of `N` `Tensor` objects with type `T`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "NPolymorphicOutDefault", name, "T", T, "N", N) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_n_polymorphic_out_default( (T, N, name,), None) if _result is not NotImplemented: return _result return n_polymorphic_out_default_eager_fallback( T=T, N=N, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( n_polymorphic_out_default, (), dict(T=T, N=N, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_n_polymorphic_out_default( (T, N, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if T is None: T = _dtypes.bool T = _execute.make_type(T, "T") if N is None: N = 2 N = _execute.make_int(N, "N") try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "NPolymorphicOutDefault", T=T, N=N, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( n_polymorphic_out_default, (), dict(T=T, N=N, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "N", _op._get_attr_int("N")) _inputs_flat = _op.inputs _execute.record_gradient( "NPolymorphicOutDefault", _inputs_flat, _attrs, _result) return _result NPolymorphicOutDefault = tf_export("raw_ops.NPolymorphicOutDefault")(_ops.to_raw_op(n_polymorphic_out_default)) _dispatcher_for_n_polymorphic_out_default = n_polymorphic_out_default._tf_type_based_dispatcher.Dispatch def n_polymorphic_out_default_eager_fallback(T: TV_NPolymorphicOutDefault_T, N: int, name, ctx): if T is None: T = _dtypes.bool T = _execute.make_type(T, "T") if N is None: N = 2 N = _execute.make_int(N, "N") _inputs_flat = [] _attrs = ("T", T, "N", N) _result = _execute.execute(b"NPolymorphicOutDefault", N, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "NPolymorphicOutDefault", _inputs_flat, _attrs, _result) return _result TV_NPolymorphicRestrictIn_T = TypeVar("TV_NPolymorphicRestrictIn_T", _atypes.Bool, _atypes.String) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('n_polymorphic_restrict_in') def n_polymorphic_restrict_in(a: Annotated[List[Any], TV_NPolymorphicRestrictIn_T], name=None): r"""TODO: add doc. Args: a: A list of at least 2 `Tensor` objects with the same type in: `string`, `bool`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "NPolymorphicRestrictIn", name, a) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_n_polymorphic_restrict_in( (a, name,), None) if _result is not NotImplemented: return _result return n_polymorphic_restrict_in_eager_fallback( a, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( n_polymorphic_restrict_in, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_n_polymorphic_restrict_in( (a, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if not isinstance(a, (list, tuple)): raise TypeError( "Expected list for 'a' argument to " "'n_polymorphic_restrict_in' Op, not %r." % a) _attr_N = len(a) try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "NPolymorphicRestrictIn", a=a, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( n_polymorphic_restrict_in, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op NPolymorphicRestrictIn = tf_export("raw_ops.NPolymorphicRestrictIn")(_ops.to_raw_op(n_polymorphic_restrict_in)) _dispatcher_for_n_polymorphic_restrict_in = n_polymorphic_restrict_in._tf_type_based_dispatcher.Dispatch def n_polymorphic_restrict_in_eager_fallback(a: Annotated[List[Any], TV_NPolymorphicRestrictIn_T], name, ctx): if not isinstance(a, (list, tuple)): raise TypeError( "Expected list for 'a' argument to " "'n_polymorphic_restrict_in' Op, not %r." % a) _attr_N = len(a) _attr_T, a = _execute.args_to_matching_eager(list(a), ctx, [_dtypes.string, _dtypes.bool, ]) _inputs_flat = list(a) _attrs = ("T", _attr_T, "N", _attr_N) _result = _execute.execute(b"NPolymorphicRestrictIn", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result TV_NPolymorphicRestrictOut_T = TypeVar("TV_NPolymorphicRestrictOut_T", _atypes.Bool, _atypes.String) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('n_polymorphic_restrict_out') def n_polymorphic_restrict_out(T: TV_NPolymorphicRestrictOut_T, N: int, name=None): r"""TODO: add doc. Args: T: A `tf.DType` from: `tf.string, tf.bool`. N: An `int` that is `>= 2`. name: A name for the operation (optional). Returns: A list of `N` `Tensor` objects with type `T`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "NPolymorphicRestrictOut", name, "T", T, "N", N) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_n_polymorphic_restrict_out( (T, N, name,), None) if _result is not NotImplemented: return _result return n_polymorphic_restrict_out_eager_fallback( T=T, N=N, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( n_polymorphic_restrict_out, (), dict(T=T, N=N, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_n_polymorphic_restrict_out( (T, N, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. T = _execute.make_type(T, "T") N = _execute.make_int(N, "N") try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "NPolymorphicRestrictOut", T=T, N=N, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( n_polymorphic_restrict_out, (), dict(T=T, N=N, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "N", _op._get_attr_int("N")) _inputs_flat = _op.inputs _execute.record_gradient( "NPolymorphicRestrictOut", _inputs_flat, _attrs, _result) return _result NPolymorphicRestrictOut = tf_export("raw_ops.NPolymorphicRestrictOut")(_ops.to_raw_op(n_polymorphic_restrict_out)) _dispatcher_for_n_polymorphic_restrict_out = n_polymorphic_restrict_out._tf_type_based_dispatcher.Dispatch def n_polymorphic_restrict_out_eager_fallback(T: TV_NPolymorphicRestrictOut_T, N: int, name, ctx): T = _execute.make_type(T, "T") N = _execute.make_int(N, "N") _inputs_flat = [] _attrs = ("T", T, "N", N) _result = _execute.execute(b"NPolymorphicRestrictOut", N, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "NPolymorphicRestrictOut", _inputs_flat, _attrs, _result) return _result _Namespace_TestStringOutputOutput = collections.namedtuple( "Namespace_TestStringOutput", ["output1", "output2"]) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('namespace_test_string_output') def namespace_test_string_output(input: Annotated[Any, _atypes.Float32], name=None): r"""TODO: add doc. Args: input: A `Tensor` of type `float32`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (output1, output2). output1: A `Tensor` of type `float32`. output2: A `Tensor` of type `string`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "Namespace>TestStringOutput", name, input) _result = _Namespace_TestStringOutputOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_namespace_test_string_output( (input, name,), None) if _result is not NotImplemented: return _result return namespace_test_string_output_eager_fallback( input, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( namespace_test_string_output, (), dict(input=input, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_namespace_test_string_output( (input, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "Namespace>TestStringOutput", input=input, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( namespace_test_string_output, (), dict(input=input, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "Namespace>TestStringOutput", _inputs_flat, _attrs, _result) _result = _Namespace_TestStringOutputOutput._make(_result) return _result Namespace_TestStringOutput = tf_export("raw_ops.Namespace_TestStringOutput")(_ops.to_raw_op(namespace_test_string_output)) _dispatcher_for_namespace_test_string_output = namespace_test_string_output._tf_type_based_dispatcher.Dispatch def namespace_test_string_output_eager_fallback(input: Annotated[Any, _atypes.Float32], name, ctx): input = _ops.convert_to_tensor(input, _dtypes.float32) _inputs_flat = [input] _attrs = None _result = _execute.execute(b"Namespace>TestStringOutput", 2, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "Namespace>TestStringOutput", _inputs_flat, _attrs, _result) _result = _Namespace_TestStringOutputOutput._make(_result) return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('none') def none(name=None): r"""TODO: add doc. Args: name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "None", name) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_none( (name,), None) if _result is not NotImplemented: return _result return none_eager_fallback( name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( none, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_none( (name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "None", name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( none, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op None_ = tf_export("raw_ops.None_")(_ops.to_raw_op(none)) _dispatcher_for_none = none._tf_type_based_dispatcher.Dispatch def none_eager_fallback(name, ctx): _inputs_flat = [] _attrs = None _result = _execute.execute(b"None", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('old') def