"""Python wrappers around TensorFlow ops. This file is MACHINE GENERATED! Do not edit. """ import collections from tensorflow.python import pywrap_tfe as pywrap_tfe from tensorflow.python.eager import context as _context from tensorflow.python.eager import core as _core from tensorflow.python.eager import execute as _execute from tensorflow.python.framework import dtypes as _dtypes from tensorflow.security.fuzzing.py import annotation_types as _atypes from tensorflow.python.framework import op_def_registry as _op_def_registry from tensorflow.python.framework import ops as _ops from tensorflow.python.framework import op_def_library as _op_def_library from tensorflow.python.util.deprecation import deprecated_endpoints from tensorflow.python.util import dispatch as _dispatch from tensorflow.python.util.tf_export import tf_export from typing import TypeVar, List, Any from typing_extensions import Annotated _ApproxTopKOutput = collections.namedtuple( "ApproxTopK", ["values", "indices"]) TV_ApproxTopK_T = TypeVar("TV_ApproxTopK_T", _atypes.BFloat16, _atypes.Float32, _atypes.Half) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('approx_top_k') def approx_top_k(input: Annotated[Any, TV_ApproxTopK_T], k: int, reduction_dimension:int=-1, recall_target:float=0.95, is_max_k:bool=True, reduction_input_size_override:int=-1, aggregate_to_topk:bool=True, name=None): r"""Returns min/max k values and their indices of the input operand in an approximate manner. See https://arxiv.org/abs/2206.14286 for the algorithm details. This op is only optimized on TPU currently. Args: input: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`. Array to search. Must be at least 1-D of the floating type k: An `int` that is `>= 0`. Specifies the number of min/max-k. reduction_dimension: An optional `int`. Defaults to `-1`. Integer dimension along which to search. Default: -1. recall_target: An optional `float`. Defaults to `0.95`. Recall target for the approximation. Range in (0,1] is_max_k: An optional `bool`. Defaults to `True`. When true, computes max-k; otherwise computes min-k. reduction_input_size_override: An optional `int`. Defaults to `-1`. When set to a positive value, it overrides the size determined by `input[reduction_dim]` for evaluating the recall. This option is useful when the given `input` is only a subset of the overall computation in SPMD or distributed pipelines, where the true input size cannot be deferred by the `input` shape. aggregate_to_topk: An optional `bool`. Defaults to `True`. When true, aggregates approximate results to top-k. When false, returns the approximate results. The number of the approximate results is implementation defined and is greater equals to the specified `k`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (values, indices). values: A `Tensor`. Has the same type as `input`. indices: A `Tensor` of type `int32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "ApproxTopK", name, input, "k", k, "reduction_dimension", reduction_dimension, "recall_target", recall_target, "is_max_k", is_max_k, "reduction_input_size_override", reduction_input_size_override, "aggregate_to_topk", aggregate_to_topk) _result = _ApproxTopKOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_approx_top_k( (input, k, reduction_dimension, recall_target, is_max_k, reduction_input_size_override, aggregate_to_topk, name,), None) if _result is not NotImplemented: return _result return approx_top_k_eager_fallback( input, k=k, reduction_dimension=reduction_dimension, recall_target=recall_target, is_max_k=is_max_k, reduction_input_size_override=reduction_input_size_override, aggregate_to_topk=aggregate_to_topk, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( approx_top_k, (), dict(input=input, k=k, reduction_dimension=reduction_dimension, recall_target=recall_target, is_max_k=is_max_k, reduction_input_size_override=reduction_input_size_override, aggregate_to_topk=aggregate_to_topk, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_approx_top_k( (input, k, reduction_dimension, recall_target, is_max_k, reduction_input_size_override, aggregate_to_topk, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. k = _execute.make_int(k, "k") if reduction_dimension is None: reduction_dimension = -1 reduction_dimension = _execute.make_int(reduction_dimension, "reduction_dimension") if recall_target is None: recall_target = 0.95 recall_target = _execute.make_float(recall_target, "recall_target") if is_max_k is None: is_max_k = True is_max_k = _execute.make_bool(is_max_k, "is_max_k") if reduction_input_size_override is None: reduction_input_size_override = -1 reduction_input_size_override = _execute.make_int(reduction_input_size_override, "reduction_input_size_override") if aggregate_to_topk is None: aggregate_to_topk = True aggregate_to_topk = _execute.make_bool(aggregate_to_topk, "aggregate_to_topk") try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "ApproxTopK", input=input, k=k, reduction_dimension=reduction_dimension, recall_target=recall_target, is_max_k=is_max_k, reduction_input_size_override=reduction_input_size_override, aggregate_to_topk=aggregate_to_topk, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( approx_top_k, (), dict(input=input, k=k, reduction_dimension=reduction_dimension, recall_target=recall_target, is_max_k=is_max_k, reduction_input_size_override=reduction_input_size_override, aggregate_to_topk=aggregate_to_topk, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("k", _op._get_attr_int("k"), "reduction_dimension", _op._get_attr_int("reduction_dimension"), "recall_target", _op.get_attr("recall_target"), "is_max_k", _op._get_attr_bool("is_max_k"), "reduction_input_size_override", _op._get_attr_int("reduction_input_size_override"), "aggregate_to_topk", _op._get_attr_bool("aggregate_to_topk"), "T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "ApproxTopK", _inputs_flat, _attrs, _result) _result = _ApproxTopKOutput._make(_result) return _result ApproxTopK = tf_export("raw_ops.ApproxTopK")(_ops.to_raw_op(approx_top_k)) _dispatcher_for_approx_top_k = approx_top_k._tf_type_based_dispatcher.Dispatch def approx_top_k_eager_fallback(input: Annotated[Any, TV_ApproxTopK_T], k: int, reduction_dimension: int, recall_target: float, is_max_k: bool, reduction_input_size_override: int, aggregate_to_topk: bool, name, ctx): k = _execute.make_int(k, "k") if reduction_dimension is None: reduction_dimension = -1 reduction_dimension = _execute.make_int(reduction_dimension, "reduction_dimension") if recall_target is None: recall_target = 0.95 recall_target = _execute.make_float(recall_target, "recall_target") if is_max_k is None: is_max_k = True is_max_k = _execute.make_bool(is_max_k, "is_max_k") if reduction_input_size_override is None: reduction_input_size_override = -1 reduction_input_size_override = _execute.make_int(reduction_input_size_override, "reduction_input_size_override") if aggregate_to_topk is None: aggregate_to_topk = True aggregate_to_topk = _execute.make_bool(aggregate_to_topk, "aggregate_to_topk") _attr_T, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, ]) _inputs_flat = [input] _attrs = ("k", k, "reduction_dimension", reduction_dimension, "recall_target", recall_target, "is_max_k", is_max_k, "reduction_input_size_override", reduction_input_size_override, "aggregate_to_topk", aggregate_to_topk, "T", _attr_T) _result = _execute.execute(b"ApproxTopK", 2, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "ApproxTopK", _inputs_flat, _attrs, _result) _result = _ApproxTopKOutput._make(_result) return _result TV_AvgPool_T = TypeVar("TV_AvgPool_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half) def avg_pool(value: Annotated[Any, TV_AvgPool_T], ksize, strides, padding: str, data_format:str="NHWC", name=None) -> Annotated[Any, TV_AvgPool_T]: r"""Performs average pooling on the input. Each entry in `output` is the mean of the corresponding size `ksize` window in `value`. Args: value: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`. 