"""Python wrappers around TensorFlow ops. This file is MACHINE GENERATED! Do not edit. """ import collections from tensorflow.python import pywrap_tfe as pywrap_tfe from tensorflow.python.eager import context as _context from tensorflow.python.eager import core as _core from tensorflow.python.eager import execute as _execute from tensorflow.python.framework import dtypes as _dtypes from tensorflow.security.fuzzing.py import annotation_types as _atypes from tensorflow.python.framework import op_def_registry as _op_def_registry from tensorflow.python.framework import ops as _ops from tensorflow.python.framework import op_def_library as _op_def_library from tensorflow.python.util.deprecation import deprecated_endpoints from tensorflow.python.util import dispatch as _dispatch from tensorflow.python.util.tf_export import tf_export from typing import TypeVar, List, Any from typing_extensions import Annotated TV_AnonymousHashTable_key_dtype = TypeVar("TV_AnonymousHashTable_key_dtype", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) TV_AnonymousHashTable_value_dtype = TypeVar("TV_AnonymousHashTable_value_dtype", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def anonymous_hash_table(key_dtype: TV_AnonymousHashTable_key_dtype, value_dtype: TV_AnonymousHashTable_value_dtype, name=None) -> Annotated[Any, _atypes.Resource]: r"""Creates a uninitialized anonymous hash table. This op creates a new anonymous hash table (as a resource) everytime it is executed, with the specified dtype of its keys and values, returning the resource handle. Before using the table you will have to initialize it. After initialization the table will be immutable. The table is anonymous in the sense that it can only be accessed by the returned resource handle (e.g. it cannot be looked up by a name in a resource manager). The table will be automatically deleted when all resource handles pointing to it are gone. Args: key_dtype: A `tf.DType`. Type of the table keys. value_dtype: A `tf.DType`. Type of the table values. name: A name for the operation (optional). Returns: A `Tensor` of type `resource`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "AnonymousHashTable", name, "key_dtype", key_dtype, "value_dtype", value_dtype) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return anonymous_hash_table_eager_fallback( key_dtype=key_dtype, value_dtype=value_dtype, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. key_dtype = _execute.make_type(key_dtype, "key_dtype") value_dtype = _execute.make_type(value_dtype, "value_dtype") _, _, _op, _outputs = _op_def_library._apply_op_helper( "AnonymousHashTable", key_dtype=key_dtype, value_dtype=value_dtype, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("key_dtype", _op._get_attr_type("key_dtype"), "value_dtype", _op._get_attr_type("value_dtype")) _inputs_flat = _op.inputs _execute.record_gradient( "AnonymousHashTable", _inputs_flat, _attrs, _result) _result, = _result return _result AnonymousHashTable = tf_export("raw_ops.AnonymousHashTable")(_ops.to_raw_op(anonymous_hash_table)) def anonymous_hash_table_eager_fallback(key_dtype: TV_AnonymousHashTable_key_dtype, value_dtype: TV_AnonymousHashTable_value_dtype, name, ctx) -> Annotated[Any, _atypes.Resource]: key_dtype = _execute.make_type(key_dtype, "key_dtype") value_dtype = _execute.make_type(value_dtype, "value_dtype") _inputs_flat = [] _attrs = ("key_dtype", key_dtype, "value_dtype", value_dtype) _result = _execute.execute(b"AnonymousHashTable", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "AnonymousHashTable", _inputs_flat, _attrs, _result) _result, = _result return _result TV_AnonymousMutableDenseHashTable_key_dtype = TypeVar("TV_AnonymousMutableDenseHashTable_key_dtype", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) TV_AnonymousMutableDenseHashTable_value_dtype = TypeVar("TV_AnonymousMutableDenseHashTable_value_dtype", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def anonymous_mutable_dense_hash_table(empty_key: Annotated[Any, TV_AnonymousMutableDenseHashTable_key_dtype], deleted_key: Annotated[Any, TV_AnonymousMutableDenseHashTable_key_dtype], value_dtype: TV_AnonymousMutableDenseHashTable_value_dtype, value_shape=[], initial_num_buckets:int=131072, max_load_factor:float=0.8, name=None) -> Annotated[Any, _atypes.Resource]: r"""Creates an empty anonymous mutable hash table that uses tensors as the backing store. This op creates a new anonymous mutable hash table (as a resource) everytime it is executed, with the specified dtype of its keys and values, returning the resource handle. Each value must be a scalar. Data can be inserted into the table using the insert operations. It does not support the initialization operation. It uses "open addressing" with quadratic reprobing to resolve collisions. The table is anonymous in the sense that it can only be accessed by the returned resource handle (e.g. it cannot be looked up by a name in a resource manager). The table will be automatically deleted when all resource handles pointing to it are gone. Args: empty_key: A `Tensor`. The key used to represent empty key buckets internally. Must not be used in insert or lookup operations. deleted_key: A `Tensor`. Must have the same type as `empty_key`. value_dtype: A `tf.DType`. Type of the table values. value_shape: An optional `tf.TensorShape` or list of `ints`. Defaults to `[]`. The shape of each value. initial_num_buckets: An optional `int`. Defaults to `131072`. The initial number of hash table buckets. Must be a power to 2. max_load_factor: An optional `float`. Defaults to `0.8`. The maximum ratio between number of entries and number of buckets before growing the table. Must be between 0 and 1. name: A name for the operation (optional). Returns: A `Tensor` of type `resource`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "AnonymousMutableDenseHashTable", name, empty_key, deleted_key, "value_dtype", value_dtype, "value_shape", value_shape, "initial_num_buckets", initial_num_buckets, "max_load_factor", max_load_factor) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return anonymous_mutable_dense_hash_table_eager_fallback( empty_key, deleted_key, value_dtype=value_dtype, value_shape=value_shape, initial_num_buckets=initial_num_buckets, max_load_factor=max_load_factor, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. value_dtype = _execute.make_type(value_dtype, "value_dtype") if value_shape is None: value_shape = [] value_shape = _execute.make_shape(value_shape, "value_shape") if initial_num_buckets is None: initial_num_buckets = 131072 initial_num_buckets = _execute.make_int(initial_num_buckets, "initial_num_buckets") if max_load_factor is None: max_load_factor = 0.8 max_load_factor = _execute.make_float(max_load_factor, "max_load_factor") _, _, _op, _outputs = _op_def_library._apply_op_helper( "AnonymousMutableDenseHashTable", empty_key=empty_key, deleted_key=deleted_key, value_dtype=value_dtype, value_shape=value_shape, initial_num_buckets=initial_num_buckets, max_load_factor=max_load_factor, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("key_dtype", _op._get_attr_type("key_dtype"), "value_dtype", _op._get_attr_type("value_dtype"), "value_shape", _op.get_attr("value_shape"), "initial_num_buckets", _op._get_attr_int("initial_num_buckets"), "max_load_factor", _op.get_attr("max_load_factor")) _inputs_flat = _op.inputs _execute.record_gradient( "AnonymousMutableDenseHashTable", _inputs_flat, _attrs, _result) _result, = _result return _result AnonymousMutableDenseHashTable = tf_export("raw_ops.AnonymousMutableDenseHashTable")(_ops.to_raw_op(anonymous_mutable_dense_hash_table)) def anonymous_mutable_dense_hash_table_eager_fallback(empty_key: Annotated[Any, TV_AnonymousMutableDenseHashTable_key_dtype], deleted_key: Annotated[Any, TV_AnonymousMutableDenseHashTable_key_dtype], value_dtype: TV_AnonymousMutableDenseHashTable_value_dtype, value_shape, initial_num_buckets: int, max_load_factor: float, name, ctx) -> Annotated[Any, _atypes.Resource]: value_dtype = _execute.make_type(value_dtype, "value_dtype") if value_shape is None: value_shape = [] value_shape = _execute.make_shape(value_shape, "value_shape") if initial_num_buckets is None: initial_num_buckets = 131072 initial_num_buckets = _execute.make_int(initial_num_buckets, "initial_num_buckets") if max_load_factor is None: max_load_factor = 0.8 max_load_factor = _execute.make_float(max_load_factor, "max_load_factor") _attr_key_dtype, _inputs_key_dtype = _execute.args_to_matching_eager([empty_key, deleted_key], ctx, []) (empty_key, deleted_key) = _inputs_key_dtype _inputs_flat = [empty_key, deleted_key] _attrs = ("key_dtype", _attr_key_dtype, "value_dtype", value_dtype, "value_shape", value_shape, "initial_num_buckets", initial_num_buckets, "max_load_factor", max_load_factor) _result = _execute.execute(b"AnonymousMutableDenseHashTable", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "AnonymousMutableDenseHashTable", _inputs_flat, _attrs, _result) _result, = _result return _result TV_AnonymousMutableHashTable_key_dtype = TypeVar("TV_AnonymousMutableHashTable_key_dtype", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) TV_AnonymousMutableHashTable_value_dtype = TypeVar("TV_AnonymousMutableHashTable_value_dtype", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def anonymous_mutable_hash_table(key_dtype: TV_AnonymousMutableHashTable_key_dtype, value_dtype: TV_AnonymousMutableHashTable_value_dtype, name=None) -> Annotated[Any, _atypes.Resource]: r"""Creates an empty anonymous mutable hash table. This op creates a new anonymous mutable hash table (as a resource) everytime it is executed, with the specified dtype of its keys and values, returning the resource handle. Each value must be a scalar. Data can be inserted into the table using the insert operations. It does not support the initialization operation. The table is anonymous in the sense that it can only be accessed by the returned resource handle (e.g. it cannot be looked up by a name in a resource manager). The table will be automatically deleted when all resource handles pointing to it are gone. Args: key_dtype: A `tf.DType`. Type of the table keys. value_dtype: A `tf.DType`. Type of the table values. name: A name for the operation (optional). Returns: A `Tensor` of type `resource`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "AnonymousMutableHashTable", name, "key_dtype", key_dtype, "value_dtype", value_dtype) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return anonymous_mutable_hash_table_eager_fallback( key_dtype=key_dtype, value_dtype=value_dtype, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. key_dtype = _execute.make_type(key_dtype, "key_dtype") value_dtype = _execute.make_type(value_dtype, "value_dtype") _, _, _op, _outputs = _op_def_library._apply_op_helper( "AnonymousMutableHashTable", key_dtype=key_dtype, value_dtype=value_dtype, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("key_dtype", _op._get_attr_type("key_dtype"), "value_dtype", _op._get_attr_type("value_dtype")) _inputs_flat = _op.inputs _execute.record_gradient( "AnonymousMutableHashTable", _inputs_flat, _attrs, _result) _result, = _result return _result AnonymousMutableHashTable = tf_export("raw_ops.AnonymousMutableHashTable")(_ops.to_raw_op(anonymous_mutable_hash_table)) def anonymous_mutable_hash_table_eager_fallback(key_dtype: TV_AnonymousMutableHashTable_key_dtype, value_dtype: TV_AnonymousMutableHashTable_value_dtype, name, ctx) -> Annotated[Any, _atypes.Resource]: key_dtype = _execute.make_type(key_dtype, "key_dtype") value_dtype = _execute.make_type(value_dtype, "value_dtype") _inputs_flat = [] _attrs = ("key_dtype", key_dtype, "value_dtype", value_dtype) _result = _execute.execute(b"AnonymousMutableHashTable", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "AnonymousMutableHashTable", _inputs_flat, _attrs, _result) _result, = _result return _result TV_AnonymousMutableHashTableOfTensors_key_dtype = TypeVar("TV_AnonymousMutableHashTableOfTensors_key_dtype", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) TV_AnonymousMutableHashTableOfTensors_value_dtype = TypeVar("TV_AnonymousMutableHashTableOfTensors_value_dtype", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def anonymous_mutable_hash_table_of_tensors(key_dtype: TV_AnonymousMutableHashTableOfTensors_key_dtype, value_dtype: TV_AnonymousMutableHashTableOfTensors_value_dtype, value_shape=[], name=None) -> Annotated[Any, _atypes.Resource]: r"""Creates an empty anonymous mutable hash table of vector values. This op creates a new anonymous mutable hash table (as a resource) everytime it is executed, with the specified dtype of its keys and values, returning the resource handle. Each value must be a vector. Data can be inserted into the table using the insert operations. It does not support the initialization operation. The table is anonymous in the sense that it can only be accessed by the returned resource handle (e.g. it cannot be looked up by a name in a resource manager). The table will be automatically deleted when all resource handles pointing to it are gone. Args: key_dtype: A `tf.DType`. Type of the table keys. value_dtype: A `tf.DType`. Type of the table values. value_shape: An optional `tf.TensorShape` or list of `ints`. Defaults to `[]`. name: A name for the operation (optional). Returns: A `Tensor` of type `resource`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "AnonymousMutableHashTableOfTensors", name, "key_dtype", key_dtype, "value_dtype", value_dtype, "value_shape", value_shape) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return anonymous_mutable_hash_table_of_tensors_eager_fallback( key_dtype=key_dtype, value_dtype=value_dtype, value_shape=value_shape, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. key_dtype = _execute.make_type(key_dtype, "key_dtype") value_dtype = _execute.make_type(value_dtype, "value_dtype") if value_shape is None: value_shape = [] value_shape = _execute.make_shape(value_shape, "value_shape") _, _, _op, _outputs = _op_def_library._apply_op_helper( "AnonymousMutableHashTableOfTensors", key_dtype=key_dtype, value_dtype=value_dtype, value_shape=value_shape, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("key_dtype", _op._get_attr_type("key_dtype"), "value_dtype", _op._get_attr_type("value_dtype"), "value_shape", _op.get_attr("value_shape")) _inputs_flat = _op.inputs _execute.record_gradient( "AnonymousMutableHashTableOfTensors", _inputs_flat, _attrs, _result) _result, = _result return _result AnonymousMutableHashTableOfTensors = tf_export("raw_ops.AnonymousMutableHashTableOfTensors")(_ops.to_raw_op(anonymous_mutable_hash_table_of_tensors)) def anonymous_mutable_hash_table_of_tensors_eager_fallback(key_dtype: TV_AnonymousMutableHashTableOfTensors_key_dtype, value_dtype: TV_AnonymousMutableHashTableOfTensors_value_dtype, value_shape, name, ctx) -> Annotated[Any, _atypes.Resource]: key_dtype = _execute.make_type(key_dtype, "key_dtype") value_dtype = _execute.make_type(value_dtype, "value_dtype") if value_shape is None: value_shape = [] value_shape = _execute.make_shape(value_shape, "value_shape") _inputs_flat = [] _attrs = ("key_dtype", key_dtype, "value_dtype", value_dtype, "value_shape", value_shape) _result = _execute.execute(b"AnonymousMutableHashTableOfTensors", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "AnonymousMutableHashTableOfTensors", _inputs_flat, _attrs, _result) _result, = _result return _result TV_HashTable_key_dtype = TypeVar("TV_HashTable_key_dtype", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) TV_HashTable_value_dtype = TypeVar("TV_HashTable_value_dtype", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def hash_table(key_dtype: TV_HashTable_key_dtype, value_dtype: TV_HashTable_value_dtype, container:str="", shared_name:str="", use_node_name_sharing:bool=False, name=None) -> Annotated[Any, _atypes.String]: r"""Creates a non-initialized hash table. This op creates a hash table, specifying the type of its keys and values. Before using the table you will have to initialize it. After initialization the table will be immutable. Args: key_dtype: A `tf.DType`. Type of the table keys. value_dtype: A `tf.DType`. Type of the table values. container: An optional `string`. Defaults to `""`. If non-empty, this table is placed in the given container. Otherwise, a default container is used. shared_name: An optional `string`. Defaults to `""`. If non-empty, this table is shared under the given name across multiple sessions. use_node_name_sharing: An optional `bool`. Defaults to `False`. If true and shared_name is empty, the table is shared using the node name. name: A name for the operation (optional). Returns: A `Tensor` of type mutable `string`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("hash_table op does not support eager execution. Arg 'table_handle' is a ref.") # Add nodes to the TensorFlow graph. key_dtype = _execute.make_type(key_dtype, "key_dtype") value_dtype = _execute.make_type(value_dtype, "value_dtype") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") if use_node_name_sharing is None: use_node_name_sharing = False use_node_name_sharing = _execute.make_bool(use_node_name_sharing, "use_node_name_sharing") _, _, _op, _outputs = _op_def_library._apply_op_helper( "HashTable", key_dtype=key_dtype, value_dtype=value_dtype, container=container, shared_name=shared_name, use_node_name_sharing=use_node_name_sharing, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name"), "use_node_name_sharing", _op._get_attr_bool("use_node_name_sharing"), "key_dtype", _op._get_attr_type("key_dtype"), "value_dtype", _op._get_attr_type("value_dtype")) _inputs_flat = _op.inputs _execute.record_gradient( "HashTable", _inputs_flat, _attrs, _result) _result, = _result return _result HashTable = tf_export("raw_ops.HashTable")(_ops.to_raw_op(hash_table)) def hash_table_eager_fallback(key_dtype: TV_HashTable_key_dtype, value_dtype: TV_HashTable_value_dtype, container: str, shared_name: str, use_node_name_sharing: bool, name, ctx) -> Annotated[Any, _atypes.String]: raise RuntimeError("hash_table op does not support eager execution. Arg 'table_handle' is a ref.") TV_HashTableV2_key_dtype = TypeVar("TV_HashTableV2_key_dtype", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) TV_HashTableV2_value_dtype = TypeVar("TV_HashTableV2_value_dtype", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def hash_table_v2(key_dtype: TV_HashTableV2_key_dtype, value_dtype: TV_HashTableV2_value_dtype, container:str="", shared_name:str="", use_node_name_sharing:bool=False, name=None) -> Annotated[Any, _atypes.Resource]: r"""Creates a non-initialized hash table. This op creates a hash table, specifying the type of its keys and values. Before using the table you will have to initialize it. After initialization the table will be immutable. Args: key_dtype: A `tf.DType`. Type of the table keys. value_dtype: A `tf.DType`. Type of