# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Gradients for CuudnnRNN operators.""" from tensorflow.python.framework import ops from tensorflow.python.ops import gen_cudnn_rnn_ops @ops.RegisterGradient("CudnnRNN") def _cudnn_rnn_backward(op: ops.Operation, *grads): """Gradients for the CudnnRNN op.""" if not op.get_attr("is_training"): raise ValueError( "To use CudnnRNN in gradients, is_training must be set to True.") return gen_cudnn_rnn_ops.cudnn_rnn_backprop( input=op.inputs[0], input_h=op.inputs[1], input_c=op.inputs[2], params=op.inputs[3], output=op.outputs[0], output_h=op.outputs[1], output_c=op.outputs[2], output_backprop=grads[0], output_h_backprop=grads[1], output_c_backprop=grads[2], reserve_space=op.outputs[3], dropout=op.get_attr("dropout"), seed=op.get_attr("seed"), seed2=op.get_attr("seed2"), rnn_mode=op.get_attr("rnn_mode"), input_mode=op.get_attr("input_mode"), direction=op.get_attr("direction")) @ops.RegisterGradient("CudnnRNNV2") def _cudnn_rnn_backward_v2(op: ops.Operation, *grad): if not op.get_attr("is_training"): raise ValueError( "To use CudnnRNNV2 in gradients, is_training must be set to True.") return gen_cudnn_rnn_ops.cudnn_rnn_backprop_v2( input=op.inputs[0], input_h=op.inputs[1], input_c=op.inputs[2], params=op.inputs[3], output=op.outputs[0], output_h=op.outputs[1], output_c=op.outputs[2], output_backprop=grad[0], output_h_backprop=grad[1], output_c_backprop=grad[2], reserve_space=op.outputs[3], host_reserved=op.outputs[4], dropout=op.get_attr("dropout"), seed=op.get_attr("seed"), seed2=op.get_attr("seed2"), rnn_mode=op.get_attr("rnn_mode"), input_mode=op.get_attr("input_mode"), direction=op.get_attr("direction")) @ops.RegisterGradient("CudnnRNNV3") def _cudnn_rnn_backwardv3(op: ops.Operation, *grads): """Gradients for the CudnnRNNV3 op.""" if not op.get_attr("is_training"): raise ValueError( "To use CudnnRNNV3 in gradients, is_training must be set to True.") return gen_cudnn_rnn_ops.cudnn_rnn_backprop_v3( input=op.inputs[0], input_h=op.inputs[1], input_c=op.inputs[2], params=op.inputs[3], sequence_lengths=op.inputs[4], output=op.outputs[0], output_h=op.outputs[1], output_c=op.outputs[2], output_backprop=grads[0], output_h_backprop=grads[1], output_c_backprop=grads[2], reserve_space=op.outputs[3], host_reserved=op.outputs[4], dropout=op.get_attr("dropout"), seed=op.get_attr("seed"), seed2=op.get_attr("seed2"), time_major=op.get_attr("time_major"), num_proj=op.get_attr("num_proj"), rnn_mode=op.get_attr("rnn_mode"), input_mode=op.get_attr("input_mode"), direction=op.get_attr("direction")) + (None,)