4-D with shape `[batch, height, width, channels]`. ksize: A list of `ints` that has length `>= 4`. The size of the sliding window for each dimension of `value`. strides: A list of `ints` that has length `>= 4`. The stride of the sliding window for each dimension of `value`. padding: A `string` from: `"SAME", "VALID"`. The type of padding algorithm to use. data_format: An optional `string` from: `"NHWC", "NCHW"`. Defaults to `"NHWC"`. Specify the data format of the input and output data. With the default format "NHWC", the data is stored in the order of: [batch, in_height, in_width, in_channels]. Alternatively, the format could be "NCHW", the data storage order of: [batch, in_channels, in_height, in_width]. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `value`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "AvgPool", name, value, "ksize", ksize, "strides", strides, "padding", padding, "data_format", data_format) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return avg_pool_eager_fallback( value, ksize=ksize, strides=strides, padding=padding, data_format=data_format, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(ksize, (list, tuple)): raise TypeError( "Expected list for 'ksize' argument to " "'avg_pool' Op, not %r." % ksize) ksize = [_execute.make_int(_i, "ksize") for _i in ksize] if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'avg_pool' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") _, _, _op, _outputs = _op_def_library._apply_op_helper( "AvgPool", value=value, ksize=ksize, strides=strides, padding=padding, data_format=data_format, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("ksize", _op.get_attr("ksize"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "data_format", _op.get_attr("data_format"), "T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "AvgPool", _inputs_flat, _attrs, _result) _result, = _result return _result AvgPool = tf_export("raw_ops.AvgPool")(_ops.to_raw_op(avg_pool)) def avg_pool_eager_fallback(value: Annotated[Any, TV_AvgPool_T], ksize, strides, padding: str, data_format: str, name, ctx) -> Annotated[Any, TV_AvgPool_T]: if not isinstance(ksize, (list, tuple)): raise TypeError( "Expected list for 'ksize' argument to " "'avg_pool' Op, not %r." % ksize) ksize = [_execute.make_int(_i, "ksize") for _i in ksize] if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'avg_pool' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") _attr_T, (value,) = _execute.args_to_matching_eager([value], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, _dtypes.float64, ]) _inputs_flat = [value] _attrs = ("ksize", ksize, "strides", strides, "padding", padding, "data_format", data_format, "T", _attr_T) _result = _execute.execute(b"AvgPool", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "AvgPool", _inputs_flat, _attrs, _result) _result, = _result return _result TV_AvgPool3D_T = TypeVar("TV_AvgPool3D_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half) def avg_pool3d(input: Annotated[Any, TV_AvgPool3D_T], ksize, strides, padding: str, data_format:str="NDHWC", name=None) -> Annotated[Any, TV_AvgPool3D_T]: r"""Performs 3D average pooling on the input. Each entry in `output` is the mean of the corresponding size `ksize` window in `value`. Args: input: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`. Shape `[batch, depth, rows, cols, channels]` tensor to pool over. ksize: A list of `ints` that has length `>= 5`. 1-D tensor of length 5. The size of the window for each dimension of the input tensor. Must have `ksize[0] = ksize[4] = 1`. strides: A list of `ints` that has length `>= 5`. 1-D tensor of length 5. The stride of the sliding window for each dimension of `input`. Must have `strides[0] = strides[4] = 1`. padding: A `string` from: `"SAME", "VALID"`. The type of padding algorithm to use. data_format: An optional `string` from: `"NDHWC", "NCDHW"`. Defaults to `"NDHWC"`. The data format of the input and output data. With the default format "NDHWC", the data is stored in the order of: [batch, in_depth, in_height, in_width, in_channels]. Alternatively, the format could be "NCDHW", the data storage order is: [batch, in_channels, in_depth, in_height, in_width]. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "AvgPool3D", name, input, "ksize", ksize, "strides", strides, "padding", padding, "data_format", data_format) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return avg_pool3d_eager_fallback( input, ksize=ksize, strides=strides, padding=padding, data_format=data_format, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(ksize, (list, tuple)): raise TypeError( "Expected list for 'ksize' argument to " "'avg_pool3d' Op, not %r." % ksize) ksize = [_execute.make_int(_i, "ksize") for _i in ksize] if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'avg_pool3d' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if data_format is None: data_format = "NDHWC" data_format = _execute.make_str(data_format, "data_format") _, _, _op, _outputs = _op_def_library._apply_op_helper( "AvgPool3D", input=input, ksize=ksize, strides=strides, padding=padding, data_format=data_format, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("ksize", _op.get_attr("ksize"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "data_format", _op.get_attr("data_format"), "T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "AvgPool3D", _inputs_flat, _attrs, _result) _result, = _result return _result AvgPool3D = tf_export("raw_ops.AvgPool3D")(_ops.to_raw_op(avg_pool3d)) def avg_pool3d_eager_fallback(input: Annotated[Any, TV_AvgPool3D_T], ksize, strides, padding: str, data_format: str, name, ctx) -> Annotated[Any, TV_AvgPool3D_T]: if not isinstance(ksize, (list, tuple)): raise TypeError( "Expected list for 'ksize' argument to " "'avg_pool3d' Op, not %r." % ksize) ksize = [_execute.make_int(_i, "ksize") for _i in ksize] if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'avg_pool3d' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if data_format is None: data_format = "NDHWC" data_format = _execute.make_str(data_format, "data_format") _attr_T, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, _dtypes.float64, ]) _inputs_flat = [input] _attrs = ("ksize", ksize, "strides", strides, "padding", padding, "data_format", data_format, "T", _attr_T) _result = _execute.execute(b"AvgPool3D", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "AvgPool3D", _inputs_flat, _attrs, _result) _result, = _result return _result TV_AvgPool3DGrad_T = TypeVar("TV_AvgPool3DGrad_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half) def avg_pool3d_grad(orig_input_shape: Annotated[Any, _atypes.Int32], grad: Annotated[Any, TV_AvgPool3DGrad_T], ksize, strides, padding: str, data_format:str="NDHWC", name=None) -> Annotated[Any, TV_AvgPool3DGrad_T]: r"""Computes gradients of average pooling function. Args: orig_input_shape: A `Tensor` of type `int32`. The original input dimensions. grad: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`. Output backprop of shape `[batch, depth, rows, cols, channels]`. ksize: A list of `ints` that has length `>= 5`. 