old(name=None): r"""TODO: add doc. Args: name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "Old", name) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_old( (name,), None) if _result is not NotImplemented: return _result return old_eager_fallback( name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( old, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_old( (name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "Old", name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( old, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op Old = tf_export("raw_ops.Old")(_ops.to_raw_op(old)) _dispatcher_for_old = old._tf_type_based_dispatcher.Dispatch def old_eager_fallback(name, ctx): _inputs_flat = [] _attrs = None _result = _execute.execute(b"Old", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('op_with_default_attr') def op_with_default_attr(default_float:float=123, name=None) -> Annotated[Any, _atypes.Int32]: r"""TODO: add doc. Args: default_float: An optional `float`. Defaults to `123`. name: A name for the operation (optional). Returns: A `Tensor` of type `int32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "OpWithDefaultAttr", name, "default_float", default_float) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_op_with_default_attr( (default_float, name,), None) if _result is not NotImplemented: return _result return op_with_default_attr_eager_fallback( default_float=default_float, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( op_with_default_attr, (), dict(default_float=default_float, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_op_with_default_attr( (default_float, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if default_float is None: default_float = 123 default_float = _execute.make_float(default_float, "default_float") try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "OpWithDefaultAttr", default_float=default_float, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( op_with_default_attr, (), dict(default_float=default_float, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("default_float", _op.get_attr("default_float")) _inputs_flat = _op.inputs _execute.record_gradient( "OpWithDefaultAttr", _inputs_flat, _attrs, _result) _result, = _result return _result OpWithDefaultAttr = tf_export("raw_ops.OpWithDefaultAttr")(_ops.to_raw_op(op_with_default_attr)) _dispatcher_for_op_with_default_attr = op_with_default_attr._tf_type_based_dispatcher.Dispatch def op_with_default_attr_eager_fallback(default_float: float, name, ctx) -> Annotated[Any, _atypes.Int32]: if default_float is None: default_float = 123 default_float = _execute.make_float(default_float, "default_float") _inputs_flat = [] _attrs = ("default_float", default_float) _result = _execute.execute(b"OpWithDefaultAttr", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "OpWithDefaultAttr", _inputs_flat, _attrs, _result) _result, = _result return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('op_with_future_default_attr') def op_with_future_default_attr(name=None): r"""TODO: add doc. Args: name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "OpWithFutureDefaultAttr", name) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_op_with_future_default_attr( (name,), None) if _result is not NotImplemented: return _result return op_with_future_default_attr_eager_fallback( name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( op_with_future_default_attr, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_op_with_future_default_attr( (name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "OpWithFutureDefaultAttr", name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( op_with_future_default_attr, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op OpWithFutureDefaultAttr = tf_export("raw_ops.OpWithFutureDefaultAttr")(_ops.to_raw_op(op_with_future_default_attr)) _dispatcher_for_op_with_future_default_attr = op_with_future_default_attr._tf_type_based_dispatcher.Dispatch def op_with_future_default_attr_eager_fallback(name, ctx): _inputs_flat = [] _attrs = None _result = _execute.execute(b"OpWithFutureDefaultAttr", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result TV_OutT_T = TypeVar("TV_OutT_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('out_t') def out_t(T: TV_OutT_T, name=None) -> Annotated[Any, TV_OutT_T]: r"""TODO: add doc. Args: T: A `tf.DType`. name: A name for the operation (optional). Returns: A `Tensor` of type `T`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "OutT", name, "T", T) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_out_t( (T, name,), None) if _result is not NotImplemented: return _result return out_t_eager_fallback( T=T, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( out_t, (), dict(T=T, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_out_t( (T, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. T = _execute.make_type(T, "T") try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "OutT", T=T, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( out_t, (), dict(T=T, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "OutT", _inputs_flat, _attrs, _result) _result, = _result return _result OutT = tf_export("raw_ops.OutT")(_ops.to_raw_op(out_t)) _dispatcher_for_out_t = out_t._tf_type_based_dispatcher.Dispatch def out_t_eager_fallback(T: TV_OutT_T, name, ctx) -> Annotated[Any, TV_OutT_T]: T = _execute.make_type(T, "T") _inputs_flat = [] _attrs = ("T", T) _result = _execute.execute(b"OutT", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "OutT", _inputs_flat, _attrs, _result) _result, = _result return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('out_type_list') def out_type_list(T, name=None): r"""TODO: add doc. Args: T: A list of `tf.DTypes`. name: A name for the operation (optional). Returns: A list of `Tensor` objects of type `T`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "OutTypeList", name, "T", T) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_out_type_list( (T, name,), None) if _result is not NotImplemented: return _result return out_type_list_eager_fallback( T=T, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( out_type_list, (), dict(T=T, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_out_type_list( (T, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if not isinstance(T, (list, tuple)): raise TypeError( "Expected list for 'T' argument to " "'out_type_list' Op, not %r." % T) T = [_execute.make_type(_t, "T") for _t in T] try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "OutTypeList", T=T, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( out_type_list, (), dict(T=T, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op.get_attr("T")) _inputs_flat = _op.inputs _execute.record_gradient( "OutTypeList", _inputs_flat, _attrs, _result) return _result OutTypeList = tf_export("raw_ops.OutTypeList")(_ops.to_raw_op(out_type_list)) _dispatcher_for_out_type_list = out_type_list._tf_type_based_dispatcher.Dispatch def out_type_list_eager_fallback(T, name, ctx): if not isinstance(T, (list, tuple)): raise TypeError( "Expected list for 'T' argument to " "'out_type_list' Op, not %r." % T) T = [_execute.make_type(_t, "T") for _t in T] _inputs_flat = [] _attrs = ("T", T) _result = _execute.execute(b"OutTypeList", len(T), inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "OutTypeList", _inputs_flat, _attrs, _result) return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('out_type_list_restrict') def out_type_list_restrict(t, name=None): r"""TODO: add doc. Args: t: A list of `tf.DTypes` from: `tf.string, tf.bool` that has length `>= 1`. name: A name for the operation (optional). Returns: A list of `Tensor` objects of type `t`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "OutTypeListRestrict", name, "t", t) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_out_type_list_restrict( (t, name,), None) if _result is not NotImplemented: return _result return out_type_list_restrict_eager_fallback( t=t, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( out_type_list_restrict, (), dict(t=t, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_out_type_list_restrict( (t, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if not isinstance(t, (list, tuple)): raise TypeError( "Expected list for 't' argument to " "'out_type_list_restrict' Op, not %r." % t) t = [_execute.make_type(_t, "t") for _t in t] try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "OutTypeListRestrict", t=t, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( out_type_list_restrict, (), dict(t=t, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("t", _op.get_attr("t")) _inputs_flat = _op.inputs _execute.record_gradient( "OutTypeListRestrict", _inputs_flat, _attrs, _result) return _result OutTypeListRestrict = tf_export("raw_ops.OutTypeListRestrict")(_ops.to_raw_op(out_type_list_restrict)) _dispatcher_for_out_type_list_restrict = out_type_list_restrict._tf_type_based_dispatcher.Dispatch def out_type_list_restrict_eager_fallback(t, name, ctx): if not isinstance(t, (list, tuple)): raise TypeError( "Expected list for 't' argument to " "'out_type_list_restrict' Op, not %r." % t) t = [_execute.make_type(_t, "t") for _t in t] _inputs_flat = [] _attrs = ("t", t) _result = _execute.execute(b"OutTypeListRestrict", len(t), inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "OutTypeListRestrict", _inputs_flat, _attrs, _result) return _result TV_Polymorphic_T = TypeVar("TV_Polymorphic_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('polymorphic') def polymorphic(a: Annotated[Any, TV_Polymorphic_T], name=None) -> Annotated[Any, TV_Polymorphic_T]: r"""TODO: add doc. Args: a: A `Tensor`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `a`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "Polymorphic", name, a) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_polymorphic( (a, name,), None) if _result is not NotImplemented: return _result return polymorphic_eager_fallback( a, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( polymorphic, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_polymorphic( (a, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "Polymorphic", a=a, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( polymorphic, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "Polymorphic", _inputs_flat, _attrs, _result) _result, = _result return _result Polymorphic = tf_export("raw_ops.Polymorphic")(_ops.to_raw_op(polymorphic)) _dispatcher_for_polymorphic = polymorphic._tf_type_based_dispatcher.Dispatch def polymorphic_eager_fallback(a: Annotated[Any, TV_Polymorphic_T], name, ctx) -> Annotated[Any, TV_Polymorphic_T]: _attr_T, (a,) = _execute.args_to_matching_eager([a], ctx, []) _inputs_flat = [a] _attrs = ("T", _attr_T) _result = _execute.execute(b"Polymorphic", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "Polymorphic", _inputs_flat, _attrs, _result) _result, = _result return _result TV_PolymorphicDefaultOut_T = TypeVar("TV_PolymorphicDefaultOut_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('polymorphic_default_out') def polymorphic_default_out(T:TV_PolymorphicDefaultOut_T=_dtypes.string, name=None) -> Annotated[Any, TV_PolymorphicDefaultOut_T]: r"""TODO: add doc. Args: T: An optional `tf.DType`. Defaults to `tf.string`. name: A name for the operation (optional). Returns: A `Tensor` of type `T`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "PolymorphicDefaultOut", name, "T", T) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_polymorphic_default_out( (T, name,), None) if _result is not NotImplemented: return _result return polymorphic_default_out_eager_fallback( T=T, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( polymorphic_default_out, (), dict(T=T, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_polymorphic_default_out( (T, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if T is None: T = _dtypes.string T = _execute.make_type(T, "T") try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "PolymorphicDefaultOut", T=T, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( polymorphic_default_out, (), dict(T=T, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "PolymorphicDefaultOut", _inputs_flat, _attrs, _result) _result, = _result return _result PolymorphicDefaultOut = tf_export("raw_ops.PolymorphicDefaultOut")(_ops.to_raw_op(polymorphic_default_out)) _dispatcher_for_polymorphic_default_out = polymorphic_default_out._tf_type_based_dispatcher.Dispatch def polymorphic_default_out_eager_fallback(T: TV_PolymorphicDefaultOut_T, name, ctx) -> Annotated[Any, TV_PolymorphicDefaultOut_T]: if T is None: T = _dtypes.string T = _execute.make_type(T, "T") _inputs_flat = [] _attrs = ("T", T) _result = _execute.execute(b"PolymorphicDefaultOut", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "PolymorphicDefaultOut", _inputs_flat, _attrs, _result) _result, = _result return _result TV_PolymorphicOut_T = TypeVar("TV_PolymorphicOut_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('polymorphic_out') def polymorphic_out(T: TV_PolymorphicOut_T, name=None) -> Annotated[Any, TV_PolymorphicOut_T]: r"""TODO: add doc. Args: T: A `tf.DType`. name: A name for the operation (optional). Returns: A `Tensor` of type `T`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "PolymorphicOut", name, "T", T) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_polymorphic_out( (T, name,), None) if _result is not NotImplemented: return _result return polymorphic_out_eager_fallback( T=T, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( polymorphic_out, (), dict(T=T, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_polymorphic_out( (T, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. T = _execute.make_type(T, "T") try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "PolymorphicOut", T=T, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( polymorphic_out, (), dict(T=T, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "PolymorphicOut", _inputs_flat, _attrs, _result) _result, = _result return _result PolymorphicOut = tf_export("raw_ops.PolymorphicOut")(_ops.to_raw_op(polymorphic_out)) _dispatcher_for_polymorphic_out = polymorphic_out._tf_type_based_dispatcher.Dispatch def polymorphic_out_eager_fallback(T: TV_PolymorphicOut_T, name, ctx) -> Annotated[Any, TV_PolymorphicOut_T]: T = _execute.make_type(T, "T") _inputs_flat = [] _attrs = ("T", T) _result = _execute.execute(b"PolymorphicOut", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "PolymorphicOut", _inputs_flat, _attrs, _result) _result, = _result return _result TV_RefIn_T = TypeVar("TV_RefIn_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('ref_in') def ref_in(a: Annotated[Any, TV_RefIn_T], name=None): r"""TODO: add doc. Args: a: A mutable `Tensor`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("ref_in op does not support eager execution. Arg 'a' is a ref.") else: _result = _dispatcher_for_ref_in( (a, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "RefIn", a=a, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( ref_in, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op RefIn = tf_export("raw_ops.RefIn")(_ops.to_raw_op(ref_in)) _dispatcher_for_ref_in = ref_in._tf_type_based_dispatcher.Dispatch def ref_in_eager_fallback(a: Annotated[Any, TV_RefIn_T], name, ctx): raise RuntimeError("ref_in op does not support eager execution. Arg 'a' is a ref.") @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('ref_input_float_input') def ref_input_float_input(a: Annotated[Any, _atypes.Float32], b: Annotated[Any, _atypes.Float32], name=None): r"""TODO: add doc. Args: a: A `Tensor` of type mutable `float32`. b: A `Tensor` of type `float32`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("ref_input_float_input op does not support eager execution. Arg 'a' is a ref.") else: _result = _dispatcher_for_ref_input_float_input( (a, b, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "RefInputFloatInput", a=a, b=b, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( ref_input_float_input, (), dict(a=a, b=b, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op RefInputFloatInput = tf_export("raw_ops.RefInputFloatInput")(_ops.to_raw_op(ref_input_float_input)) _dispatcher_for_ref_input_float_input = ref_input_float_input._tf_type_based_dispatcher.Dispatch def ref_input_float_input_eager_fallback(a: Annotated[Any, _atypes.Float32], b: Annotated[Any, _atypes.Float32], name, ctx): raise RuntimeError("ref_input_float_input op does not support eager execution. Arg 'a' is a ref.") @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('ref_input_float_input_int_output') def ref_input_float_input_int_output(a: Annotated[Any, _atypes.Float32], b: Annotated[Any, _atypes.Float32], name=None) -> Annotated[Any, _atypes.Int32]: r"""TODO: add doc. Args: a: A `Tensor` of type mutable `float32`. b: A `Tensor` of type `float32`. name: A name for the operation (optional). Returns: A `Tensor` of type `int32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("ref_input_float_input_int_output op does not support eager execution. Arg 'a' is a ref.") else: _result = _dispatcher_for_ref_input_float_input_int_output( (a, b, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "RefInputFloatInputIntOutput", a=a, b=b, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( ref_input_float_input_int_output, (), dict(a=a, b=b, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "RefInputFloatInputIntOutput", _inputs_flat, _attrs, _result) _result, = _result return _result RefInputFloatInputIntOutput = tf_export("raw_ops.RefInputFloatInputIntOutput")(_ops.to_raw_op(ref_input_float_input_int_output)) _dispatcher_for_ref_input_float_input_int_output = ref_input_float_input_int_output._tf_type_based_dispatcher.Dispatch def ref_input_float_input_int_output_eager_fallback(a: Annotated[Any, _atypes.Float32], b: Annotated[Any, _atypes.Float32], name, ctx) -> Annotated[Any, _atypes.Int32]: raise RuntimeError("ref_input_float_input_int_output op does not support eager execution. Arg 'a' is a ref.") @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('ref_input_int_input') def ref_input_int_input(a: Annotated[Any, _atypes.Int32], b: Annotated[Any, _atypes.Int32], name=None): r"""TODO: add doc. Args: a: A `Tensor` of type mutable `int32`. b: A `Tensor` of type `int32`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("ref_input_int_input op does not support eager execution. Arg 'a' is a ref.") else: _result = _dispatcher_for_ref_input_int_input( (a, b, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "RefInputIntInput", a=a, b=b, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( ref_input_int_input, (), dict(a=a, b=b, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op RefInputIntInput = tf_export("raw_ops.RefInputIntInput")(_ops.to_raw_op(ref_input_int_input)) _dispatcher_for_ref_input_int_input = ref_input_int_input._tf_type_based_dispatcher.Dispatch def ref_input_int_input_eager_fallback(a: Annotated[Any, _atypes.Int32], b: Annotated[Any, _atypes.Int32], name, ctx): raise RuntimeError("ref_input_int_input op does not support eager execution. Arg 'a' is a ref.") TV_RefOut_T = TypeVar("TV_RefOut_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('ref_out') def ref_out(T: TV_RefOut_T, name=None) -> Annotated[Any, TV_RefOut_T]: r"""TODO: add doc. Args: T: A `tf.DType`. name: A name for the operation (optional). Returns: A mutable `Tensor` of type `T`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("ref_out op does not support eager execution. Arg 'a' is a ref.") else: _result = _dispatcher_for_ref_out( (T, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. T = _execute.make_type(T, "T") try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "RefOut", T=T, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( ref_out, (), dict(T=T, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "RefOut", _inputs_flat, _attrs, _result) _result, = _result return _result RefOut = tf_export("raw_ops.RefOut")(_ops.to_raw_op(ref_out)) _dispatcher_for_ref_out = ref_out._tf_type_based_dispatcher.Dispatch def ref_out_eager_fallback(T: TV_RefOut_T, name, ctx) -> Annotated[Any, TV_RefOut_T]: raise RuntimeError("ref_out op does not support eager execution. Arg 'a' is a ref.") @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('ref_output') def ref_output(name=None) -> Annotated[Any, _atypes.Int32]: r"""TODO: add doc. Args: name: A name for the operation (optional). Returns: A `Tensor` of type mutable `int32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("ref_output op does not support eager execution. Arg 'a' is a ref.") else: _result = _dispatcher_for_ref_output( (name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "RefOutput", name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( ref_output, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "RefOutput", _inputs_flat, _attrs, _result) _result, = _result return _result RefOutput = tf_export("raw_ops.RefOutput")(_ops.to_raw_op(ref_output)) _dispatcher_for_ref_output = ref_output._tf_type_based_dispatcher.Dispatch def ref_output_eager_fallback(name, ctx) -> Annotated[Any, _atypes.Int32]: raise RuntimeError("ref_output op does not support eager execution. Arg 'a' is a ref.") _RefOutputFloatOutputOutput = collections.namedtuple( "RefOutputFloatOutput", ["a", "b"]) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('ref_output_float_output') def ref_output_float_output(name=None): r"""TODO: add doc. Args: name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (a, b). a: A `Tensor` of type mutable `float32`. b: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("ref_output_float_output op does not support eager execution. Arg 'a' is a ref.") else: _result = _dispatcher_for_ref_output_float_output( (name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "RefOutputFloatOutput", name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( ref_output_float_output, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "RefOutputFloatOutput", _inputs_flat, _attrs, _result) _result = _RefOutputFloatOutputOutput._make(_result) return _result RefOutputFloatOutput = tf_export("raw_ops.RefOutputFloatOutput")(_ops.to_raw_op(ref_output_float_output)) _dispatcher_for_ref_output_float_output = ref_output_float_output._tf_type_based_dispatcher.Dispatch def ref_output_float_output_eager_fallback(name, ctx): raise RuntimeError("ref_output_float_output op does not support eager execution. Arg 'a' is a ref.") @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('requires_older_graph_version') def requires_older_graph_version(name=None) -> Annotated[Any, _atypes.Int32]: r"""TODO: add doc. Args: name: A name for the operation (optional). Returns: A `Tensor` of type `int32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "RequiresOlderGraphVersion", name) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_requires_older_graph_version( (name,), None) if _result is not NotImplemented: return _result return requires_older_graph_version_eager_fallback( name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( requires_older_graph_version, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_requires_older_graph_version( (name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "RequiresOlderGraphVersion", name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( requires_older_graph_version, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "RequiresOlderGraphVersion", _inputs_flat, _attrs, _result) _result, = _result return _result RequiresOlderGraphVersion = tf_export("raw_ops.RequiresOlderGraphVersion")(_ops.to_raw_op(requires_older_graph_version)) _dispatcher_for_requires_older_graph_version = requires_older_graph_version._tf_type_based_dispatcher.Dispatch def requires_older_graph_version_eager_fallback(name, ctx) -> Annotated[Any, _atypes.Int32]: _inputs_flat = [] _attrs = None _result = _execute.execute(b"RequiresOlderGraphVersion", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "RequiresOlderGraphVersion", _inputs_flat, _attrs, _result) _result, = _result return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('reserved_attr') def reserved_attr(range: int, name=None): r"""TODO: add doc. Args: range: An `int`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "ReservedAttr", name, "range", range) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_reserved_attr( (range, name,), None) if _result is not NotImplemented: return _result return reserved_attr_eager_fallback( range=range, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( reserved_attr, (), dict(range=range, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_reserved_attr( (range, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. range = _execute.make_int(range, "range") try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "ReservedAttr", range=range, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( reserved_attr, (), dict(range=range, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op ReservedAttr = tf_export("raw_ops.ReservedAttr")(_ops.to_raw_op(reserved_attr)) _dispatcher_for_reserved_attr = reserved_attr._tf_type_based_dispatcher.Dispatch def reserved_attr_eager_fallback(range: int, name, ctx): range = _execute.make_int(range, "range") _inputs_flat = [] _attrs = ("range", range) _result = _execute.execute(b"ReservedAttr", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('reserved_input') def reserved_input(input: Annotated[Any, _atypes.Int32], name=None): r"""TODO: add doc. Args: input: A `Tensor` of type `int32`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "ReservedInput", name, input) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_reserved_input( (input, name,), None) if _result is not NotImplemented: return _result return reserved_input_eager_fallback( input, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( reserved_input, (), dict(input=input, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_reserved_input( (input, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "ReservedInput", input=input, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( reserved_input, (), dict(input=input, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op ReservedInput = tf_export("raw_ops.ReservedInput")(_ops.to_raw_op(reserved_input)) _dispatcher_for_reserved_input = reserved_input._tf_type_based_dispatcher.Dispatch def reserved_input_eager_fallback(input: Annotated[Any, _atypes.Int32], name, ctx): input = _ops.convert_to_tensor(input, _dtypes.int32) _inputs_flat = [input] _attrs = None _result = _execute.execute(b"ReservedInput", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('resource_create_op') def resource_create_op(resource: Annotated[Any, _atypes.Resource], name=None): r"""TODO: add doc. Args: resource: A `Tensor` of type `resource`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "ResourceCreateOp", name, resource) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_resource_create_op( (resource, name,), None) if _result is not NotImplemented: return _result return resource_create_op_eager_fallback( resource, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( resource_create_op, (), dict(resource=resource, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_resource_create_op( (resource, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "ResourceCreateOp", resource=resource, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( resource_create_op, (), dict(resource=resource, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op ResourceCreateOp = tf_export("raw_ops.ResourceCreateOp")(_ops.to_raw_op(resource_create_op)) _dispatcher_for_resource_create_op = resource_create_op._tf_type_based_dispatcher.Dispatch def resource_create_op_eager_fallback(resource: Annotated[Any, _atypes.Resource], name, ctx): resource = _ops.convert_to_tensor(resource, _dtypes.resource) _inputs_flat = [resource] _attrs = None _result = _execute.execute(b"ResourceCreateOp", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('resource_initialized_op') def resource_initialized_op(resource: Annotated[Any, _atypes.Resource], name=None) -> Annotated[Any, _atypes.Bool]: r"""TODO: add doc. Args: resource: A `Tensor` of type `resource`. name: A name for the operation (optional). Returns: A `Tensor` of type `bool`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "ResourceInitializedOp", name, resource) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_resource_initialized_op( (resource, name,), None) if _result is not NotImplemented: return _result return resource_initialized_op_eager_fallback( resource, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( resource_initialized_op, (), dict(resource=resource, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_resource_initialized_op( (resource, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "ResourceInitializedOp", resource=resource, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( resource_initialized_op, (), dict(resource=resource, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "ResourceInitializedOp", _inputs_flat, _attrs, _result) _result, = _result return _result ResourceInitializedOp = tf_export("raw_ops.ResourceInitializedOp")(_ops.to_raw_op(resource_initialized_op)) _dispatcher_for_resource_initialized_op = resource_initialized_op._tf_type_based_dispatcher.Dispatch def resource_initialized_op_eager_fallback(resource: Annotated[Any, _atypes.Resource], name, ctx) -> Annotated[Any, _atypes.Bool]: resource = _ops.convert_to_tensor(resource, _dtypes.resource) _inputs_flat = [resource] _attrs = None _result = _execute.execute(b"ResourceInitializedOp", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "ResourceInitializedOp", _inputs_flat, _attrs, _result) _result, = _result return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('resource_using_op') def resource_using_op(resource: Annotated[Any, _atypes.Resource], name=None): r"""TODO: add doc. Args: resource: A `Tensor` of type `resource`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "ResourceUsingOp", name, resource) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_resource_using_op( (resource, name,), None) if _result is not NotImplemented: return _result return resource_using_op_eager_fallback( resource, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( resource_using_op, (), dict(resource=resource, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_resource_using_op( (resource, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "ResourceUsingOp", resource=resource, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( resource_using_op, (), dict(resource=resource, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op ResourceUsingOp = tf_export("raw_ops.ResourceUsingOp")(_ops.to_raw_op(resource_using_op)) _dispatcher_for_resource_using_op = resource_using_op._tf_type_based_dispatcher.Dispatch def resource_using_op_eager_fallback(resource: Annotated[Any, _atypes.Resource], name, ctx): resource = _ops.convert_to_tensor(resource, _dtypes.resource) _inputs_flat = [resource] _attrs = None _result = _execute.execute(b"ResourceUsingOp", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result TV_Restrict_T = TypeVar("TV_Restrict_T", _atypes.Bool, _atypes.String) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('restrict') def restrict(a: Annotated[Any, TV_Restrict_T], name=None) -> Annotated[Any, TV_Restrict_T]: r"""TODO: add doc. Args: a: A `Tensor`. Must be one of the following types: `string`, `bool`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `a`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "Restrict", name, a) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_restrict( (a, name,), None) if _result is not NotImplemented: return _result return restrict_eager_fallback( a, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( restrict, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_restrict( (a, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "Restrict", a=a, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( restrict, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "Restrict", _inputs_flat, _attrs, _result) _result, = _result return _result Restrict = tf_export("raw_ops.Restrict")(_ops.to_raw_op(restrict)) _dispatcher_for_restrict = restrict._tf_type_based_dispatcher.Dispatch def restrict_eager_fallback(a: Annotated[Any, TV_Restrict_T], name, ctx) -> Annotated[Any, TV_Restrict_T]: _attr_T, (a,) = _execute.args_to_matching_eager([a], ctx, [_dtypes.string, _dtypes.bool, ]) _inputs_flat = [a] _attrs = ("T", _attr_T) _result = _execute.execute(b"Restrict", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "Restrict", _inputs_flat, _attrs, _result) _result, = _result return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('simple') def simple(a: Annotated[Any, _atypes.Int32], name=None) -> Annotated[Any, _atypes.Float32]: r"""TODO: add doc. Args: a: A `Tensor` of type `int32`. name: A name for the operation (optional). Returns: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "Simple", name, a) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_simple( (a, name,), None) if _result is not NotImplemented: return _result return simple_eager_fallback( a, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( simple, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_simple( (a, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "Simple", a=a, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( simple, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "Simple", _inputs_flat, _attrs, _result) _result, = _result return _result Simple = tf_export("raw_ops.Simple")(_ops.to_raw_op(simple)) _dispatcher_for_simple = simple._tf_type_based_dispatcher.Dispatch def simple_eager_fallback(a: Annotated[Any, _atypes.Int32], name, ctx) -> Annotated[Any, _atypes.Float32]: a = _ops.convert_to_tensor(a, _dtypes.int32) _inputs_flat = [a] _attrs = None _result = _execute.execute(b"Simple", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "Simple", _inputs_flat, _attrs, _result) _result, = _result return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('simple_struct') def simple_struct(n_a: int, name=None): r"""TODO: add doc. Args: n_a: An `int` that is `>= 0`. name: A name for the operation (optional). Returns: A list of `n_a` `Tensor` objects with type `int32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "SimpleStruct", name, "n_a", n_a) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_simple_struct( (n_a, name,), None) if _result is not NotImplemented: return _result return simple_struct_eager_fallback( n_a=n_a, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( simple_struct, (), dict(n_a=n_a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_simple_struct( (n_a, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. n_a = _execute.make_int(n_a, "n_a") try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "SimpleStruct", n_a=n_a, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( simple_struct, (), dict(n_a=n_a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("n_a", _op._get_attr_int("n_a")) _inputs_flat = _op.inputs _execute.record_gradient( "SimpleStruct", _inputs_flat, _attrs, _result) return _result SimpleStruct = tf_export("raw_ops.SimpleStruct")(_ops.to_raw_op(simple_struct)) _dispatcher_for_simple_struct = simple_struct._tf_type_based_dispatcher.Dispatch def simple_struct_eager_fallback(n_a: int, name, ctx): n_a = _execute.make_int(n_a, "n_a") _inputs_flat = [] _attrs = ("n_a", n_a) _result = _execute.execute(b"SimpleStruct", n_a, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "SimpleStruct", _inputs_flat, _attrs, _result) return _result TV_SleepIdentityOp_T = TypeVar("TV_SleepIdentityOp_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('sleep_identity_op') def sleep_identity_op(sleep_seconds: Annotated[Any, _atypes.Int32], input: Annotated[Any, TV_SleepIdentityOp_T], name=None) -> Annotated[Any, TV_SleepIdentityOp_T]: r"""TODO: add doc. Args: sleep_seconds: A `Tensor` of type `int32`. input: A `Tensor`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "SleepIdentityOp", name, sleep_seconds, input) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_sleep_identity_op( (sleep_seconds, input, name,), None) if _result is not NotImplemented: return _result return sleep_identity_op_eager_fallback( sleep_seconds, input, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( sleep_identity_op, (), dict(sleep_seconds=sleep_seconds, input=input, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_sleep_identity_op( (sleep_seconds, input, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "SleepIdentityOp", sleep_seconds=sleep_seconds, input=input, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( sleep_identity_op, (), dict(sleep_seconds=sleep_seconds, input=input, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "SleepIdentityOp", _inputs_flat, _attrs, _result) _result, = _result return _result SleepIdentityOp = tf_export("raw_ops.SleepIdentityOp")(_ops.to_raw_op(sleep_identity_op)) _dispatcher_for_sleep_identity_op = sleep_identity_op._tf_type_based_dispatcher.Dispatch def sleep_identity_op_eager_fallback(sleep_seconds: Annotated[Any, _atypes.Int32], input: Annotated[Any, TV_SleepIdentityOp_T], name, ctx) -> Annotated[Any, TV_SleepIdentityOp_T]: _attr_T, (input,) = _execute.args_to_matching_eager([input], ctx, []) sleep_seconds = _ops.convert_to_tensor(sleep_seconds, _dtypes.int32) _inputs_flat = [sleep_seconds, input] _attrs = ("T", _attr_T) _result = _execute.execute(b"SleepIdentityOp", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "SleepIdentityOp", _inputs_flat, _attrs, _result) _result, = _result return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('sleep_op') def sleep_op(sleep_seconds: Annotated[Any, _atypes.Int32], name=None): r"""TODO: add doc. Args: sleep_seconds: A `Tensor` of type `int32`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "SleepOp", name, sleep_seconds) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_sleep_op( (sleep_seconds, name,), None) if _result is not NotImplemented: return _result return sleep_op_eager_fallback( sleep_seconds, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( sleep_op, (), dict(sleep_seconds=sleep_seconds, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_sleep_op( (sleep_seconds, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "SleepOp", sleep_seconds=sleep_seconds, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( sleep_op, (), dict(sleep_seconds=sleep_seconds, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op SleepOp = tf_export("raw_ops.SleepOp")(_ops.to_raw_op(sleep_op)) _dispatcher_for_sleep_op = sleep_op._tf_type_based_dispatcher.Dispatch def sleep_op_eager_fallback(sleep_seconds: Annotated[Any, _atypes.Int32], name, ctx): sleep_seconds = _ops.convert_to_tensor(sleep_seconds, _dtypes.int32) _inputs_flat = [sleep_seconds] _attrs = None _result = _execute.execute(b"SleepOp", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('string_list_attr') def string_list_attr(a, b: str, name=None): r"""TODO: add doc. Args: a: A list of `strings`. b: A `string`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "StringListAttr", name, "a", a, "b", b) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_string_list_attr( (a, b, name,), None) if _result is not NotImplemented: return _result return string_list_attr_eager_fallback( a=a, b=b, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( string_list_attr, (), dict(a=a, b=b, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_string_list_attr( (a, b, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if not isinstance(a, (list, tuple)): raise TypeError( "Expected list for 'a' argument to " "'string_list_attr' Op, not %r." % a) a = [_execute.make_str(_s, "a") for _s in a] b = _execute.make_str(b, "b") try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "StringListAttr", a=a, b=b, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( string_list_attr, (), dict(a=a, b=b, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op StringListAttr = tf_export("raw_ops.StringListAttr")(_ops.to_raw_op(string_list_attr)) _dispatcher_for_string_list_attr = string_list_attr._tf_type_based_dispatcher.Dispatch def string_list_attr_eager_fallback(a, b: str, name, ctx): if not isinstance(a, (list, tuple)): raise TypeError( "Expected list for 'a' argument to " "'string_list_attr' Op, not %r." % a) a = [_execute.make_str(_s, "a") for _s in a] b = _execute.make_str(b, "b") _inputs_flat = [] _attrs = ("a", a, "b", b) _result = _execute.execute(b"StringListAttr", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('stub_resource_handle_op') def stub_resource_handle_op(container:str="", shared_name:str="", name=None) -> Annotated[Any, _atypes.Resource]: r"""TODO: add doc. Args: container: An optional `string`. Defaults to `""`. shared_name: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: A `Tensor` of type `resource`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "StubResourceHandleOp", name, "container", container, "shared_name", shared_name) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_stub_resource_handle_op( (container, shared_name, name,), None) if _result is not NotImplemented: return _result return stub_resource_handle_op_eager_fallback( container=container, shared_name=shared_name, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( stub_resource_handle_op, (), dict(container=container, shared_name=shared_name, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_stub_resource_handle_op( (container, shared_name, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "StubResourceHandleOp", container=container, shared_name=shared_name, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( stub_resource_handle_op, (), dict(container=container, shared_name=shared_name, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name")) _inputs_flat = _op.inputs _execute.record_gradient( "StubResourceHandleOp", _inputs_flat, _attrs, _result) _result, = _result return _result StubResourceHandleOp = tf_export("raw_ops.StubResourceHandleOp")(_ops.to_raw_op(stub_resource_handle_op)) _dispatcher_for_stub_resource_handle_op = stub_resource_handle_op._tf_type_based_dispatcher.Dispatch def stub_resource_handle_op_eager_fallback(container: str, shared_name: str, name, ctx) -> Annotated[Any, _atypes.Resource]: if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _inputs_flat = [] _attrs = ("container", container, "shared_name", shared_name) _result = _execute.execute(b"StubResourceHandleOp", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "StubResourceHandleOp", _inputs_flat, _attrs, _result) _result, = _result return _result TV_TestAttr_T = TypeVar("TV_TestAttr_T", _atypes.Float32, _atypes.Float64) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('test_attr') def test_attr(T: TV_TestAttr_T, name=None) -> Annotated[Any, TV_TestAttr_T]: r"""TODO: add doc. Args: T: A `tf.DType` from: `tf.float32, tf.float64`. name: A name for the operation (optional). Returns: A `Tensor` of type `T`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "TestAttr", name, "T", T) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_test_attr( (T, name,), None) if _result is not NotImplemented: return _result return test_attr_eager_fallback( T=T, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( test_attr, (), dict(T=T, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_test_attr( (T, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. T = _execute.make_type(T, "T") try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "TestAttr", T=T, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( test_attr, (), dict(T=T, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "TestAttr", _inputs_flat, _attrs, _result) _result, = _result return _result TestAttr = tf_export("raw_ops.TestAttr")(_ops.to_raw_op(test_attr)) _dispatcher_for_test_attr = test_attr._tf_type_based_dispatcher.Dispatch def test_attr_eager_fallback(T: TV_TestAttr_T, name, ctx) -> Annotated[Any, TV_TestAttr_T]: T = _execute.make_type(T, "T") _inputs_flat = [] _attrs = ("T", T) _result = _execute.execute(b"TestAttr", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "TestAttr", _inputs_flat, _attrs, _result) _result, = _result