"""Python wrappers around TensorFlow ops. This file is MACHINE GENERATED! Do not edit. """ import collections from tensorflow.python import pywrap_tfe as pywrap_tfe from tensorflow.python.eager import context as _context from tensorflow.python.eager import core as _core from tensorflow.python.eager import execute as _execute from tensorflow.python.framework import dtypes as _dtypes from tensorflow.security.fuzzing.py import annotation_types as _atypes from tensorflow.python.framework import op_def_registry as _op_def_registry from tensorflow.python.framework import ops as _ops from tensorflow.python.framework import op_def_library as _op_def_library from tensorflow.python.util.deprecation import deprecated_endpoints from tensorflow.python.util import dispatch as _dispatch from tensorflow.python.util.tf_export import tf_export from typing import TypeVar, List, Any from typing_extensions import Annotated TV_NcclAllReduce_T = TypeVar("TV_NcclAllReduce_T", _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int32, _atypes.Int64) def nccl_all_reduce(input: Annotated[Any, TV_NcclAllReduce_T], reduction: str, num_devices: int, shared_name: str, name=None) -> Annotated[Any, TV_NcclAllReduce_T]: r"""Outputs a tensor containing the reduction across all input tensors. Outputs a tensor containing the reduction across all input tensors passed to ops within the same `shared_name. The graph should be constructed so if one op runs with shared_name value `c`, then `num_devices` ops will run with shared_name value `c`. Failure to do so will cause the graph execution to fail to complete. input: the input to the reduction data: the value of the reduction across all `num_devices` devices. reduction: the reduction operation to perform. num_devices: The number of devices participating in this reduction. shared_name: Identifier that shared between ops of the same reduction. Args: input: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`, `int32`, `int64`. reduction: A `string` from: `"min", "max", "prod", "sum"`. num_devices: An `int`. shared_name: A `string`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "NcclAllReduce", name, input, "reduction", reduction, "num_devices", num_devices, "shared_name", shared_name) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return nccl_all_reduce_eager_fallback( input, reduction=reduction, num_devices=num_devices, shared_name=shared_name, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. reduction = _execute.make_str(reduction, "reduction") num_devices = _execute.make_int(num_devices, "num_devices") shared_name = _execute.make_str(shared_name, "shared_name") _, _, _op, _outputs = _op_def_library._apply_op_helper( "NcclAllReduce", input=input, reduction=reduction, num_devices=num_devices, shared_name=shared_name, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("reduction", _op.get_attr("reduction"), "T", _op._get_attr_type("T"), "num_devices", _op._get_attr_int("num_devices"), "shared_name", _op.get_attr("shared_name")) _inputs_flat = _op.inputs _execute.record_gradient( "NcclAllReduce", _inputs_flat, _attrs, _result) _result, = _result return _result NcclAllReduce = tf_export("raw_ops.NcclAllReduce")(_ops.to_raw_op(nccl_all_reduce)) def nccl_all_reduce_eager_fallback(input: Annotated[Any, TV_NcclAllReduce_T], reduction: str, num_devices: int, shared_name: str, name, ctx) -> Annotated[Any, TV_NcclAllReduce_T]: reduction = _execute.make_str(reduction, "reduction") num_devices = _execute.make_int(num_devices, "num_devices") shared_name = _execute.make_str(shared_name, "shared_name") _attr_T, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.half, _dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.int64, ]) _inputs_flat = [input] _attrs = ("reduction", reduction, "T", _attr_T, "num_devices", num_devices, "shared_name", shared_name) _result = _execute.execute(b"NcclAllReduce", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "NcclAllReduce", _inputs_flat, _attrs, _result) _result, = _result return _result TV_NcclBroadcast_T = TypeVar("TV_NcclBroadcast_T", _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int32, _atypes.Int64) def nccl_broadcast(input: Annotated[Any, TV_NcclBroadcast_T], shape, name=None) -> Annotated[Any, TV_NcclBroadcast_T]: r"""Sends `input` to all devices that are connected to