1-D tensor of length 5. The size of the window for each dimension of the input tensor. Must have `ksize[0] = ksize[4] = 1`. strides: A list of `ints` that has length `>= 5`. 1-D tensor of length 5. The stride of the sliding window for each dimension of `input`. Must have `strides[0] = strides[4] = 1`. padding: A `string` from: `"SAME", "VALID"`. The type of padding algorithm to use. data_format: An optional `string` from: `"NDHWC", "NCDHW"`. Defaults to `"NDHWC"`. The data format of the input and output data. With the default format "NDHWC", the data is stored in the order of: [batch, in_depth, in_height, in_width, in_channels]. Alternatively, the format could be "NCDHW", the data storage order is: [batch, in_channels, in_depth, in_height, in_width]. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `grad`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "AvgPool3DGrad", name, orig_input_shape, grad, "ksize", ksize, "strides", strides, "padding", padding, "data_format", data_format) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return avg_pool3d_grad_eager_fallback( orig_input_shape, grad, ksize=ksize, strides=strides, padding=padding, data_format=data_format, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(ksize, (list, tuple)): raise TypeError( "Expected list for 'ksize' argument to " "'avg_pool3d_grad' Op, not %r." % ksize) ksize = [_execute.make_int(_i, "ksize") for _i in ksize] if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'avg_pool3d_grad' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if data_format is None: data_format = "NDHWC" data_format = _execute.make_str(data_format, "data_format") _, _, _op, _outputs = _op_def_library._apply_op_helper( "AvgPool3DGrad", orig_input_shape=orig_input_shape, grad=grad, ksize=ksize, strides=strides, padding=padding, data_format=data_format, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("ksize", _op.get_attr("ksize"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "data_format", _op.get_attr("data_format"), "T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "AvgPool3DGrad", _inputs_flat, _attrs, _result) _result, = _result return _result AvgPool3DGrad = tf_export("raw_ops.AvgPool3DGrad")(_ops.to_raw_op(avg_pool3d_grad)) def avg_pool3d_grad_eager_fallback(orig_input_shape: Annotated[Any, _atypes.Int32], grad: Annotated[Any, TV_AvgPool3DGrad_T], ksize, strides, padding: str, data_format: str, name, ctx) -> Annotated[Any, TV_AvgPool3DGrad_T]: if not isinstance(ksize, (list, tuple)): raise TypeError( "Expected list for 'ksize' argument to " "'avg_pool3d_grad' Op, not %r." % ksize) ksize = [_execute.make_int(_i, "ksize") for _i in ksize] if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'avg_pool3d_grad' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if data_format is None: data_format = "NDHWC" data_format = _execute.make_str(data_format, "data_format") _attr_T, (grad,) = _execute.args_to_matching_eager([grad], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, _dtypes.float64, ]) orig_input_shape = _ops.convert_to_tensor(orig_input_shape, _dtypes.int32) _inputs_flat = [orig_input_shape, grad] _attrs = ("ksize", ksize, "strides", strides, "padding", padding, "data_format", data_format, "T", _attr_T) _result = _execute.execute(b"AvgPool3DGrad", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "AvgPool3DGrad", _inputs_flat, _attrs, _result) _result, = _result return _result TV_AvgPoolGrad_T = TypeVar("TV_AvgPoolGrad_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half) def avg_pool_grad(orig_input_shape: Annotated[Any, _atypes.Int32], grad: Annotated[Any, TV_AvgPoolGrad_T], ksize, strides, padding: str, data_format:str="NHWC", name=None) -> Annotated[Any, TV_AvgPoolGrad_T]: r"""Computes gradients of the average pooling function. Args: orig_input_shape: A `Tensor` of type `int32`. 1-D. Shape of the original input to `avg_pool`. grad: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`. 4-D with shape `[batch, height, width, channels]`. Gradients w.r.t. the output of `avg_pool`. ksize: A list of `ints` that has length `>= 4`. The size of the sliding window for each dimension of the input. strides: A list of `ints` that has length `>= 4`. The stride of the sliding window for each dimension of the input. padding: A `string` from: `"SAME", "VALID"`. The type of padding algorithm to use. data_format: An optional `string` from: `"NHWC", "NCHW"`. Defaults to `"NHWC"`. Specify the data format of the input and output data. With the default format "NHWC", the data is stored in the order of: [batch, in_height, in_width, in_channels]. Alternatively, the format could be "NCHW", the data storage order of: [batch, in_channels, in_height, in_width]. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `grad`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "AvgPoolGrad", name, orig_input_shape, grad, "ksize", ksize, "strides", strides, "padding", padding, "data_format", data_format) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return avg_pool_grad_eager_fallback( orig_input_shape, grad, ksize=ksize, strides=strides, padding=padding, data_format=data_format, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(ksize, (list, tuple)): raise TypeError( "Expected list for 'ksize' argument to " "'avg_pool_grad' Op, not %r." % ksize) ksize = [_execute.make_int(_i, "ksize") for _i in ksize] if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'avg_pool_grad' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") _, _, _op, _outputs = _op_def_library._apply_op_helper( "AvgPoolGrad", orig_input_shape=orig_input_shape, grad=grad, ksize=ksize, strides=strides, padding=padding, data_format=data_format, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("ksize", _op.get_attr("ksize"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "data_format", _op.get_attr("data_format"), "T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "AvgPoolGrad", _inputs_flat, _attrs, _result) _result, = _result return _result AvgPoolGrad = tf_export("raw_ops.AvgPoolGrad")(_ops.to_raw_op(avg_pool_grad)) def avg_pool_grad_eager_fallback(orig_input_shape: Annotated[Any, _atypes.Int32], grad: Annotated[Any, TV_AvgPoolGrad_T], ksize, strides, padding: str, data_format: str, name, ctx) -> Annotated[Any, TV_AvgPoolGrad_T]: if not isinstance(ksize, (list, tuple)): raise TypeError( "Expected list for 'ksize' argument to " "'avg_pool_grad' Op, not %r." % ksize) ksize = [_execute.make_int(_i, "ksize") for _i in ksize] if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'avg_pool_grad' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") _attr_T, (grad,) = _execute.args_to_matching_eager([grad], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, _dtypes.float64, ]) orig_input_shape = _ops.convert_to_tensor(orig_input_shape, _dtypes.int32) _inputs_flat = [orig_input_shape, grad] _attrs = ("ksize", ksize, "strides", strides, "padding", padding, "data_format", data_format, "T", _attr_T) _result = _execute.execute(b"AvgPoolGrad", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "AvgPoolGrad", _inputs_flat, _attrs, _result) _result, = _result return _result TV_BatchNormWithGlobalNormalization_T = TypeVar("TV_BatchNormWithGlobalNormalization_T", _atypes.BFloat16, _atypes.Complex128, _atypes.Complex64, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.UInt16, _atypes.UInt32, _atypes.UInt64, _atypes.UInt8) def _batch_norm_with_global_normalization(t: Annotated[Any, TV_BatchNormWithGlobalNormalization_T], m: Annotated[Any, TV_BatchNormWithGlobalNormalization_T], v: Annotated[Any, TV_BatchNormWithGlobalNormalization_T], beta: Annotated[Any, TV_BatchNormWithGlobalNormalization_T], gamma: Annotated[Any, TV_BatchNormWithGlobalNormalization_T], variance_epsilon: float, scale_after_normalization: bool, name=None) -> Annotated[Any, TV_BatchNormWithGlobalNormalization_T]: r"""Batch normalization. This op is deprecated. Prefer `tf.nn.batch_normalization`. Args: t: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `qint16`, `quint16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. A 4D input Tensor. m: A `Tensor`. Must have the same type as `t`. A 1D mean Tensor with size matching the last dimension of t. This is the first output from tf.nn.moments, or a saved moving average thereof. v: A `Tensor`. Must have the same type as `t`. A 1D variance Tensor with size matching the last dimension of t. This is the second output from tf.nn.moments, or a saved moving average thereof. beta: A `Tensor`. Must have the same type as `t`. A 1D beta Tensor with size matching the last dimension of t. An offset to be added to the normalized tensor. gamma: A `Tensor`. Must have the same type as `t`. A 1D gamma Tensor with size matching the last dimension of t. If "scale_after_normalization" is true, this tensor will be multiplied with the normalized tensor. variance_epsilon: A `float`. A small float number to avoid dividing by 0. scale_after_normalization: A `bool`. A bool indicating whether the resulted tensor needs to be multiplied with gamma. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `t`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "BatchNormWithGlobalNormalization", name, t, m, v, beta, gamma, "variance_epsilon", variance_epsilon, "scale_after_normalization", scale_after_normalization) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return _batch_norm_with_global_normalization_eager_fallback( t, m, v, beta, gamma, variance_epsilon=variance_epsilon, scale_after_normalization=scale_after_normalization, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. variance_epsilon = _execute.make_float(variance_epsilon, "variance_epsilon") scale_after_normalization = _execute.make_bool(scale_after_normalization, "scale_after_normalization") _, _, _op, _outputs = _op_def_library._apply_op_helper( "BatchNormWithGlobalNormalization", t=t, m=m, v=v, beta=beta, gamma=gamma, variance_epsilon=variance_epsilon, scale_after_normalization=scale_after_normalization, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "variance_epsilon", _op.get_attr("variance_epsilon"), "scale_after_normalization", _op._get_attr_bool("scale_after_normalization")) _inputs_flat = _op.inputs _execute.record_gradient( "BatchNormWithGlobalNormalization", _inputs_flat, _attrs, _result) _result, = _result return _result BatchNormWithGlobalNormalization = tf_export("raw_ops.BatchNormWithGlobalNormalization")(_ops.to_raw_op(_batch_norm_with_global_normalization)) def _batch_norm_with_global_normalization_eager_fallback(t: Annotated[Any, TV_BatchNormWithGlobalNormalization_T], m: Annotated[Any, TV_BatchNormWithGlobalNormalization_T], v: Annotated[Any, TV_BatchNormWithGlobalNormalization_T], beta: Annotated[Any, TV_BatchNormWithGlobalNormalization_T], gamma: Annotated[Any, TV_BatchNormWithGlobalNormalization_T], variance_epsilon: float, scale_after_normalization: bool, name, ctx) -> Annotated[Any, TV_BatchNormWithGlobalNormalization_T]: variance_epsilon = _execute.make_float(variance_epsilon, "variance_epsilon") scale_after_normalization = _execute.make_bool(scale_after_normalization, "scale_after_normalization") _attr_T, _inputs_T = _execute.args_to_matching_eager([t, m, v, beta, gamma], ctx, [_dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.uint8, _dtypes.int16, _dtypes.int8, _dtypes.complex64, _dtypes.int64, _dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.bfloat16, _dtypes.qint16, _dtypes.quint16, _dtypes.uint16, _dtypes.complex128, _dtypes.half, _dtypes.uint32, _dtypes.uint64, ]) (t, m, v, beta, gamma) = _inputs_T _inputs_flat = [t, m, v, beta, gamma] _attrs = ("T", _attr_T, "variance_epsilon", variance_epsilon, "scale_after_normalization", scale_after_normalization) _result = _execute.execute(b"BatchNormWithGlobalNormalization", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "BatchNormWithGlobalNormalization", _inputs_flat, _attrs, _result) _result, = _result return _result _BatchNormWithGlobalNormalizationGradOutput = collections.namedtuple( "BatchNormWithGlobalNormalizationGrad", ["dx", "dm", "dv", "db", "dg"]) TV_BatchNormWithGlobalNormalizationGrad_T = TypeVar("TV_BatchNormWithGlobalNormalizationGrad_T", _atypes.BFloat16, _atypes.Complex128, _atypes.Complex64, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.UInt16, _atypes.UInt32, _atypes.UInt64, _atypes.UInt8) def batch_norm_with_global_normalization_grad(t: Annotated[Any, TV_BatchNormWithGlobalNormalizationGrad_T], m: Annotated[Any, TV_BatchNormWithGlobalNormalizationGrad_T], v: Annotated[Any, TV_BatchNormWithGlobalNormalizationGrad_T], gamma: Annotated[Any, TV_BatchNormWithGlobalNormalizationGrad_T], backprop: Annotated[Any, TV_BatchNormWithGlobalNormalizationGrad_T], variance_epsilon: float, scale_after_normalization: bool, name=None): r"""Gradients for batch normalization. This op is deprecated. See `tf.nn.batch_normalization`. Args: t: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `qint16`, `quint16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. A 4D input Tensor. m: A `Tensor`. Must have the same type as `t`. A 1D mean Tensor with size matching the last dimension of t. This is the first output from tf.nn.moments, or a saved moving average thereof. v: A `Tensor`. Must have the same type as `t`. A 1D variance Tensor with size matching the last dimension of t. This is the second output from tf.nn.moments, or a saved moving average thereof. gamma: A `Tensor`. Must have the same type as `t`. A 1D gamma Tensor with size matching the last dimension of t. If "scale_after_normalization" is true, this Tensor will be multiplied with the normalized Tensor. backprop: A `Tensor`. Must have the same type as `t`. 