the table values. container: An optional `string`. Defaults to `""`. If non-empty, this table is placed in the given container. Otherwise, a default container is used. shared_name: An optional `string`. Defaults to `""`. If non-empty, this table is shared under the given name across multiple sessions. use_node_name_sharing: An optional `bool`. Defaults to `False`. If true and shared_name is empty, the table is shared using the node name. name: A name for the operation (optional). Returns: A `Tensor` of type `resource`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "HashTableV2", name, "container", container, "shared_name", shared_name, "use_node_name_sharing", use_node_name_sharing, "key_dtype", key_dtype, "value_dtype", value_dtype) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return hash_table_v2_eager_fallback( container=container, shared_name=shared_name, use_node_name_sharing=use_node_name_sharing, key_dtype=key_dtype, value_dtype=value_dtype, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. key_dtype = _execute.make_type(key_dtype, "key_dtype") value_dtype = _execute.make_type(value_dtype, "value_dtype") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") if use_node_name_sharing is None: use_node_name_sharing = False use_node_name_sharing = _execute.make_bool(use_node_name_sharing, "use_node_name_sharing") _, _, _op, _outputs = _op_def_library._apply_op_helper( "HashTableV2", key_dtype=key_dtype, value_dtype=value_dtype, container=container, shared_name=shared_name, use_node_name_sharing=use_node_name_sharing, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name"), "use_node_name_sharing", _op._get_attr_bool("use_node_name_sharing"), "key_dtype", _op._get_attr_type("key_dtype"), "value_dtype", _op._get_attr_type("value_dtype")) _inputs_flat = _op.inputs _execute.record_gradient( "HashTableV2", _inputs_flat, _attrs, _result) _result, = _result return _result HashTableV2 = tf_export("raw_ops.HashTableV2")(_ops.to_raw_op(hash_table_v2)) def hash_table_v2_eager_fallback(key_dtype: TV_HashTableV2_key_dtype, value_dtype: TV_HashTableV2_value_dtype, container: str, shared_name: str, use_node_name_sharing: bool, name, ctx) -> Annotated[Any, _atypes.Resource]: key_dtype = _execute.make_type(key_dtype, "key_dtype") value_dtype = _execute.make_type(value_dtype, "value_dtype") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") if use_node_name_sharing is None: use_node_name_sharing = False use_node_name_sharing = _execute.make_bool(use_node_name_sharing, "use_node_name_sharing") _inputs_flat = [] _attrs = ("container", container, "shared_name", shared_name, "use_node_name_sharing", use_node_name_sharing, "key_dtype", key_dtype, "value_dtype", value_dtype) _result = _execute.execute(b"HashTableV2", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "HashTableV2", _inputs_flat, _attrs, _result) _result, = _result return _result TV_InitializeTable_Tkey = TypeVar("TV_InitializeTable_Tkey", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) TV_InitializeTable_Tval = TypeVar("TV_InitializeTable_Tval", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def initialize_table(table_handle: Annotated[Any, _atypes.String], keys: Annotated[Any, TV_InitializeTable_Tkey], values: Annotated[Any, TV_InitializeTable_Tval], name=None): r"""Table initializer that takes two tensors for keys and values respectively. Args: table_handle: A `Tensor` of type mutable `string`. Handle to a table which will be initialized. keys: A `Tensor`. Keys of type Tkey. values: A `Tensor`. Values of type Tval. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("initialize_table op does not support eager execution. Arg 'table_handle' is a ref.") # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "InitializeTable", table_handle=table_handle, keys=keys, values=values, name=name) return _op InitializeTable = tf_export("raw_ops.InitializeTable")(_ops.to_raw_op(initialize_table)) def initialize_table_eager_fallback(table_handle: Annotated[Any, _atypes.String], keys: Annotated[Any, TV_InitializeTable_Tkey], values: Annotated[Any, TV_InitializeTable_Tval], name, ctx): raise RuntimeError("initialize_table op does not support eager execution. Arg 'table_handle' is a ref.") def initialize_table_from_text_file(table_handle: Annotated[Any, _atypes.String], filename: Annotated[Any, _atypes.String], key_index: int, value_index: int, vocab_size:int=-1, delimiter:str="\t", offset:int=0, name=None): r"""Initializes a table from a text file. It inserts one key-value pair into the table for each line of the file. The key and value is extracted from the whole line content, elements from the split line based on `delimiter` or the line number (starting from zero). Where to extract the key and value from a line is specified by `key_index` and `value_index`. - A value of -1 means use the line number(starting from zero), expects `int64`. - A value of -2 means use the whole line content, expects `string`. - A value >= 0 means use the index (starting at zero) of the split line based on `delimiter`. Args: table_handle: A `Tensor` of type mutable `string`. Handle to a table which will be initialized. filename: A `Tensor` of type `string`. Filename of a vocabulary text file. key_index: An `int` that is `>= -2`. Column index in a line to get the table `key` values from. value_index: An `int` that is `>= -2`. Column index that represents information of a line to get the table `value` values from. vocab_size: An optional `int` that is `>= -1`. Defaults to `-1`. Number of elements of the file, use -1 if unknown. delimiter: An optional `string`. Defaults to `"\t"`. Delimiter to separate fields in a line. offset: An optional `int`. Defaults to `0`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("initialize_table_from_text_file op does not support eager execution. Arg 'table_handle' is a ref.") # Add nodes to the TensorFlow graph. key_index = _execute.make_int(key_index, "key_index") value_index = _execute.make_int(value_index, "value_index") if vocab_size is None: vocab_size = -1 vocab_size = _execute.make_int(vocab_size, "vocab_size") if delimiter is None: delimiter = "\t" delimiter = _execute.make_str(delimiter, "delimiter") if offset is None: offset = 0 offset = _execute.make_int(offset, "offset") _, _, _op, _outputs = _op_def_library._apply_op_helper( "InitializeTableFromTextFile", table_handle=table_handle, filename=filename, key_index=key_index, value_index=value_index, vocab_size=vocab_size, delimiter=delimiter, offset=offset, name=name) return _op InitializeTableFromTextFile = tf_export("raw_ops.InitializeTableFromTextFile")(_ops.to_raw_op(initialize_table_from_text_file)) def initialize_table_from_text_file_eager_fallback(table_handle: Annotated[Any, _atypes.String], filename: Annotated[Any, _atypes.String], key_index: int, value_index: int, vocab_size: int, delimiter: str, offset: int, name, ctx): raise RuntimeError("initialize_table_from_text_file op does not support eager execution. Arg 'table_handle' is a ref.") def initialize_table_from_text_file_v2(table_handle: Annotated[Any, _atypes.Resource], filename: Annotated[Any, _atypes.String], key_index: int, value_index: int, vocab_size:int=-1, delimiter:str="\t", offset:int=0, name=None): r"""Initializes a table from a text file. It inserts one key-value pair into the table for each line of the file. The key and value is extracted from the whole line content, elements from the split line based on `delimiter` or the line number (starting from zero). Where to extract the key and value from a line is specified by `key_index` and `value_index`. - A value of -1 means use the line number(starting from zero), expects `int64`. - A value of -2 means use the whole line content, expects `string`. - A value >= 0 means use the index (starting at zero) of the split line based on `delimiter`. Args: table_handle: A `Tensor` of type `resource`. Handle to a table which will be initialized. filename: A `Tensor` of type `string`. Filename of a vocabulary text file. key_index: An `int` that is `>= -2`. Column index in a line to get the table `key` values from. value_index: An `int` that is `>= -2`. Column index that represents information of a line to get the table `value` values from. vocab_size: An optional `int` that is `>= -1`. Defaults to `-1`. Number of elements of the file, use -1 if unknown. delimiter: An optional `string`. Defaults to `"\t"`. Delimiter to separate fields in a line. offset: An optional `int`. Defaults to `0`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "InitializeTableFromTextFileV2", name, table_handle, filename, "key_index", key_index, "value_index", value_index, "vocab_size", vocab_size, "delimiter", delimiter, "offset", offset) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return initialize_table_from_text_file_v2_eager_fallback( table_handle, filename, key_index=key_index, value_index=value_index, vocab_size=vocab_size, delimiter=delimiter, offset=offset, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. key_index = _execute.make_int(key_index, "key_index") value_index = _execute.make_int(value_index, "value_index") if vocab_size is None: vocab_size = -1 vocab_size = _execute.make_int(vocab_size, "vocab_size") if delimiter is None: delimiter = "\t" delimiter = _execute.make_str(delimiter, "delimiter") if offset is None: offset = 0 offset = _execute.make_int(offset, "offset") _, _, _op, _outputs = _op_def_library._apply_op_helper( "InitializeTableFromTextFileV2", table_handle=table_handle, filename=filename, key_index=key_index, value_index=value_index, vocab_size=vocab_size, delimiter=delimiter, offset=offset, name=name) return _op InitializeTableFromTextFileV2 = tf_export("raw_ops.InitializeTableFromTextFileV2")(_ops.to_raw_op(initialize_table_from_text_file_v2)) def initialize_table_from_text_file_v2_eager_fallback(table_handle: Annotated[Any, _atypes.Resource], filename: Annotated[Any, _atypes.String], key_index: int, value_index: int, vocab_size: int, delimiter: str, offset: int, name, ctx): key_index = _execute.make_int(key_index, "key_index") value_index = _execute.make_int(value_index, "value_index") if vocab_size is None: vocab_size = -1 vocab_size = _execute.make_int(vocab_size, "vocab_size") if delimiter is None: delimiter = "\t" delimiter = _execute.make_str(delimiter, "delimiter") if offset is None: offset = 0 offset = _execute.make_int(offset, "offset") table_handle = _ops.convert_to_tensor(table_handle, _dtypes.resource) filename = _ops.convert_to_tensor(filename, _dtypes.string) _inputs_flat = [table_handle, filename] _attrs = ("key_index", key_index, "value_index", value_index, "vocab_size", vocab_size, "delimiter", delimiter, "offset", offset) _result = _execute.execute(b"InitializeTableFromTextFileV2", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result TV_InitializeTableV2_Tkey = TypeVar("TV_InitializeTableV2_Tkey", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) TV_InitializeTableV2_Tval = TypeVar("TV_InitializeTableV2_Tval", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def initialize_table_v2(table_handle: Annotated[Any, _atypes.Resource], keys: Annotated[Any, TV_InitializeTableV2_Tkey], values: Annotated[Any, TV_InitializeTableV2_Tval], name=None): r"""Table initializer that takes two tensors for keys and values respectively. Args: table_handle: A `Tensor` of type `resource`. Handle to a table which will be initialized. keys: A `Tensor`. Keys of type Tkey. values: A `Tensor`. Values of type Tval. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "InitializeTableV2", name, table_handle, keys, values) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return initialize_table_v2_eager_fallback( table_handle, keys, values, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "InitializeTableV2", table_handle=table_handle, keys=keys, values=values, name=name) return _op InitializeTableV2 = tf_export("raw_ops.InitializeTableV2")(_ops.to_raw_op(initialize_table_v2)) def initialize_table_v2_eager_fallback(table_handle: Annotated[Any, _atypes.Resource], keys: Annotated[Any, TV_InitializeTableV2_Tkey], values: Annotated[Any, TV_InitializeTableV2_Tval], name, ctx): _attr_Tkey, (keys,) = _execute.args_to_matching_eager([keys], ctx, []) _attr_Tval, (values,) = _execute.args_to_matching_eager([values], ctx, []) table_handle = _ops.convert_to_tensor(table_handle, _dtypes.resource) _inputs_flat = [table_handle, keys, values] _attrs = ("Tkey", _attr_Tkey, "Tval", _attr_Tval) _result = _execute.execute(b"InitializeTableV2", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result _LookupTableExportOutput = collections.namedtuple( "LookupTableExport", ["keys", "values"]) TV_LookupTableExport_Tkeys = TypeVar("TV_LookupTableExport_Tkeys", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) TV_LookupTableExport_Tvalues = TypeVar("TV_LookupTableExport_Tvalues", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def lookup_table_export(table_handle: Annotated[Any, _atypes.String], Tkeys: TV_LookupTableExport_Tkeys, Tvalues: TV_LookupTableExport_Tvalues, name=None): r"""Outputs all keys and values in the table. Args: table_handle: A `Tensor` of type mutable `string`. Handle to the table. Tkeys: A `tf.DType`. Tvalues: A `tf.DType`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (keys, values). keys: A `Tensor` of type `Tkeys`. values: A `Tensor` of type `Tvalues`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("lookup_table_export op does not support eager execution. Arg 'table_handle' is a ref.") # Add nodes to the TensorFlow graph. Tkeys = _execute.make_type(Tkeys, "Tkeys") Tvalues = _execute.make_type(Tvalues, "Tvalues") _, _, _op, _outputs = _op_def_library._apply_op_helper( "LookupTableExport", table_handle=table_handle, Tkeys=Tkeys, Tvalues=Tvalues, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Tkeys", _op._get_attr_type("Tkeys"), "Tvalues", _op._get_attr_type("Tvalues")) _inputs_flat = _op.inputs _execute.record_gradient( "LookupTableExport", _inputs_flat, _attrs, _result) _result = _LookupTableExportOutput._make(_result) return _result LookupTableExport = tf_export("raw_ops.LookupTableExport")(_ops.to_raw_op(lookup_table_export)) def lookup_table_export_eager_fallback(table_handle: Annotated[Any, _atypes.String], Tkeys: TV_LookupTableExport_Tkeys, Tvalues: TV_LookupTableExport_Tvalues, name, ctx): raise RuntimeError("lookup_table_export op does not support eager execution. Arg 'table_handle' is a ref.") _LookupTableExportV2Output = collections.namedtuple( "LookupTableExportV2", ["keys", "values"]) TV_LookupTableExportV2_Tkeys = TypeVar("TV_LookupTableExportV2_Tkeys", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) TV_LookupTableExportV2_Tvalues = TypeVar("TV_LookupTableExportV2_Tvalues", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def lookup_table_export_v2(table_handle: Annotated[Any, _atypes.Resource], Tkeys: TV_LookupTableExportV2_Tkeys, Tvalues: TV_LookupTableExportV2_Tvalues, name=None): r"""Outputs all keys and values in the table. Args: table_handle: A `Tensor` of type `resource`. Handle to the table. Tkeys: A `tf.DType`. Tvalues: A `tf.DType`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (keys, values). keys: A `Tensor` of type `Tkeys`. values: A `Tensor` of type `Tvalues`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "LookupTableExportV2", name, table_handle, "Tkeys", Tkeys, "Tvalues", Tvalues) _result = _LookupTableExportV2Output._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return lookup_table_export_v2_eager_fallback( table_handle, Tkeys=Tkeys, Tvalues=Tvalues, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. Tkeys = _execute.make_type(Tkeys, "Tkeys") Tvalues = _execute.make_type(Tvalues, "Tvalues") _, _, _op, _outputs = _op_def_library._apply_op_helper( "LookupTableExportV2", table_handle=table_handle, Tkeys=Tkeys, Tvalues=Tvalues, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Tkeys", _op._get_attr_type("Tkeys"), "Tvalues", _op._get_attr_type("Tvalues")) _inputs_flat = _op.inputs _execute.record_gradient( "LookupTableExportV2", _inputs_flat, _attrs, _result) _result = _LookupTableExportV2Output._make(_result) return _result LookupTableExportV2 = tf_export("raw_ops.LookupTableExportV2")(_ops.to_raw_op(lookup_table_export_v2)) def lookup_table_export_v2_eager_fallback(table_handle: Annotated[Any, _atypes.Resource], Tkeys: TV_LookupTableExportV2_Tkeys, Tvalues: TV_LookupTableExportV2_Tvalues, name, ctx): Tkeys = _execute.make_type(Tkeys, "Tkeys") Tvalues = _execute.make_type(Tvalues, "Tvalues") table_handle = _ops.convert_to_tensor(table_handle, _dtypes.resource) _inputs_flat = [table_handle] _attrs = ("Tkeys", Tkeys, "Tvalues", Tvalues) _result = _execute.execute(b"LookupTableExportV2", 2, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "LookupTableExportV2", _inputs_flat, _attrs, _result) _result = _LookupTableExportV2Output._make(_result) return _result TV_LookupTableFind_Tin = TypeVar("TV_LookupTableFind_Tin", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) TV_LookupTableFind_Tout = TypeVar("TV_LookupTableFind_Tout", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def lookup_table_find(table_handle: Annotated[Any, _atypes.String], keys: Annotated[Any, TV_LookupTableFind_Tin], default_value: Annotated[Any, TV_LookupTableFind_Tout], name=None) -> Annotated[Any, TV_LookupTableFind_Tout]: r"""Looks up keys in a table, outputs the corresponding values. The tensor `keys` must of the same type as the keys of the table. The output `values` is of the type of the table values. The scalar `default_value` is the value output for keys not present in the table. It must also be of the same type as the table values. Args: table_handle: A `Tensor` of type mutable `string`. Handle to the table. keys: A `Tensor`. Any shape. Keys to look up. default_value: A `Tensor`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `default_value`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("lookup_table_find op does not support eager execution. Arg 'table_handle' is a ref.") # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "LookupTableFind", table_handle=table_handle, keys=keys, default_value=default_value, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Tin", _op._get_attr_type("Tin"), "Tout", _op._get_attr_type("Tout")) _inputs_flat = _op.inputs _execute.record_gradient( "LookupTableFind", _inputs_flat, _attrs, _result) _result, = _result return _result LookupTableFind = tf_export("raw_ops.LookupTableFind")(_ops.to_raw_op(lookup_table_find)) def lookup_table_find_eager_fallback(table_handle: Annotated[Any, _atypes.String], keys: Annotated[Any, TV_LookupTableFind_Tin], default_value: Annotated[Any, TV_LookupTableFind_Tout], name, ctx) -> Annotated[Any, TV_LookupTableFind_Tout]: raise RuntimeError("lookup_table_find op does not support eager execution. Arg 'table_handle' is a ref.") TV_LookupTableFindV2_Tin = TypeVar("TV_LookupTableFindV2_Tin", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) TV_LookupTableFindV2_Tout = TypeVar("TV_LookupTableFindV2_Tout", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def lookup_table_find_v2(table_handle: Annotated[Any, _atypes.Resource], keys: Annotated[Any, TV_LookupTableFindV2_Tin], default_value: Annotated[Any, TV_LookupTableFindV2_Tout], name=None) -> Annotated[Any, TV_LookupTableFindV2_Tout]: r"""Looks up keys in a table, outputs the corresponding values. The tensor `keys` must of the same type as the keys of the table. The output `values` is of the type of the table values. The scalar `default_value` is the value output for keys not present in the table. It must also be of the same type as the table values. Args: table_handle: A `Tensor` of type `resource`. Handle to the table. keys: A `Tensor`. Any shape. Keys to look up. default_value: A `Tensor`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `default_value`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "LookupTableFindV2", name, table_handle, keys, default_value) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return lookup_table_find_v2_eager_fallback( table_handle, keys, default_value, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "LookupTableFindV2", table_handle=table_handle, keys=keys, default_value=default_value, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Tin", _op._get_attr_type("Tin"), "Tout", _op._get_attr_type("Tout")) _inputs_flat = _op.inputs _execute.record_gradient( "LookupTableFindV2", _inputs_flat, _attrs, _result) _result, = _result return _result LookupTableFindV2 = tf_export("raw_ops.LookupTableFindV2")(_ops.to_raw_op(lookup_table_find_v2)) def lookup_table_find_v2_eager_fallback(table_handle: Annotated[Any, _atypes.Resource], keys: Annotated[Any, TV_LookupTableFindV2_Tin], default_value: Annotated[Any, TV_LookupTableFindV2_Tout], name, ctx) -> Annotated[Any, TV_LookupTableFindV2_Tout]: _attr_Tin, (keys,) = _execute.args_to_matching_eager([keys], ctx, []) _attr_Tout, (default_value,) = _execute.args_to_matching_eager([default_value], ctx, []) table_handle = _ops.convert_to_tensor(table_handle, _dtypes.resource) _inputs_flat = [table_handle, keys, default_value] _attrs = ("Tin", _attr_Tin, "Tout", _attr_Tout) _result = _execute.execute(b"LookupTableFindV2", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "LookupTableFindV2", _inputs_flat, _attrs, _result) _result, = _result return _result TV_LookupTableImport_Tin = TypeVar("TV_LookupTableImport_Tin", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) TV_LookupTableImport_Tout = TypeVar("TV_LookupTableImport_Tout", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def lookup_table_import(table_handle: Annotated[Any, _atypes.String], keys: Annotated[Any, TV_LookupTableImport_Tin], values: Annotated[Any, TV_LookupTableImport_Tout], name=None): r"""Replaces the contents of the table with the specified keys and values. The tensor `keys` must be of the same type as the keys of the table. The tensor `values` must be of the type of the table values. Args: table_handle: A `Tensor` of type mutable `string`. Handle to the table. keys: A `Tensor`. Any shape. Keys to look up. values: A `Tensor`. Values to associate with keys. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("lookup_table_import op does not support eager execution. Arg 'table_handle' is a ref.") # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "LookupTableImport", table_handle=table_handle, keys=keys, values=values, name=name) return _op LookupTableImport = tf_export("raw_ops.LookupTableImport")(_ops.to_raw_op(lookup_table_import)) def lookup_table_import_eager_fallback(table_handle: Annotated[Any, _atypes.String], keys: Annotated[Any, TV_LookupTableImport_Tin], values: Annotated[Any, TV_LookupTableImport_Tout], name, ctx): raise RuntimeError("lookup_table_import op does not support eager execution. Arg 'table_handle' is a ref.") TV_LookupTableImportV2_Tin = TypeVar("TV_LookupTableImportV2_Tin", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) TV_LookupTableImportV2_Tout = TypeVar("TV_LookupTableImportV2_Tout", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def lookup_table_import_v2(table_handle: Annotated[Any, _atypes.Resource], keys: Annotated[Any, TV_LookupTableImportV2_Tin], values: Annotated[Any, TV_LookupTableImportV2_Tout], name=None): r"""Replaces the contents of the table with the specified keys and values. The tensor `keys` must be of the same type as the keys of the table. The tensor `values` must be of the type of the table values. Args: table_handle: A `Tensor` of type `resource`. Handle to the table. keys: A `Tensor`. Any shape. Keys to look up. values: A `Tensor`. Values to associate with keys. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "LookupTableImportV2", name, table_handle, keys, values) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return lookup_table_import_v2_eager_fallback( table_handle, keys, values, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "LookupTableImportV2", table_handle=table_handle, keys=keys, values=values, name=name) return _op LookupTableImportV2 = tf_export("raw_ops.LookupTableImportV2")(_ops.to_raw_op(lookup_table_import_v2)) def lookup_table_import_v2_eager_fallback(table_handle: Annotated[Any, _atypes.Resource], keys: Annotated[Any, TV_LookupTableImportV2_Tin], values: Annotated[Any, TV_LookupTableImportV2_Tout], name, ctx): _attr_Tin, (keys,) = _execute.args_to_matching_eager([keys], ctx, []) _attr_Tout, (values,) = _execute.args_to_matching_eager([values], ctx, []) table_handle = _ops.convert_to_tensor(table_handle, _dtypes.resource) _inputs_flat = [table_handle, keys, values] _attrs = ("Tin", _attr_Tin, "Tout", _attr_Tout) _result = _execute.execute(b"LookupTableImportV2", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result TV_LookupTableInsert_Tin = TypeVar("TV_LookupTableInsert_Tin", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) TV_LookupTableInsert_Tout = TypeVar("TV_LookupTableInsert_Tout", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def lookup_table_insert(table_handle: Annotated[Any, _atypes.String], keys: Annotated[Any, TV_LookupTableInsert_Tin], values: Annotated[Any, TV_LookupTableInsert_Tout], name=None): r"""Updates the table to associates keys with values. The tensor `keys` must be of the same type as the keys of the table. The tensor `values` must be of the type of the table values. Args: table_handle: A `Tensor` of type mutable `string`. Handle to the table. keys: A `Tensor`. Any shape. Keys to look up. values: A `Tensor`. Values to associate with keys. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("lookup_table_insert op does not support eager execution. Arg 'table_handle' is a ref.") # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "LookupTableInsert", table_handle=table_handle, keys=keys, values=values, name=name) return _op LookupTableInsert = tf_export("raw_ops.LookupTableInsert")(_ops.to_raw_op(lookup_table_insert)) def lookup_table_insert_eager_fallback(table_handle: Annotated[Any, _atypes.String], keys: Annotated[Any, TV_LookupTableInsert_Tin], values: Annotated[Any, TV_LookupTableInsert_Tout], name, ctx): raise RuntimeError("lookup_table_insert op does not support eager execution. Arg 'table_handle' is a ref.") TV_LookupTableInsertV2_Tin = TypeVar("TV_LookupTableInsertV2_Tin", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) TV_LookupTableInsertV2_Tout = TypeVar("TV_LookupTableInsertV2_Tout", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def lookup_table_insert_v2(table_handle: Annotated[Any, _atypes.Resource], keys: Annotated[Any, TV_LookupTableInsertV2_Tin], values: Annotated[Any, TV_LookupTableInsertV2_Tout], name=None): r"""Updates the table to associates keys with values. The tensor `keys` must be of the same type as the keys of the table. The tensor `values` must be of the type of the table values. Args: table_handle: A `Tensor` of type `resource`. Handle to the table. keys: A `Tensor`. Any shape. Keys to look up. values: A `Tensor`. Values to associate with keys. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "LookupTableInsertV2", name, table_handle, keys, values) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return lookup_table_insert_v2_eager_fallback( table_handle, keys, values, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "LookupTableInsertV2", table_handle=table_handle, keys=keys, values=values, name=name) return _op LookupTableInsertV2 = tf_export("raw_ops.LookupTableInsertV2")(_ops.to_raw_op(lookup_table_insert_v2)) def lookup_table_insert_v2_eager_fallback(table_handle: Annotated[Any, _atypes.Resource], keys: Annotated[Any, TV_LookupTableInsertV2_Tin], values: Annotated[Any, TV_LookupTableInsertV2_Tout], name, ctx): _attr_Tin, (keys,) = _execute.args_to_matching_eager([keys], ctx, []) _attr_Tout, (values,) = _execute.args_to_matching_eager([values], ctx, []) table_handle = _ops.convert_to_tensor(table_handle, _dtypes.resource) _inputs_flat = [table_handle, keys, values] _attrs = ("Tin", _attr_Tin, "Tout", _attr_Tout) _result = _execute.execute(b"LookupTableInsertV2", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result TV_LookupTableRemoveV2_Tin = TypeVar("TV_LookupTableRemoveV2_Tin", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def lookup_table_remove_v2(table_handle: Annotated[Any, _atypes.Resource], keys: Annotated[Any, TV_LookupTableRemoveV2_Tin], name=None): r"""Removes keys and its associated values from a table. The tensor `keys` must of the same type as the keys of the table. Keys not already in the table are silently ignored. Args: table_handle: A `Tensor` of type `resource`. Handle to the table. keys: A `Tensor`. Any shape. Keys of the elements to remove. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "LookupTableRemoveV2", name, table_handle, keys) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return lookup_table_remove_v2_eager_fallback( table_handle, keys, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "LookupTableRemoveV2", table_handle=table_handle, keys=keys, name=name) return _op LookupTableRemoveV2 = tf_export("raw_ops.LookupTableRemoveV2")(_ops.to_raw_op(lookup_table_remove_v2)) def lookup_table_remove_v2_eager_fallback(table_handle: Annotated[Any, _atypes.Resource], keys: Annotated[Any, TV_LookupTableRemoveV2_Tin], name, ctx): _attr_Tin, (keys,) = _execute.args_to_matching_eager([keys], ctx, []) table_handle = _ops.convert_to_tensor(table_handle, _dtypes.resource) _inputs_flat = [table_handle, keys] _attrs = ("Tin", _attr_Tin) _result = _execute.execute(b"LookupTableRemoveV2", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result def lookup_table_size(table_handle: Annotated[Any, _atypes.String], name=None) -> Annotated[Any, _atypes.Int64]: r"""Computes the number of elements in the given table. Args: table_handle: A `Tensor` of type mutable `string`. Handle to the table. name: A name for the operation (optional). Returns: A `Tensor` of type `int64`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("lookup_table_size op does not support eager execution. Arg 'table_handle' is a ref.") # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "LookupTableSize", table_handle=table_handle, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "LookupTableSize", _inputs_flat, _attrs, _result) _result, = _result return _result LookupTableSize = tf_export("raw_ops.LookupTableSize")(_ops.to_raw_op(lookup_table_size)) def lookup_table_size_eager_fallback(table_handle: Annotated[Any, _atypes.String], name, ctx) -> Annotated[Any, _atypes.Int64]: raise RuntimeError("lookup_table_size op does not support eager execution. Arg 'table_handle' is a ref.") def lookup_table_size_v2(table_handle: Annotated[Any, _atypes.Resource], name=None) -> Annotated[Any, _atypes.Int64]: r"""Computes the number of elements in the given table. Args: table_handle: A `Tensor` of type `resource`. Handle to the table. name: A name for the operation (optional). Returns: A `Tensor` of type `int64`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "LookupTableSizeV2", name, table_handle) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return lookup_table_size_v2_eager_fallback( table_handle, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "LookupTableSizeV2", table_handle=table_handle, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "LookupTableSizeV2", _inputs_flat, _attrs, _result) _result, = _result return _result LookupTableSizeV2 = tf_export("raw_ops.LookupTableSizeV2")(_ops.to_raw_op(lookup_table_size_v2)) def lookup_table_size_v2_eager_fallback(table_handle: Annotated[Any, _atypes.Resource], name, ctx) -> Annotated[Any, _atypes.Int64]: table_handle = _ops.convert_to_tensor(table_handle, _dtypes.resource) _inputs_flat = [table_handle] _attrs = None _result = _execute.execute(b"LookupTableSizeV2", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "LookupTableSizeV2", _inputs_flat, _attrs, _result) _result, = _result return _result TV_MutableDenseHashTable_key_dtype = TypeVar("TV_MutableDenseHashTable_key_dtype", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) TV_MutableDenseHashTable_value_dtype = TypeVar("TV_MutableDenseHashTable_value_dtype", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def mutable_dense_hash_table(empty_key: Annotated[Any, TV_MutableDenseHashTable_key_dtype], value_dtype: TV_MutableDenseHashTable_value_dtype, container:str="", shared_name:str="", use_node_name_sharing:bool=False, value_shape=[], initial_num_buckets:int=131072, max_load_factor:float=0.8, name=None) -> Annotated[Any, _atypes.String]: r"""Creates an empty hash table that uses tensors as the backing store. It uses "open addressing" with quadratic reprobing to resolve collisions. This op creates a mutable hash table, specifying the type of its keys and values. Each value must be a scalar. Data can be inserted into the table using the insert operations. It does not support the initialization operation. Args: empty_key: A `Tensor`. The key used to represent empty key buckets internally. Must not be used in insert or lookup operations. value_dtype: A `tf.DType`. Type of the table values. container: An optional `string`. Defaults to `""`. If non-empty, this table is placed in the given container. Otherwise, a default container is used. shared_name: An optional `string`. Defaults to `""`. If non-empty, this table is shared under the given name across multiple sessions. use_node_name_sharing: An optional `bool`. Defaults to `False`. value_shape: An optional `tf.TensorShape` or list of `ints`. Defaults to `[]`. The shape of each value. initial_num_buckets: An optional `int`. Defaults to `131072`. The initial number of hash table buckets. Must be a power to 2. max_load_factor: An optional `float`. Defaults to `0.8`. The maximum ratio between number of entries and number of buckets before growing the table. Must be between 0 and 1. name: A name for the operation (optional). Returns: A `Tensor` of type mutable `string`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("mutable_dense_hash_table op does not support eager execution. Arg 'table_handle' is a ref.") # Add nodes to the TensorFlow graph. value_dtype = _execute.make_type(value_dtype, "value_dtype") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") if use_node_name_sharing is None: use_node_name_sharing = False use_node_name_sharing = _execute.make_bool(use_node_name_sharing, "use_node_name_sharing") if value_shape is None: value_shape = [] value_shape = _execute.make_shape(value_shape, "value_shape") if initial_num_buckets is None: initial_num_buckets = 131072 initial_num_buckets = _execute.make_int(initial_num_buckets, "initial_num_buckets") if max_load_factor is None: max_load_factor = 0.8 max_load_factor = _execute.make_float(max_load_factor, "max_load_factor") _, _, _op, _outputs = _op_def_library._apply_op_helper( "MutableDenseHashTable", empty_key=empty_key, value_dtype=value_dtype, container=container, shared_name=shared_name, use_node_name_sharing=use_node_name_sharing, value_shape=value_shape, initial_num_buckets=initial_num_buckets, max_load_factor=max_load_factor, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name"), "use_node_name_sharing", _op._get_attr_bool("use_node_name_sharing"), "key_dtype", _op._get_attr_type("key_dtype"), "value_dtype", _op._get_attr_type("value_dtype"), "value_shape", _op.get_attr("value_shape"), "initial_num_buckets", _op._get_attr_int("initial_num_buckets"), "max_load_factor", _op.get_attr("max_load_factor")) _inputs_flat = _op.inputs _execute.record_gradient( "MutableDenseHashTable", _inputs_flat, _attrs, _result) _result, = _result return _result MutableDenseHashTable = tf_export("raw_ops.MutableDenseHashTable")(_ops.to_raw_op(mutable_dense_hash_table)) def mutable_dense_hash_table_eager_fallback(empty_key: Annotated[Any, TV_MutableDenseHashTable_key_dtype], value_dtype: TV_MutableDenseHashTable_value_dtype, container: str, shared_name: str, use_node_name_sharing: bool, value_shape, initial_num_buckets: int, max_load_factor: float, name, ctx) -> Annotated[Any, _atypes.String]: raise RuntimeError("mutable_dense_hash_table op does not support eager execution. Arg 'table_handle' is a ref.") TV_MutableDenseHashTableV2_key_dtype = TypeVar("TV_MutableDenseHashTableV2_key_dtype", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) TV_MutableDenseHashTableV2_value_dtype = TypeVar("TV_MutableDenseHashTableV2_value_dtype", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def mutable_dense_hash_table_v2(empty_key: Annotated[Any, TV_MutableDenseHashTableV2_key_dtype], deleted_key: Annotated[Any, TV_MutableDenseHashTableV2_key_dtype], value_dtype: TV_MutableDenseHashTableV2_value_dtype, container:str="", shared_name:str="", use_node_name_sharing:bool=False, value_shape=[], initial_num_buckets:int=131072, max_load_factor:float=0.8, name=None) -> Annotated[Any, _atypes.Resource]: r"""Creates an empty hash table that uses tensors as the backing store. It uses "open addressing" with quadratic reprobing to resolve collisions. This op creates a mutable hash table, specifying the type of its keys and values. Each value must be a scalar. Data can be inserted into the table using the insert operations. It does not support the initialization operation. Args: empty_key: A `Tensor`. The key used to represent empty key buckets internally. Must not be used in insert or lookup operations. deleted_key: A `Tensor`. Must have the same type as `empty_key`. value_dtype: A `tf.DType`. Type of the table values. container: An optional `string`. Defaults to `""`. If non-empty, this table is placed in the given container. Otherwise, a default container is used. shared_name: An optional `string`. Defaults to `""`. If non-empty, this table is shared under the given name across multiple sessions. use_node_name_sharing: An optional `bool`. Defaults to `False`. value_shape: An optional `tf.TensorShape` or list of `ints`. Defaults to `[]`. The shape of each value. initial_num_buckets: An optional `int`. Defaults to `131072`. The initial number of hash table buckets. Must be a power to 2. max_load_factor: An optional `float`. Defaults to `0.8`. The maximum ratio between number of entries and number of buckets before growing the table. Must be between 0 and 1. name: A name for the operation (optional). Returns: A `Tensor` of type `resource`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "MutableDenseHashTableV2", name, empty_key, deleted_key, "container", container, "shared_name", shared_name, "use_node_name_sharing", use_node_name_sharing, "value_dtype", value_dtype, "value_shape", value_shape, "initial_num_buckets", initial_num_buckets, "max_load_factor", max_load_factor) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return mutable_dense_hash_table_v2_eager_fallback( empty_key, deleted_key, container=container, shared_name=shared_name, use_node_name_sharing=use_node_name_sharing, value_dtype=value_dtype, value_shape=value_shape, initial_num_buckets=initial_num_buckets, max_load_factor=max_load_factor, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. value_dtype = _execute.make_type(value_dtype, "value_dtype") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") if use_node_name_sharing is None: use_node_name_sharing = False use_node_name_sharing = _execute.make_bool(use_node_name_sharing, "use_node_name_sharing") if value_shape is None: value_shape = [] value_shape = _execute.make_shape(value_shape, "value_shape") if initial_num_buckets is None: initial_num_buckets = 131072 initial_num_buckets = _execute.make_int(initial_num_buckets, "initial_num_buckets") if max_load_factor is None: max_load_factor = 0.8 max_load_factor = _execute.make_float(max_load_factor, "max_load_factor") _, _, _op, _outputs = _op_def_library._apply_op_helper( "MutableDenseHashTableV2", empty_key=empty_key, deleted_key=deleted_key, value_dtype=value_dtype, container=container, shared_name=shared_name, use_node_name_sharing=use_node_name_sharing, value_shape=value_shape, initial_num_buckets=initial_num_buckets, max_load_factor=max_load_factor, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name"), "use_node_name_sharing", _op._get_attr_bool("use_node_name_sharing"), "key_dtype", _op._get_attr_type("key_dtype"), "value_dtype", _op._get_attr_type("value_dtype"), "value_shape", _op.get_attr("value_shape"), "initial_num_buckets", _op._get_attr_int("initial_num_buckets"), "max_load_factor", _op.get_attr("max_load_factor")) _inputs_flat = _op.inputs _execute.record_gradient( "MutableDenseHashTableV2", _inputs_flat, _attrs, _result) _result, = _result return _result MutableDenseHashTableV2 = tf_export("raw_ops.MutableDenseHashTableV2")(_ops.to_raw_op(mutable_dense_hash_table_v2)) def mutable_dense_hash_table_v2_eager_fallback(empty_key: Annotated[Any, TV_MutableDenseHashTableV2_key_dtype], deleted_key: Annotated[Any, TV_MutableDenseHashTableV2_key_dtype], value_dtype: TV_MutableDenseHashTableV2_value_dtype, container: str, shared_name: str, use_node_name_sharing: bool, value_shape, initial_num_buckets: int, max_load_factor: float, name, ctx) -> Annotated[Any, _atypes.Resource]: value_dtype = _execute.make_type(value_dtype, "value_dtype") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") if use_node_name_sharing is None: use_node_name_sharing = False use_node_name_sharing = _execute.make_bool(use_node_name_sharing, "use_node_name_sharing") if value_shape is None: value_shape = [] value_shape = _execute.make_shape(value_shape, "value_shape") if initial_num_buckets is None: initial_num_buckets = 131072 initial_num_buckets = _execute.make_int(initial_num_buckets, "initial_num_buckets") if max_load_factor is None: max_load_factor = 0.8 max_load_factor = _execute.make_float(max_load_factor, "max_load_factor") _attr_key_dtype, _inputs_key_dtype = _execute.args_to_matching_eager([empty_key, deleted_key], ctx, []) (empty_key, deleted_key) = _inputs_key_dtype _inputs_flat = [empty_key, deleted_key] _attrs = ("container", container, "shared_name", shared_name, "use_node_name_sharing", use_node_name_sharing, "key_dtype", _attr_key_dtype, "value_dtype", value_dtype, "value_shape", value_shape, "initial_num_buckets", initial_num_buckets, "max_load_factor", max_load_factor) _result = _execute.execute(b"MutableDenseHashTableV2", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "MutableDenseHashTableV2", _inputs_flat, _attrs, _result) _result, = _result return _result TV_MutableHashTable_key_dtype = TypeVar("TV_MutableHashTable_key_dtype", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) TV_MutableHashTable_value_dtype = TypeVar("TV_MutableHashTable_value_dtype", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def mutable_hash_table(key_dtype: TV_MutableHashTable_key_dtype, value_dtype: TV_MutableHashTable_value_dtype, container:str="", shared_name:str="", use_node_name_sharing:bool=False, name=None) -> Annotated[Any, _atypes.String]: r"""Creates an empty hash table. This op creates a mutable hash table, specifying the type of its keys and values. Each value must be a scalar. Data can be inserted into the table using the insert operations. It does not support the initialization operation. Args: key_dtype: A `tf.DType`. Type of the table keys. value_dtype: A `tf.DType`. Type of the table values. container: An optional `string`. Defaults to `""`. If non-empty, this table is placed in the given container. Otherwise, a default container is used. shared_name: An optional `string`. Defaults to `""`. If non-empty, this table is shared under the given name across multiple sessions. use_node_name_sharing: An optional `bool`. Defaults to `False`. If true and shared_name is empty, the table is shared using the node name. name: A name for the operation (optional). Returns: A `Tensor` of type mutable `string`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("mutable_hash_table op does not support eager execution. Arg 'table_handle' is a ref.") # Add nodes to the TensorFlow graph. key_dtype = _execute.make_type(key_dtype, "key_dtype") value_dtype = _execute.make_type(value_dtype, "value_dtype") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") if use_node_name_sharing is None: use_node_name_sharing = False use_node_name_sharing = _execute.make_bool(use_node_name_sharing, "use_node_name_sharing") _, _, _op, _outputs = _op_def_library._apply_op_helper( "MutableHashTable", key_dtype=key_dtype, value_dtype=value_dtype, container=container, shared_name=shared_name, use_node_name_sharing=use_node_name_sharing, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name"), "use_node_name_sharing", _op._get_attr_bool("use_node_name_sharing"), "key_dtype", _op._get_attr_type("key_dtype"), "value_dtype", _op._get_attr_type("value_dtype")) _inputs_flat = _op.inputs _execute.record_gradient( "MutableHashTable", _inputs_flat, _attrs, _result) _result, = _result return _result MutableHashTable = tf_export("raw_ops.MutableHashTable")(_ops.to_raw_op(mutable_hash_table)) def mutable_hash_table_eager_fallback(key_dtype: TV_MutableHashTable_key_dtype, value_dtype: TV_MutableHashTable_value_dtype, container: str, shared_name: str, use_node_name_sharing: bool, name, ctx) -> Annotated[Any, _atypes.String]: raise RuntimeError("mutable_hash_table op does not support eager execution. Arg 'table_handle' is a ref.") TV_MutableHashTableOfTensors_key_dtype = TypeVar("TV_MutableHashTableOfTensors_key_dtype", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) TV_MutableHashTableOfTensors_value_dtype = TypeVar("TV_MutableHashTableOfTensors_value_dtype", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def mutable_hash_table_of_tensors(key_dtype: TV_MutableHashTableOfTensors_key_dtype, value_dtype: TV_MutableHashTableOfTensors_value_dtype, container:str="", shared_name:str="", use_node_name_sharing:bool=False, value_shape=[], name=None) -> Annotated[Any, _atypes.String]: r"""Creates an empty hash table. This op creates a mutable hash table, specifying the type of its keys and values. Each value must be a vector. Data can be inserted into the table using the insert operations. It does not support the initialization operation. Args: key_dtype: A `tf.DType`. Type of the table keys. value_dtype: A `tf.DType`. Type of the table values. container: An optional `string`. Defaults to `""`. If non-empty, this table is placed in the given container. Otherwise, a default container is used. shared_name: An optional `string`. Defaults to `""`. If non-empty, this table is shared under the given name across multiple sessions. use_node_name_sharing: An optional `bool`. Defaults to `False`. value_shape: An optional `tf.TensorShape` or list of `ints`. Defaults to `[]`. name: A name for the operation (optional). Returns: A `Tensor` of type mutable `string`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("mutable_hash_table_of_tensors op does not support eager execution. Arg 'table_handle' is a ref.") # Add nodes to the TensorFlow graph. key_dtype = _execute.make_type(key_dtype, "key_dtype") value_dtype = _execute.make_type(value_dtype, "value_dtype") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") if use_node_name_sharing is None: use_node_name_sharing = False use_node_name_sharing = _execute.make_bool(use_node_name_sharing, "use_node_name_sharing") if value_shape is None: value_shape = [] value_shape = _execute.make_shape(value_shape, "value_shape") _, _, _op, _outputs = _op_def_library._apply_op_helper( "MutableHashTableOfTensors", key_dtype=key_dtype, value_dtype=value_dtype, container=container, shared_name=shared_name, use_node_name_sharing=use_node_name_sharing, value_shape=value_shape, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name"), "use_node_name_sharing", _op._get_attr_bool("use_node_name_sharing"), "key_dtype", _op._get_attr_type("key_dtype"), "value_dtype", _op._get_attr_type("value_dtype"), "value_shape", _op.get_attr("value_shape")) _inputs_flat = _op.inputs _execute.record_gradient( "MutableHashTableOfTensors", _inputs_flat, _attrs, _result) _result, = _result return _result MutableHashTableOfTensors = tf_export("raw_ops.MutableHashTableOfTensors")(_ops.to_raw_op(mutable_hash_table_of_tensors)) def mutable_hash_table_of_tensors_eager_fallback(key_dtype: TV_MutableHashTableOfTensors_key_dtype, value_dtype: TV_MutableHashTableOfTensors_value_dtype, container: str, shared_name: str, use_node_name_sharing: bool, value_shape, name, ctx) -> Annotated[Any, _atypes.String]: raise RuntimeError("mutable_hash_table_of_tensors op does not support eager execution. Arg 'table_handle' is a ref.") TV_MutableHashTableOfTensorsV2_key_dtype = TypeVar("TV_MutableHashTableOfTensorsV2_key_dtype", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) TV_MutableHashTableOfTensorsV2_value_dtype = TypeVar("TV_MutableHashTableOfTensorsV2_value_dtype", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def mutable_hash_table_of_tensors_v2(key_dtype: TV_MutableHashTableOfTensorsV2_key_dtype, value_dtype: TV_MutableHashTableOfTensorsV2_value_dtype, container:str="", shared_name:str="", use_node_name_sharing:bool=False, value_shape=[], name=None) -> Annotated[Any, _atypes.Resource]: r"""Creates an empty hash table. This op creates a mutable hash table, specifying the type of its keys and values. Each value must be a vector. Data can be inserted into the table using the insert operations. It does not support the initialization operation. Args: key_dtype: A `tf.DType`. Type of the table keys. value_dtype: A `tf.DType`. Type of the table values. container: An optional `string`. Defaults to `""`. If non-empty, this table is placed in the given container. Otherwise, a default container is used. shared_name: An optional `string`. Defaults to `""`. If non-empty, this table is shared under the given name across multiple sessions. use_node_name_sharing: An optional `bool`. Defaults to `False`. value_shape: An optional `tf.TensorShape` or list of `ints`. Defaults to `[]`. name: A name for the operation (optional). Returns: A `Tensor` of type `resource`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "MutableHashTableOfTensorsV2", name, "container", container, "shared_name", shared_name, "use_node_name_sharing", use_node_name_sharing, "key_dtype", key_dtype, "value_dtype", value_dtype, "value_shape", value_shape) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return mutable_hash_table_of_tensors_v2_eager_fallback( container=container, shared_name=shared_name, use_node_name_sharing=use_node_name_sharing, key_dtype=key_dtype, value_dtype=value_dtype, value_shape=value_shape, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. key_dtype = _execute.make_type(key_dtype, "key_dtype") value_dtype = _execute.make_type(value_dtype, "value_dtype") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") if use_node_name_sharing is None: use_node_name_sharing = False use_node_name_sharing = _execute.make_bool(use_node_name_sharing, "use_node_name_sharing") if value_shape is None: value_shape = [] value_shape = _execute.make_shape(value_shape, "value_shape") _, _, _op, _outputs = _op_def_library._apply_op_helper( "MutableHashTableOfTensorsV2", key_dtype=key_dtype, value_dtype=value_dtype, container=container, shared_name=shared_name, use_node_name_sharing=use_node_name_sharing, value_shape=value_shape, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name"), "use_node_name_sharing", _op._get_attr_bool("use_node_name_sharing"), "key_dtype", _op._get_attr_type("key_dtype"), "value_dtype", _op._get_attr_type("value_dtype"), "value_shape", _op.get_attr("value_shape")) _inputs_flat = _op.inputs _execute.record_gradient( "MutableHashTableOfTensorsV2", _inputs_flat, _attrs, _result) _result, = _result return _result MutableHashTableOfTensorsV2 = tf_export("raw_ops.MutableHashTableOfTensorsV2")(_ops.to_raw_op(mutable_hash_table_of_tensors_v2)) def mutable_hash_table_of_tensors_v2_eager_fallback(key_dtype: TV_MutableHashTableOfTensorsV2_key_dtype, value_dtype: TV_MutableHashTableOfTensorsV2_value_dtype, container: str, shared_name: str, use_node_name_sharing: bool, value_shape, name, ctx) -> Annotated[Any, _atypes.Resource]: key_dtype = _execute.make_type(key_dtype, "key_dtype") value_dtype = _execute.make_type(value_dtype, "value_dtype") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") if use_node_name_sharing is None: use_node_name_sharing = False use_node_name_sharing = _execute.make_bool(use_node_name_sharing, "use_node_name_sharing") if value_shape is None: value_shape = [] value_shape = _execute.make_shape(value_shape, "value_shape") _inputs_flat = [] _attrs = ("container", container, "shared_name", shared_name, "use_node_name_sharing", use_node_name_sharing, "key_dtype", key_dtype, "value_dtype", value_dtype, "value_shape", value_shape) _result = _execute.execute(b"MutableHashTableOfTensorsV2", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "MutableHashTableOfTensorsV2", _inputs_flat, _attrs, _result) _result, = _result return _result TV_MutableHashTableV2_key_dtype = TypeVar("TV_MutableHashTableV2_key_dtype", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) TV_MutableHashTableV2_value_dtype = TypeVar("TV_MutableHashTableV2_value_dtype", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def mutable_hash_table_v2(key_dtype: TV_MutableHashTableV2_key_dtype, value_dtype: TV_MutableHashTableV2_value_dtype, container:str="", shared_name:str="", use_node_name_sharing:bool=False, name=None) -> Annotated[Any, _atypes.Resource]: r"""Creates an empty hash table. This op creates a mutable hash table, specifying the type of its keys and values. Each value must be a scalar. Data can be inserted into the table using the insert operations. It does not support the initialization operation. Args: key_dtype: A `tf.DType`. Type of the table keys. value_dtype: A `tf.DType`. Type of the table values. container: An optional `string`. Defaults to `""`. If non-empty, this table is placed in the given container. Otherwise, a default container is used. shared_name: An optional `string`. Defaults to `""`. If non-empty, this table is shared under the given name across multiple sessions. use_node_name_sharing: An optional `bool`. Defaults to `False`. If true and shared_name is empty, the table is shared using the node name. name: A name for the operation (optional). Returns: A `Tensor` of type `resource`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "MutableHashTableV2", name, "container", container, "shared_name", shared_name, "use_node_name_sharing", use_node_name_sharing, "key_dtype", key_dtype, "value_dtype", value_dtype) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return mutable_hash_table_v2_eager_fallback( container=container, shared_name=shared_name, use_node_name_sharing=use_node_name_sharing, key_dtype=key_dtype, value_dtype=value_dtype, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. key_dtype = _execute.make_type(key_dtype, "key_dtype") value_dtype = _execute.make_type(value_dtype, "value_dtype") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") if use_node_name_sharing is None: use_node_name_sharing = False use_node_name_sharing = _execute.make_bool(use_node_name_sharing, "use_node_name_sharing") _, _, _op, _outputs = _op_def_library._apply_op_helper( "MutableHashTableV2", key_dtype=key_dtype, value_dtype=value_dtype, container=container, shared_name=shared_name, use_node_name_sharing=use_node_name_sharing, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name"), "use_node_name_sharing", _op._get_attr_bool("use_node_name_sharing"), "key_dtype", _op._get_attr_type("key_dtype"), "value_dtype", _op._get_attr_type("value_dtype")) _inputs_flat = _op.inputs _execute.record_gradient( "MutableHashTableV2", _inputs_flat, _attrs, _result) _result, = _result return _result MutableHashTableV2 = tf_export("raw_ops.MutableHashTableV2")(_ops.to_raw_op(mutable_hash_table_v2)) def mutable_hash_table_v2_eager_fallback(key_dtype: TV_MutableHashTableV2_key_dtype, value_dtype: TV_MutableHashTableV2_value_dtype, container: str, shared_name: str, use_node_name_sharing: bool, name, ctx) -> Annotated[Any, _atypes.Resource]: key_dtype = _execute.make_type(key_dtype, "key_dtype") value_dtype = _execute.make_type(value_dtype, "value_dtype") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") if use_node_name_sharing is None: use_node_name_sharing = False use_node_name_sharing = _execute.make_bool(use_node_name_sharing, "use_node_name_sharing") _inputs_flat = [] _attrs = ("container", container, "shared_name", shared_name, "use_node_name_sharing", use_node_name_sharing, "key_dtype", key_dtype, "value_dtype", value_dtype) _result = _execute.execute(b"MutableHashTableV2", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "MutableHashTableV2", _inputs_flat, _attrs, _result) _result, = _result return _result