"""Python wrappers around TensorFlow ops. This file is MACHINE GENERATED! Do not edit. """ import collections from tensorflow.python import pywrap_tfe as pywrap_tfe from tensorflow.python.eager import context as _context from tensorflow.python.eager import core as _core from tensorflow.python.eager import execute as _execute from tensorflow.python.framework import dtypes as _dtypes from tensorflow.security.fuzzing.py import annotation_types as _atypes from tensorflow.python.framework import op_def_registry as _op_def_registry from tensorflow.python.framework import ops as _ops from tensorflow.python.framework import op_def_library as _op_def_library from tensorflow.python.util.deprecation import deprecated_endpoints from tensorflow.python.util import dispatch as _dispatch from tensorflow.python.util.tf_export import tf_export from typing import TypeVar, List, Any from typing_extensions import Annotated def kmc2_chain_initialization(distances: Annotated[Any, _atypes.Float32], seed: Annotated[Any, _atypes.Int64], name=None) -> Annotated[Any, _atypes.Int64]: r"""Returns the index of a data point that should be added to the seed set. Entries in distances are assumed to be squared distances of candidate points to the already sampled centers in the seed set. The op constructs one Markov chain of the k-MC^2 algorithm and returns the index of one candidate point to be added as an additional cluster center. Args: distances: A `Tensor` of type `float32`. Vector with squared distances to the closest previously sampled cluster center for each candidate point. seed: A `Tensor` of type `int64`. Scalar. Seed for initializing the random number generator. name: A name for the operation (optional). Returns: A `Tensor` of type `int64`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "KMC2ChainInitialization", name, distances, seed) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return kmc2_chain_initialization_eager_fallback( distances, seed, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "KMC2ChainInitialization", distances=distances, seed=seed, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "KMC2ChainInitialization", _inputs_flat, _attrs, _result) _result, = _result return _result KMC2ChainInitialization = tf_export("raw_ops.KMC2ChainInitialization")(_ops.to_raw_op(kmc2_chain_initialization)) def kmc2_chain_initialization_eager_fallback(distances: Annotated[Any, _atypes.Float32], seed: Annotated[Any, _atypes.Int64], name, ctx) -> Annotated[Any, _atypes.Int64]: distances = _ops.convert_to_tensor(distances, _dtypes.float32) seed = _ops.convert_to_tensor(seed, _dtypes.int64) _inputs_flat = [distances, seed] _attrs = None _result = _execute.execute(b"KMC2ChainInitialization", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "KMC2ChainInitialization", _inputs_flat, _attrs, _result) _result, = _result return _result def kmeans_plus_plus_initialization(points: Annotated[Any, _atypes.Float32], num_to_sample: Annotated[Any, _atypes.Int64], seed: Annotated[Any, _atypes.Int64], num_retries_per_sample: Annotated[Any, _atypes.Int64], name=None) -> Annotated[Any, _atypes.Float32]: r"""Selects num_to_sample rows of input using the KMeans++ criterion. Rows of points are assumed to be input points. One row is selected at random. Subsequent rows are sampled with probability proportional to the squared L2 distance from the nearest row selected thus far till num_to_sample rows have been sampled. Args: points: A `Tensor` of type `float32`. Matrix of shape (n, d). Rows are assumed to be input points. num_to_sample: A `Tensor` of type `int64`. Scalar. The number of rows to sample. This value must not be larger than n. seed: A `Tensor` of type `int64`. Scalar. Seed for initializing the random number generator. num_retries_per_sample: A `Tensor` of type `int64`. Scalar. For each row that is sampled, this parameter specifies the number of additional points to draw from the current distribution before selecting the best. If a negative value is specified, a heuristic is used to sample O(log(num_to_sample)) additional points. name: A name for the operation (optional). Returns: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "KmeansPlusPlusInitialization", name, points, num_to_sample, seed, num_retries_per_sample) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return kmeans_plus_plus_initialization_eager_fallback( points, num_to_sample, seed, num_retries_per_sample, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "KmeansPlusPlusInitialization", points=points, num_to_sample=num_to_sample, seed=seed, num_retries_per_sample=num_retries_per_sample, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "KmeansPlusPlusInitialization", _inputs_flat, _attrs, _result) _result, = _result return _result KmeansPlusPlusInitialization = tf_export("raw_ops.KmeansPlusPlusInitialization")(_ops.to_raw_op(kmeans_plus_plus_initialization)) def kmeans_plus_plus_initialization_eager_fallback(points: Annotated[Any, _atypes.Float32], num_to_sample: Annotated[Any, _atypes.Int64], seed: Annotated[Any, _atypes.Int64], num_retries_per_sample: Annotated[Any, _atypes.Int64], name, ctx) -> Annotated[Any, _atypes.Float32]: points = _ops.convert_to_tensor(points, _dtypes.float32) num_to_sample = _ops.convert_to_tensor(num_to_sample, _dtypes.int64) seed = _ops.convert_to_tensor(seed, _dtypes.int64) num_retries_per_sample = _ops.convert_to_tensor(num_retries_per_sample, _dtypes.int64) _inputs_flat = [points, num_to_sample, seed, num_retries_per_sample] _attrs = None _result = _execute.execute(b"KmeansPlusPlusInitialization", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "KmeansPlusPlusInitialization", _inputs_flat, _attrs, _result) _result, = _result return _result _NearestNeighborsOutput = collections.namedtuple( "NearestNeighbors", ["nearest_center_indices", "nearest_center_distances"]) def nearest_neighbors(points: Annotated[Any, _atypes.Float32], centers: Annotated[Any, _atypes.Float32], k: Annotated[Any, _atypes.Int64], name=None): r"""Selects the k nearest centers for each point. Rows of points are assumed to be input points. Rows of centers are assumed to be the list of candidate centers. For each point, the k centers that have least L2 distance to it are computed. Args: points: A `Tensor` of type `float32`. Matrix of shape (n, d). Rows are assumed to be input points. centers: A `Tensor` of type `float32`. Matrix of shape (m, d). Rows are assumed to be centers. k: A `Tensor` of type `int64`. Number of nearest centers to return for each point. If k is larger than m, then only m centers are returned. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (nearest_center_indices, nearest_center_distances). nearest_center_indices: A `Tensor` of type `int64`. nearest_center_distances: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "NearestNeighbors", name, points, centers, k) _result = _NearestNeighborsOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return nearest_neighbors_eager_fallback( points, centers, k, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "NearestNeighbors", points=points, centers=centers, k=k, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "NearestNeighbors", _inputs_flat, _attrs, _result) _result = _NearestNeighborsOutput._make(_result) return _result NearestNeighbors = tf_export("raw_ops.NearestNeighbors")(_ops.to_raw_op(nearest_neighbors)) def nearest_neighbors_eager_fallback(points: Annotated[Any, _atypes.Float32], centers: Annotated[Any, _atypes.Float32], k: Annotated[Any, _atypes.Int64], name, ctx): points = _ops.convert_to_tensor(points, _dtypes.float32) centers = _ops.convert_to_tensor(centers, _dtypes.float32) k = _ops.convert_to_tensor(k, _dtypes.int64) _inputs_flat = [points, centers, k] _attrs = None _result = _execute.execute(b"NearestNeighbors", 2, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "NearestNeighbors", _inputs_flat, _attrs, _result) _result = _NearestNeighborsOutput._make(_result) return _result