4D backprop Tensor. variance_epsilon: A `float`. A small float number to avoid dividing by 0. scale_after_normalization: A `bool`. A bool indicating whether the resulted tensor needs to be multiplied with gamma. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (dx, dm, dv, db, dg). dx: A `Tensor`. Has the same type as `t`. dm: A `Tensor`. Has the same type as `t`. dv: A `Tensor`. Has the same type as `t`. db: A `Tensor`. Has the same type as `t`. dg: A `Tensor`. Has the same type as `t`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "BatchNormWithGlobalNormalizationGrad", name, t, m, v, gamma, backprop, "variance_epsilon", variance_epsilon, "scale_after_normalization", scale_after_normalization) _result = _BatchNormWithGlobalNormalizationGradOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return batch_norm_with_global_normalization_grad_eager_fallback( t, m, v, gamma, backprop, variance_epsilon=variance_epsilon, scale_after_normalization=scale_after_normalization, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. variance_epsilon = _execute.make_float(variance_epsilon, "variance_epsilon") scale_after_normalization = _execute.make_bool(scale_after_normalization, "scale_after_normalization") _, _, _op, _outputs = _op_def_library._apply_op_helper( "BatchNormWithGlobalNormalizationGrad", t=t, m=m, v=v, gamma=gamma, backprop=backprop, variance_epsilon=variance_epsilon, scale_after_normalization=scale_after_normalization, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "variance_epsilon", _op.get_attr("variance_epsilon"), "scale_after_normalization", _op._get_attr_bool("scale_after_normalization")) _inputs_flat = _op.inputs _execute.record_gradient( "BatchNormWithGlobalNormalizationGrad", _inputs_flat, _attrs, _result) _result = _BatchNormWithGlobalNormalizationGradOutput._make(_result) return _result BatchNormWithGlobalNormalizationGrad = tf_export("raw_ops.BatchNormWithGlobalNormalizationGrad")(_ops.to_raw_op(batch_norm_with_global_normalization_grad)) def batch_norm_with_global_normalization_grad_eager_fallback(t: Annotated[Any, TV_BatchNormWithGlobalNormalizationGrad_T], m: Annotated[Any, TV_BatchNormWithGlobalNormalizationGrad_T], v: Annotated[Any, TV_BatchNormWithGlobalNormalizationGrad_T], gamma: Annotated[Any, TV_BatchNormWithGlobalNormalizationGrad_T], backprop: Annotated[Any, TV_BatchNormWithGlobalNormalizationGrad_T], variance_epsilon: float, scale_after_normalization: bool, name, ctx): variance_epsilon = _execute.make_float(variance_epsilon, "variance_epsilon") scale_after_normalization = _execute.make_bool(scale_after_normalization, "scale_after_normalization") _attr_T, _inputs_T = _execute.args_to_matching_eager([t, m, v, gamma, backprop], ctx, [_dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.uint8, _dtypes.int16, _dtypes.int8, _dtypes.complex64, _dtypes.int64, _dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.bfloat16, _dtypes.qint16, _dtypes.quint16, _dtypes.uint16, _dtypes.complex128, _dtypes.half, _dtypes.uint32, _dtypes.uint64, ]) (t, m, v, gamma, backprop) = _inputs_T _inputs_flat = [t, m, v, gamma, backprop] _attrs = ("T", _attr_T, "variance_epsilon", variance_epsilon, "scale_after_normalization", scale_after_normalization) _result = _execute.execute(b"BatchNormWithGlobalNormalizationGrad", 5, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "BatchNormWithGlobalNormalizationGrad", _inputs_flat, _attrs, _result) _result = _BatchNormWithGlobalNormalizationGradOutput._make(_result) return _result TV_BiasAdd_T = TypeVar("TV_BiasAdd_T", _atypes.BFloat16, _atypes.Complex128, _atypes.Complex64, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.UInt16, _atypes.UInt32, _atypes.UInt64, _atypes.UInt8) def bias_add(value: Annotated[Any, TV_BiasAdd_T], bias: Annotated[Any, TV_BiasAdd_T], data_format:str="NHWC", name=None) -> Annotated[Any, TV_BiasAdd_T]: r"""Adds `bias` to `value`. This is a special case of `tf.add` where `bias` is restricted to be 1-D. Broadcasting is supported, so `value` may have any number of dimensions. Args: value: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `qint16`, `quint16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. Any number of dimensions. bias: A `Tensor`. Must have the same type as `value`. 1-D with size the last dimension of `value`. data_format: An optional `string` from: `"NHWC", "NCHW"`. Defaults to `"NHWC"`. Specify the data format of the input and output data. With the default format "NHWC", the bias tensor will be added to the last dimension of the value tensor. Alternatively, the format could be "NCHW", the data storage order of: [batch, in_channels, in_height, in_width]. The tensor will be added to "in_channels", the third-to-the-last dimension. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `value`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "BiasAdd", name, value, bias, "data_format", data_format) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return bias_add_eager_fallback( value, bias, data_format=data_format, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") _, _, _op, _outputs = _op_def_library._apply_op_helper( "BiasAdd", value=value, bias=bias, data_format=data_format, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "data_format", _op.get_attr("data_format")) _inputs_flat = _op.inputs _execute.record_gradient( "BiasAdd", _inputs_flat, _attrs, _result) _result, = _result return _result BiasAdd = tf_export("raw_ops.BiasAdd")(_ops.to_raw_op(bias_add)) def bias_add_eager_fallback(value: Annotated[Any, TV_BiasAdd_T], bias: Annotated[Any, TV_BiasAdd_T], data_format: str, name, ctx) -> Annotated[Any, TV_BiasAdd_T]: if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") _attr_T, _inputs_T = _execute.args_to_matching_eager([value, bias], ctx, [_dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.uint8, _dtypes.int16, _dtypes.int8, _dtypes.complex64, _dtypes.int64, _dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.bfloat16, _dtypes.qint16, _dtypes.quint16, _dtypes.uint16, _dtypes.complex128, _dtypes.half, _dtypes.uint32, _dtypes.uint64, ]) (value, bias) = _inputs_T _inputs_flat = [value, bias] _attrs = ("T", _attr_T, "data_format", data_format) _result = _execute.execute(b"BiasAdd", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "BiasAdd", _inputs_flat, _attrs, _result) _result, = _result return _result TV_BiasAddGrad_T = TypeVar("TV_BiasAddGrad_T", _atypes.BFloat16, _atypes.Complex128, _atypes.Complex64, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.UInt16, _atypes.UInt32, _atypes.UInt64, _atypes.UInt8) def bias_add_grad(out_backprop: Annotated[Any, TV_BiasAddGrad_T], data_format:str="NHWC", name=None) -> Annotated[Any, TV_BiasAddGrad_T]: r"""The backward operation for "BiasAdd" on the "bias" tensor. It accumulates all the values from out_backprop into the feature dimension. For NHWC data format, the feature dimension is the last. For NCHW data format, the feature dimension is the third-to-last. Args: out_backprop: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `qint16`, `quint16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. Any number of dimensions. data_format: An optional `string` from: `"NHWC", "NCHW"`. Defaults to `"NHWC"`. Specify the data format of the input and output data. With the default format "NHWC", the bias tensor will be added to the last dimension of the value tensor. Alternatively, the format could be "NCHW", the data storage order of: [batch, in_channels, in_height, in_width]. The tensor will be added to "in_channels", the third-to-the-last dimension. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `out_backprop`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "BiasAddGrad", name, out_backprop, "data_format", data_format) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return bias_add_grad_eager_fallback( out_backprop, data_format=data_format, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") _, _, _op, _outputs = _op_def_library._apply_op_helper( "BiasAddGrad", out_backprop=out_backprop, data_format=data_format, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "data_format", _op.get_attr("data_format")) _inputs_flat = _op.inputs _execute.record_gradient( "BiasAddGrad", _inputs_flat, _attrs, _result) _result, = _result return _result BiasAddGrad = tf_export("raw_ops.BiasAddGrad")(_ops.to_raw_op(bias_add_grad)) def bias_add_grad_eager_fallback(out_backprop: Annotated[Any, TV_BiasAddGrad_T], data_format: str, name, ctx) -> Annotated[Any, TV_BiasAddGrad_T]: if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") _attr_T, (out_backprop,) = _execute.args_to_matching_eager([out_backprop], ctx, [_dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.uint8, _dtypes.int16, _dtypes.int8, _dtypes.complex64, _dtypes.int64, _dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.bfloat16, _dtypes.qint16, _dtypes.quint16, _dtypes.uint16, _dtypes.complex128, _dtypes.half, _dtypes.uint32, _dtypes.uint64, ]) _inputs_flat = [out_backprop] _attrs = ("T", _attr_T, "data_format", data_format) _result = _execute.execute(b"BiasAddGrad", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "BiasAddGrad", _inputs_flat, _attrs, _result) _result, = _result return _result TV_BiasAddV1_T = TypeVar("TV_BiasAddV1_T", _atypes.BFloat16, _atypes.Complex128, _atypes.Complex64, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.UInt16, _atypes.UInt32, _atypes.UInt64, _atypes.UInt8) def bias_add_v1(value: Annotated[Any, TV_BiasAddV1_T], bias: Annotated[Any, TV_BiasAddV1_T], name=None) -> Annotated[Any, TV_BiasAddV1_T]: r"""Adds `bias` to `value`. This is a deprecated version of BiasAdd and will be soon removed. This is a special case of `tf.add` where `bias` is restricted to be 1-D. Broadcasting is supported, so `value` may have any number of dimensions. Args: value: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `qint16`, `quint16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. Any number of dimensions. bias: A `Tensor`. Must have the same type as `value`. 1-D with size the last dimension of `value`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `value`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "BiasAddV1", name, value, bias) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return bias_add_v1_eager_fallback( value, bias, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "BiasAddV1", value=value, bias=bias, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "BiasAddV1", _inputs_flat, _attrs, _result) _result, = _result return _result BiasAddV1 = tf_export("raw_ops.BiasAddV1")(_ops.to_raw_op(bias_add_v1)) def bias_add_v1_eager_fallback(value: Annotated[Any, TV_BiasAddV1_T], bias: Annotated[Any, TV_BiasAddV1_T], name, ctx) -> Annotated[Any, TV_BiasAddV1_T]: _attr_T, _inputs_T = _execute.args_to_matching_eager([value, bias], ctx, [_dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.uint8, _dtypes.int16, _dtypes.int8, _dtypes.complex64, _dtypes.int64, _dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.bfloat16, _dtypes.qint16, _dtypes.quint16, _dtypes.uint16, _dtypes.complex128, _dtypes.half, _dtypes.uint32, _dtypes.uint64, ]) (value, bias) = _inputs_T _inputs_flat = [value, bias] _attrs = ("T", _attr_T) _result = _execute.execute(b"BiasAddV1", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "BiasAddV1", _inputs_flat, _attrs, _result) _result, = _result return _result TV_Conv_T = TypeVar("TV_Conv_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int32) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('conv') def conv(input: Annotated[Any, TV_Conv_T], filter: Annotated[Any, TV_Conv_T], strides, padding: str, explicit_paddings=[], data_format:str="CHANNELS_LAST", dilations=[], batch_dims:int=1, groups:int=1, name=None) -> Annotated[Any, TV_Conv_T]: r"""Computes a N-D convolution given (N+1+batch_dims)-D `input` and (N+2)-D `filter` tensors. General function for computing a N-D convolution. It is required that `1 <= N <= 3`. Args: input: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`, `int32`. Tensor of type T and shape `batch_shape + spatial_shape + [in_channels]` in the case that `channels_last_format = true` or shape `batch_shape + [in_channels] + spatial_shape` if `channels_last_format = false`. spatial_shape is N-dimensional with `N=2` or `N=3`. Also note that `batch_shape` is dictated by the parameter `batch_dims` and defaults to 1. filter: A `Tensor`. Must have the same type as `input`. An `(N+2)-D` Tensor with the same type as `input` and shape `spatial_filter_shape + [in_channels, out_channels]`, where spatial_filter_shape is N-dimensional with `N=2` or `N=3`. strides: A list of `ints`. 1-D tensor of length `N+2`. The stride of the sliding window for each dimension of `input`. Must have `strides[0] = strides[N+1] = 1`. padding: A `string` from: `"SAME", "VALID", "EXPLICIT"`. The type of padding algorithm to use. explicit_paddings: An optional list of `ints`. Defaults to `[]`. If `padding` is `"EXPLICIT"`, the list of explicit padding amounts. For the ith dimension, the amount of padding inserted before and after the dimension is `explicit_paddings[2 * i]` and `explicit_paddings[2 * i + 1]`, respectively. If `padding` is not `"EXPLICIT"`, `explicit_paddings` must be empty. data_format: An optional `string` from: `"CHANNELS_FIRST", "CHANNELS_LAST"`. Defaults to `"CHANNELS_LAST"`. Used to set the data format. By default `CHANNELS_FIRST`, uses `NHWC (2D) / NDHWC (3D)` or if `CHANNELS_LAST`, uses `NCHW (2D) / NCDHW (3D)`. dilations: An optional list of `ints`. Defaults to `[]`. 1-D tensor of length `N+2`. The dilation factor for each dimension of `input`. If set to `k > 1`, there will be `k-1` skipped cells between each filter element on that dimension. The dimension order is determined by the value of `channels_last_format`, see above for details. Dilations in the batch and depth dimensions must be 1. batch_dims: An optional `int`. Defaults to `1`. A positive integer specifying the number of batch dimensions for the input tensor. Should be less than the rank of the input tensor. groups: An optional `int`. Defaults to `1`. A positive integer specifying the number of groups in which the input is split along the channel axis. Each group is convolved separately with `filters / groups` filters. The output is the concatenation of all the groups results along the channel axis. Input channels and filters must both be divisible by groups. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "Conv", name, input, filter, "strides", strides, "padding", padding, "explicit_paddings", explicit_paddings, "data_format", data_format, "dilations", dilations, "batch_dims", batch_dims, "groups", groups) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_conv( (input, filter, strides, padding, explicit_paddings, data_format, dilations, batch_dims, groups, name,), None) if _result is not NotImplemented: return _result return conv_eager_fallback( input, filter, strides=strides, padding=padding, explicit_paddings=explicit_paddings, data_format=data_format, dilations=dilations, batch_dims=batch_dims, groups=groups, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( conv, (), dict(input=input, filter=filter, strides=strides, padding=padding, explicit_paddings=explicit_paddings, data_format=data_format, dilations=dilations, batch_dims=batch_dims, groups=groups, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_conv( (input, filter, strides, padding, explicit_paddings, data_format, dilations, batch_dims, groups, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'conv' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if explicit_paddings is None: explicit_paddings = [] if not isinstance(explicit_paddings, (list, tuple)): raise TypeError( "Expected list for 'explicit_paddings' argument to " "'conv' Op, not %r." % explicit_paddings) explicit_paddings = [_execute.make_int(_i, "explicit_paddings") for _i in explicit_paddings] if data_format is None: data_format = "CHANNELS_LAST" data_format = _execute.make_str(data_format, "data_format") if dilations is None: dilations = [] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'conv' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] if batch_dims is None: batch_dims = 1 batch_dims = _execute.make_int(batch_dims, "batch_dims") if groups is None: groups = 1 groups = _execute.make_int(groups, "groups") try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "Conv", input=input, filter=filter, strides=strides, padding=padding, explicit_paddings=explicit_paddings, data_format=data_format, dilations=dilations, batch_dims=batch_dims, groups=groups, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( conv, (), dict(input=input, filter=filter, strides=strides, padding=padding, explicit_paddings=explicit_paddings, data_format=data_format, dilations=dilations, batch_dims=batch_dims, groups=groups, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "explicit_paddings", _op.get_attr("explicit_paddings"), "data_format", _op.get_attr("data_format"), "dilations", _op.get_attr("dilations"), "batch_dims", _op._get_attr_int("batch_dims"), "groups", _op._get_attr_int("groups")) _inputs_flat = _op.inputs _execute.record_gradient( "Conv", _inputs_flat, _attrs, _result) _result, = _result return _result Conv = tf_export("raw_ops.Conv")(_ops.to_raw_op(conv)) _dispatcher_for_conv = conv._tf_type_based_dispatcher.Dispatch def conv_eager_fallback(input: Annotated[Any, TV_Conv_T], filter: Annotated[Any, TV_Conv_T], strides, padding: str, explicit_paddings, data_format: str, dilations, batch_dims: int, groups: int, name, ctx) -> Annotated[Any, TV_Conv_T]: if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'conv' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if explicit_paddings is None: explicit_paddings = [] if not isinstance(explicit_paddings, (list, tuple)): raise TypeError( "Expected list for 'explicit_paddings' argument to " "'conv' Op, not %r." % explicit_paddings) explicit_paddings = [_execute.make_int(_i, "explicit_paddings") for _i in explicit_paddings] if data_format is None: data_format = "CHANNELS_LAST" data_format = _execute.make_str(data_format, "data_format") if dilations is None: dilations = [] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'conv' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] if batch_dims is None: batch_dims = 1 batch_dims = _execute.make_int(batch_dims, "batch_dims") if groups is None: groups = 1 groups = _execute.make_int(groups, "groups") _attr_T, _inputs_T = _execute.args_to_matching_eager([input, filter], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, _dtypes.float64, _dtypes.int32, ]) (input, filter) = _inputs_T _inputs_flat = [input, filter] _attrs = ("T", _attr_T, "strides", strides, "padding", padding, "explicit_paddings", explicit_paddings, "data_format", data_format, "dilations", dilations, "batch_dims", batch_dims, "groups", groups) _result = _execute.execute(b"Conv", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "Conv", _inputs_flat, _attrs, _result) _result, = _result return _result TV_Conv2D_T = TypeVar("TV_Conv2D_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int32) def conv2d(input: Annotated[Any, TV_Conv2D_T], filter: Annotated[Any, TV_Conv2D_T], strides, padding: str, use_cudnn_on_gpu:bool=True, explicit_paddings=[], data_format:str="NHWC", dilations=[1, 1, 1, 1], name=None) -> Annotated[Any, TV_Conv2D_T]: r"""Computes a 2-D convolution given 4-D `input` and `filter` tensors. Given an input tensor of shape `[batch, in_height, in_width, in_channels]` and a filter / kernel tensor of shape `[filter_height, filter_width, in_channels, out_channels]`, this op performs the following: 1. Flattens the filter to a 2-D matrix with shape `[filter_height * filter_width * in_channels, output_channels]`. 2. Extracts image patches from the input tensor to form a *virtual* tensor of shape `[batch, out_height, out_width, filter_height * filter_width * in_channels]`. 3. For each patch, right-multiplies the filter matrix and the image patch vector. In detail, with the default NHWC format, output[b, i, j, k] = sum_{di, dj, q} input[b, strides[1] * i + di, strides[2] * j + dj, q] * filter[di, dj, q, k] Must have `strides[0] = strides[3] = 1`. For the most common case of the same horizontal and vertices strides, `strides = [1, stride, stride, 1]`. Args: input: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`, `int32`. A 4-D tensor. The dimension order is interpreted according to the value of `data_format`, see below for details. filter: A `Tensor`. Must have the same type as `input`. A 4-D tensor of shape `[filter_height, filter_width, in_channels, out_channels]` strides: A list of `ints`. 1-D tensor of length 4. The stride of the sliding window for each dimension of `input`. The dimension order is determined by the value of `data_format`, see below for details. padding: A `string` from: `"SAME", "VALID", "EXPLICIT"`. The type of padding algorithm to use. use_cudnn_on_gpu: An optional `bool`. Defaults to `True`. explicit_paddings: An optional list of `ints`. Defaults to `[]`. If `padding` is `"EXPLICIT"`, the list of explicit padding amounts. For the ith dimension, the amount of padding inserted before and after the dimension is `explicit_paddings[2 * i]` and `explicit_paddings[2 * i + 1]`, respectively. If `padding` is not `"EXPLICIT"`, `explicit_paddings` must be empty. data_format: An optional `string` from: `"NHWC", "NCHW"`. Defaults to `"NHWC"`. Specify the data format of the input and output data. With the default format "NHWC", the data is stored in the order of: [batch, height, width, channels]. Alternatively, the format could be "NCHW", the data storage order of: [batch, channels, height, width]. dilations: An optional list of `ints`. Defaults to `[1, 1, 1, 1]`. 