return _result _TestStringOutputOutput = collections.namedtuple( "TestStringOutput", ["output1", "output2"]) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('test_string_output') def test_string_output(input: Annotated[Any, _atypes.Float32], name=None): r"""TODO: add doc. Args: input: A `Tensor` of type `float32`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (output1, output2). output1: A `Tensor` of type `float32`. output2: A `Tensor` of type `string`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "TestStringOutput", name, input) _result = _TestStringOutputOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_test_string_output( (input, name,), None) if _result is not NotImplemented: return _result return test_string_output_eager_fallback( input, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( test_string_output, (), dict(input=input, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_test_string_output( (input, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "TestStringOutput", input=input, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( test_string_output, (), dict(input=input, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "TestStringOutput", _inputs_flat, _attrs, _result) _result = _TestStringOutputOutput._make(_result) return _result TestStringOutput = tf_export("raw_ops.TestStringOutput")(_ops.to_raw_op(test_string_output)) _dispatcher_for_test_string_output = test_string_output._tf_type_based_dispatcher.Dispatch def test_string_output_eager_fallback(input: Annotated[Any, _atypes.Float32], name, ctx): input = _ops.convert_to_tensor(input, _dtypes.float32) _inputs_flat = [input] _attrs = None _result = _execute.execute(b"TestStringOutput", 2, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "TestStringOutput", _inputs_flat, _attrs, _result) _result = _TestStringOutputOutput._make(_result) return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('two_float_inputs') def two_float_inputs(a: Annotated[Any, _atypes.Float32], b: Annotated[Any, _atypes.Float32], name=None): r"""TODO: add doc. Args: a: A `Tensor` of type `float32`. b: A `Tensor` of type `float32`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "TwoFloatInputs", name, a, b) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_two_float_inputs( (a, b, name,), None) if _result is not NotImplemented: return _result return two_float_inputs_eager_fallback( a, b, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( two_float_inputs, (), dict(a=a, b=b, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_two_float_inputs( (a, b, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "TwoFloatInputs", a=a, b=b, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( two_float_inputs, (), dict(a=a, b=b, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op TwoFloatInputs = tf_export("raw_ops.TwoFloatInputs")(_ops.to_raw_op(two_float_inputs)) _dispatcher_for_two_float_inputs = two_float_inputs._tf_type_based_dispatcher.Dispatch def two_float_inputs_eager_fallback(a: Annotated[Any, _atypes.Float32], b: Annotated[Any, _atypes.Float32], name, ctx): a = _ops.convert_to_tensor(a, _dtypes.float32) b = _ops.convert_to_tensor(b, _dtypes.float32) _inputs_flat = [a, b] _attrs = None _result = _execute.execute(b"TwoFloatInputs", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('two_float_inputs_float_output') def two_float_inputs_float_output(a: Annotated[Any, _atypes.Float32], b: Annotated[Any, _atypes.Float32], name=None) -> Annotated[Any, _atypes.Float32]: r"""TODO: add doc. Args: a: A `Tensor` of type `float32`. b: A `Tensor` of type `float32`. name: A name for the operation (optional). Returns: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "TwoFloatInputsFloatOutput", name, a, b) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_two_float_inputs_float_output( (a, b, name,), None) if _result is not NotImplemented: return _result return two_float_inputs_float_output_eager_fallback( a, b, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( two_float_inputs_float_output, (), dict(a=a, b=b, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_two_float_inputs_float_output( (a, b, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "TwoFloatInputsFloatOutput", a=a, b=b, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( two_float_inputs_float_output, (), dict(a=a, b=b, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "TwoFloatInputsFloatOutput", _inputs_flat, _attrs, _result) _result, = _result return _result TwoFloatInputsFloatOutput = tf_export("raw_ops.TwoFloatInputsFloatOutput")(_ops.to_raw_op(two_float_inputs_float_output)) _dispatcher_for_two_float_inputs_float_output = two_float_inputs_float_output._tf_type_based_dispatcher.Dispatch def two_float_inputs_float_output_eager_fallback(a: Annotated[Any, _atypes.Float32], b: Annotated[Any, _atypes.Float32], name, ctx) -> Annotated[Any, _atypes.Float32]: a = _ops.convert_to_tensor(a, _dtypes.float32) b = _ops.convert_to_tensor(b, _dtypes.float32) _inputs_flat = [a, b] _attrs = None _result = _execute.execute(b"TwoFloatInputsFloatOutput", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "TwoFloatInputsFloatOutput", _inputs_flat, _attrs, _result) _result, = _result return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('two_float_inputs_int_output') def two_float_inputs_int_output(a: Annotated[Any, _atypes.Float32], b: Annotated[Any, _atypes.Float32], name=None) -> Annotated[Any, _atypes.Int32]: r"""TODO: add doc. Args: a: A `Tensor` of type `float32`. b: A `Tensor` of type `float32`. name: A name for the operation (optional). Returns: A `Tensor` of type `int32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "TwoFloatInputsIntOutput", name, a, b) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_two_float_inputs_int_output( (a, b, name,), None) if _result is not NotImplemented: return _result return two_float_inputs_int_output_eager_fallback( a, b, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( two_float_inputs_int_output, (), dict(a=a, b=b, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_two_float_inputs_int_output( (a, b, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "TwoFloatInputsIntOutput", a=a, b=b, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( two_float_inputs_int_output, (), dict(a=a, b=b, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "TwoFloatInputsIntOutput", _inputs_flat, _attrs, _result) _result, = _result return _result TwoFloatInputsIntOutput = tf_export("raw_ops.TwoFloatInputsIntOutput")(_ops.to_raw_op(two_float_inputs_int_output)) _dispatcher_for_two_float_inputs_int_output = two_float_inputs_int_output._tf_type_based_dispatcher.Dispatch def two_float_inputs_int_output_eager_fallback(a: Annotated[Any, _atypes.Float32], b: Annotated[Any, _atypes.Float32], name, ctx) -> Annotated[Any, _atypes.Int32]: a = _ops.convert_to_tensor(a, _dtypes.float32) b = _ops.convert_to_tensor(b, _dtypes.float32) _inputs_flat = [a, b] _attrs = None _result = _execute.execute(b"TwoFloatInputsIntOutput", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "TwoFloatInputsIntOutput", _inputs_flat, _attrs, _result) _result, = _result return _result _TwoFloatOutputsOutput = collections.namedtuple( "TwoFloatOutputs", ["a", "b"]) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('two_float_outputs') def two_float_outputs(name=None): r"""TODO: add doc. Args: name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (a, b). a: A `Tensor` of type `float32`. b: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "TwoFloatOutputs", name) _result = _TwoFloatOutputsOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_two_float_outputs( (name,), None) if _result is not NotImplemented: return _result return two_float_outputs_eager_fallback( name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( two_float_outputs, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_two_float_outputs( (name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "TwoFloatOutputs", name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( two_float_outputs, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "TwoFloatOutputs", _inputs_flat, _attrs, _result) _result = _TwoFloatOutputsOutput._make(_result) return _result TwoFloatOutputs = tf_export("raw_ops.TwoFloatOutputs")(_ops.to_raw_op(two_float_outputs)) _dispatcher_for_two_float_outputs = two_float_outputs._tf_type_based_dispatcher.Dispatch def two_float_outputs_eager_fallback(name, ctx): _inputs_flat = [] _attrs = None _result = _execute.execute(b"TwoFloatOutputs", 2, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "TwoFloatOutputs", _inputs_flat, _attrs, _result) _result = _TwoFloatOutputsOutput._make(_result) return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('two_int_inputs') def two_int_inputs(a: Annotated[Any, _atypes.Int32], b: Annotated[Any, _atypes.Int32], name=None): r"""TODO: add doc. Args: a: A `Tensor` of type `int32`. b: A `Tensor` of type `int32`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "TwoIntInputs", name, a, b) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_two_int_inputs( (a, b, name,), None) if _result is not NotImplemented: return _result return two_int_inputs_eager_fallback( a, b, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( two_int_inputs, (), dict(a=a, b=b, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_two_int_inputs( (a, b, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "TwoIntInputs", a=a, b=b, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( two_int_inputs, (), dict(a=a, b=b, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op TwoIntInputs = tf_export("raw_ops.TwoIntInputs")(_ops.to_raw_op(two_int_inputs)) _dispatcher_for_two_int_inputs = two_int_inputs._tf_type_based_dispatcher.Dispatch def two_int_inputs_eager_fallback(a: Annotated[Any, _atypes.Int32], b: Annotated[Any, _atypes.Int32], name, ctx): a = _ops.convert_to_tensor(a, _dtypes.int32) b = _ops.convert_to_tensor(b, _dtypes.int32) _inputs_flat = [a, b] _attrs = None _result = _execute.execute(b"TwoIntInputs", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result _TwoIntOutputsOutput = collections.namedtuple( "TwoIntOutputs", ["a", "b"]) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('two_int_outputs') def two_int_outputs(name=None): r"""TODO: add doc. Args: name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (a, b). a: A `Tensor` of type `int32`. b: A `Tensor` of type `int32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "TwoIntOutputs", name) _result = _TwoIntOutputsOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_two_int_outputs( (name,), None) if _result is not NotImplemented: return _result return two_int_outputs_eager_fallback( name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( two_int_outputs, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_two_int_outputs( (name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "TwoIntOutputs", name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( two_int_outputs, (), dict(name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "TwoIntOutputs", _inputs_flat, _attrs, _result) _result = _TwoIntOutputsOutput._make(_result) return _result TwoIntOutputs = tf_export("raw_ops.TwoIntOutputs")(_ops.to_raw_op(two_int_outputs)) _dispatcher_for_two_int_outputs = two_int_outputs._tf_type_based_dispatcher.Dispatch def two_int_outputs_eager_fallback(name, ctx): _inputs_flat = [] _attrs = None _result = _execute.execute(b"TwoIntOutputs", 2, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "TwoIntOutputs", _inputs_flat, _attrs, _result) _result = _TwoIntOutputsOutput._make(_result) return _result TV_TwoRefsIn_T = TypeVar("TV_TwoRefsIn_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('two_refs_in') def two_refs_in(a: Annotated[Any, TV_TwoRefsIn_T], b: Annotated[Any, TV_TwoRefsIn_T], name=None): r"""TODO: add doc. Args: a: A mutable `Tensor`. b: A mutable `Tensor`. Must have the same type as `a`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("two_refs_in op does not support eager execution. Arg 'b' is a ref.") else: _result = _dispatcher_for_two_refs_in( (a, b, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "TwoRefsIn", a=a, b=b, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( two_refs_in, (), dict(a=a, b=b, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op TwoRefsIn = tf_export("raw_ops.TwoRefsIn")(_ops.to_raw_op(two_refs_in)) _dispatcher_for_two_refs_in = two_refs_in._tf_type_based_dispatcher.Dispatch def two_refs_in_eager_fallback(a: Annotated[Any, TV_TwoRefsIn_T], b: Annotated[Any, TV_TwoRefsIn_T], name, ctx): raise RuntimeError("two_refs_in op does not support eager execution. Arg 'b' is a ref.") @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('type_list') def type_list(a, name=None): r"""TODO: add doc. Args: a: A list of `Tensor` objects. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "TypeList", name, a) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_type_list( (a, name,), None) if _result is not NotImplemented: return _result return type_list_eager_fallback( a, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( type_list, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_type_list( (a, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "TypeList", a=a, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( type_list, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op TypeList = tf_export("raw_ops.TypeList")(_ops.to_raw_op(type_list)) _dispatcher_for_type_list = type_list._tf_type_based_dispatcher.Dispatch def type_list_eager_fallback(a, name, ctx): _attr_T, a = _execute.convert_to_mixed_eager_tensors(a, ctx) _inputs_flat = list(a) _attrs = ("T", _attr_T) _result = _execute.execute(b"TypeList", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('type_list_restrict') def type_list_restrict(a, name=None): r"""TODO: add doc. Args: a: A list of `Tensor` objects with types from: `string`, `bool`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "TypeListRestrict", name, a) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_type_list_restrict( (a, name,), None) if _result is not NotImplemented: return _result return type_list_restrict_eager_fallback( a, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( type_list_restrict, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_type_list_restrict( (a, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "TypeListRestrict", a=a, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( type_list_restrict, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op TypeListRestrict = tf_export("raw_ops.TypeListRestrict")(_ops.to_raw_op(type_list_restrict)) _dispatcher_for_type_list_restrict = type_list_restrict._tf_type_based_dispatcher.Dispatch def type_list_restrict_eager_fallback(a, name, ctx): _attr_T, a = _execute.convert_to_mixed_eager_tensors(a, ctx) _inputs_flat = list(a) _attrs = ("T", _attr_T) _result = _execute.execute(b"TypeListRestrict", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('type_list_twice') def type_list_twice(a, b, name=None): r"""TODO: add doc. Args: a: A list of `Tensor` objects. b: A list of `Tensor` objects. Must have the same type as `a`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "TypeListTwice", name, a, b) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_type_list_twice( (a, b, name,), None) if _result is not NotImplemented: return _result return type_list_twice_eager_fallback( a, b, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( type_list_twice, (), dict(a=a, b=b, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_type_list_twice( (a, b, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "TypeListTwice", a=a, b=b, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( type_list_twice, (), dict(a=a, b=b, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op TypeListTwice = tf_export("raw_ops.TypeListTwice")(_ops.to_raw_op(type_list_twice)) _dispatcher_for_type_list_twice = type_list_twice._tf_type_based_dispatcher.Dispatch def type_list_twice_eager_fallback(a, b, name, ctx): _attr_T, (a, b) = _execute.args_to_mixed_eager_tensors((a, b), ctx) _inputs_flat = list(a) + list(b) _attrs = ("T", _attr_T) _result = _execute.execute(b"TypeListTwice", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result TV_Unary_T = TypeVar("TV_Unary_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('unary') def unary(a: Annotated[Any, TV_Unary_T], name=None) -> Annotated[Any, TV_Unary_T]: r"""TODO: add doc. Args: a: A `Tensor`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `a`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "Unary", name, a) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_unary( (a, name,), None) if _result is not NotImplemented: return _result return unary_eager_fallback( a, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( unary, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_unary( (a, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "Unary", a=a, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( unary, (), dict(a=a, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "Unary", _inputs_flat, _attrs, _result) _result, = _result return _result Unary = tf_export("raw_ops.Unary")(_ops.to_raw_op(unary)) _dispatcher_for_unary = unary._tf_type_based_dispatcher.Dispatch def unary_eager_fallback(a: Annotated[Any, TV_Unary_T], name, ctx) -> Annotated[Any, TV_Unary_T]: _attr_T, (a,) = _execute.args_to_matching_eager([a], ctx, []) _inputs_flat = [a] _attrs = ("T", _attr_T) _result = _execute.execute(b"Unary", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "Unary", _inputs_flat, _attrs, _result) _result, = _result return _result