the output. Sends `input` to all devices that are connected to the output. The graph should be constructed so that all ops connected to the output have a valid device assignment, and the op itself is assigned one of these devices. input: The input to the broadcast. output: The same as input. shape: The shape of the input tensor. Args: input: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`, `int32`, `int64`. shape: A `tf.TensorShape` or list of `ints`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "NcclBroadcast", name, input, "shape", shape) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return nccl_broadcast_eager_fallback( input, shape=shape, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. shape = _execute.make_shape(shape, "shape") _, _, _op, _outputs = _op_def_library._apply_op_helper( "NcclBroadcast", input=input, shape=shape, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "shape", _op.get_attr("shape")) _inputs_flat = _op.inputs _execute.record_gradient( "NcclBroadcast", _inputs_flat, _attrs, _result) _result, = _result return _result NcclBroadcast = tf_export("raw_ops.NcclBroadcast")(_ops.to_raw_op(nccl_broadcast)) def nccl_broadcast_eager_fallback(input: Annotated[Any, TV_NcclBroadcast_T], shape, name, ctx) -> Annotated[Any, TV_NcclBroadcast_T]: shape = _execute.make_shape(shape, "shape") _attr_T, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.half, _dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.int64, ]) _inputs_flat = [input] _attrs = ("T", _attr_T, "shape", shape) _result = _execute.execute(b"NcclBroadcast", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "NcclBroadcast", _inputs_flat, _attrs, _result) _result, = _result return _result TV_NcclReduce_T = TypeVar("TV_NcclReduce_T", _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int32, _atypes.Int64) def nccl_reduce(input: Annotated[List[Any], TV_NcclReduce_T], reduction: str, name=None) -> Annotated[Any, TV_NcclReduce_T]: r"""Reduces `input` from `num_devices` using `reduction` to a single device. Reduces `input` from `num_devices` using `reduction` to a single device. The graph should be constructed so that all inputs have a valid device assignment, and the op itself is assigned one of these devices. input: The input to the reduction. data: the value of the reduction across all `num_devices` devices. reduction: the reduction operation to perform. Args: input: A list of at least 1 `Tensor` objects with the same type in: `half`, `float32`, `float64`, `int32`, `int64`. reduction: A `string` from: `"min", "max", "prod", "sum"`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "NcclReduce", name, input, "reduction", reduction) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return nccl_reduce_eager_fallback( input, reduction=reduction, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(input, (list, tuple)): raise TypeError( "Expected list for 'input' argument to " "'nccl_reduce' Op, not %r." % input) _attr_num_devices = len(input) reduction = _execute.make_str(reduction, "reduction") _, _, _op, _outputs = _op_def_library._apply_op_helper( "NcclReduce", input=input, reduction=reduction, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("reduction", _op.get_attr("reduction"), "T", _op._get_attr_type("T"), "num_devices", _op._get_attr_int("num_devices")) _inputs_flat = _op.inputs _execute.record_gradient( "NcclReduce", _inputs_flat, _attrs, _result) _result, = _result return _result NcclReduce = tf_export("raw_ops.NcclReduce")(_ops.to_raw_op(nccl_reduce)) def nccl_reduce_eager_fallback(input: Annotated[List[Any], TV_NcclReduce_T], reduction: str, name, ctx) -> Annotated[Any, TV_NcclReduce_T]: if not isinstance(input, (list, tuple)): raise TypeError( "Expected list for 'input' argument to " "'nccl_reduce' Op, not %r." % input) _attr_num_devices = len(input) reduction = _execute.make_str(reduction, "reduction") _attr_T, input = _execute.args_to_matching_eager(list(input), ctx, [_dtypes.half, _dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.int64, ]) _inputs_flat = list(input) _attrs = ("reduction", reduction, "T", _attr_T, "num_devices", _attr_num_devices) _result = _execute.execute(b"NcclReduce", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "NcclReduce", _inputs_flat, _attrs, _result) _result, = _result return _result