1-D tensor of length 4. The dilation factor for each dimension of `input`. If set to k > 1, there will be k-1 skipped cells between each filter element on that dimension. The dimension order is determined by the value of `data_format`, see above for details. Dilations in the batch and depth dimensions must be 1. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "Conv2D", name, input, filter, "strides", strides, "use_cudnn_on_gpu", use_cudnn_on_gpu, "padding", padding, "explicit_paddings", explicit_paddings, "data_format", data_format, "dilations", dilations) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return conv2d_eager_fallback( input, filter, strides=strides, use_cudnn_on_gpu=use_cudnn_on_gpu, padding=padding, explicit_paddings=explicit_paddings, data_format=data_format, dilations=dilations, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'conv2d' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if use_cudnn_on_gpu is None: use_cudnn_on_gpu = True use_cudnn_on_gpu = _execute.make_bool(use_cudnn_on_gpu, "use_cudnn_on_gpu") if explicit_paddings is None: explicit_paddings = [] if not isinstance(explicit_paddings, (list, tuple)): raise TypeError( "Expected list for 'explicit_paddings' argument to " "'conv2d' Op, not %r." % explicit_paddings) explicit_paddings = [_execute.make_int(_i, "explicit_paddings") for _i in explicit_paddings] if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'conv2d' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] _, _, _op, _outputs = _op_def_library._apply_op_helper( "Conv2D", input=input, filter=filter, strides=strides, padding=padding, use_cudnn_on_gpu=use_cudnn_on_gpu, explicit_paddings=explicit_paddings, data_format=data_format, dilations=dilations, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "strides", _op.get_attr("strides"), "use_cudnn_on_gpu", _op._get_attr_bool("use_cudnn_on_gpu"), "padding", _op.get_attr("padding"), "explicit_paddings", _op.get_attr("explicit_paddings"), "data_format", _op.get_attr("data_format"), "dilations", _op.get_attr("dilations")) _inputs_flat = _op.inputs _execute.record_gradient( "Conv2D", _inputs_flat, _attrs, _result) _result, = _result return _result Conv2D = tf_export("raw_ops.Conv2D")(_ops.to_raw_op(conv2d)) def conv2d_eager_fallback(input: Annotated[Any, TV_Conv2D_T], filter: Annotated[Any, TV_Conv2D_T], strides, padding: str, use_cudnn_on_gpu: bool, explicit_paddings, data_format: str, dilations, name, ctx) -> Annotated[Any, TV_Conv2D_T]: if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'conv2d' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if use_cudnn_on_gpu is None: use_cudnn_on_gpu = True use_cudnn_on_gpu = _execute.make_bool(use_cudnn_on_gpu, "use_cudnn_on_gpu") if explicit_paddings is None: explicit_paddings = [] if not isinstance(explicit_paddings, (list, tuple)): raise TypeError( "Expected list for 'explicit_paddings' argument to " "'conv2d' Op, not %r." % explicit_paddings) explicit_paddings = [_execute.make_int(_i, "explicit_paddings") for _i in explicit_paddings] if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'conv2d' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] _attr_T, _inputs_T = _execute.args_to_matching_eager([input, filter], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, _dtypes.float64, _dtypes.int32, ]) (input, filter) = _inputs_T _inputs_flat = [input, filter] _attrs = ("T", _attr_T, "strides", strides, "use_cudnn_on_gpu", use_cudnn_on_gpu, "padding", padding, "explicit_paddings", explicit_paddings, "data_format", data_format, "dilations", dilations) _result = _execute.execute(b"Conv2D", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "Conv2D", _inputs_flat, _attrs, _result) _result, = _result return _result TV_Conv2DBackpropFilter_T = TypeVar("TV_Conv2DBackpropFilter_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half) def conv2d_backprop_filter(input: Annotated[Any, TV_Conv2DBackpropFilter_T], filter_sizes: Annotated[Any, _atypes.Int32], out_backprop: Annotated[Any, TV_Conv2DBackpropFilter_T], strides, padding: str, use_cudnn_on_gpu:bool=True, explicit_paddings=[], data_format:str="NHWC", dilations=[1, 1, 1, 1], name=None) -> Annotated[Any, TV_Conv2DBackpropFilter_T]: r"""Computes the gradients of convolution with respect to the filter. Args: input: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`. 4-D with shape `[batch, in_height, in_width, in_channels]`. filter_sizes: A `Tensor` of type `int32`. An integer vector representing the tensor shape of `filter`, where `filter` is a 4-D `[filter_height, filter_width, in_channels, out_channels]` tensor. out_backprop: A `Tensor`. Must have the same type as `input`. 4-D with shape `[batch, out_height, out_width, out_channels]`. Gradients w.r.t. the output of the convolution. strides: A list of `ints`. The stride of the sliding window for each dimension of the input of the convolution. Must be in the same order as the dimension specified with format. padding: A `string` from: `"SAME", "VALID", "EXPLICIT"`. The type of padding algorithm to use. use_cudnn_on_gpu: An optional `bool`. Defaults to `True`. explicit_paddings: An optional list of `ints`. Defaults to `[]`. If `padding` is `"EXPLICIT"`, the list of explicit padding amounts. For the ith dimension, the amount of padding inserted before and after the dimension is `explicit_paddings[2 * i]` and `explicit_paddings[2 * i + 1]`, respectively. If `padding` is not `"EXPLICIT"`, `explicit_paddings` must be empty. data_format: An optional `string` from: `"NHWC", "NCHW"`. Defaults to `"NHWC"`. Specify the data format of the input and output data. With the default format "NHWC", the data is stored in the order of: [batch, in_height, in_width, in_channels]. Alternatively, the format could be "NCHW", the data storage order of: [batch, in_channels, in_height, in_width]. dilations: An optional list of `ints`. Defaults to `[1, 1, 1, 1]`. 1-D tensor of length 4. The dilation factor for each dimension of `input`. If set to k > 1, there will be k-1 skipped cells between each filter element on that dimension. The dimension order is determined by the value of `data_format`, see above for details. Dilations in the batch and depth dimensions must be 1. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "Conv2DBackpropFilter", name, input, filter_sizes, out_backprop, "strides", strides, "use_cudnn_on_gpu", use_cudnn_on_gpu, "padding", padding, "explicit_paddings", explicit_paddings, "data_format", data_format, "dilations", dilations) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return conv2d_backprop_filter_eager_fallback( input, filter_sizes, out_backprop, strides=strides, use_cudnn_on_gpu=use_cudnn_on_gpu, padding=padding, explicit_paddings=explicit_paddings, data_format=data_format, dilations=dilations, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'conv2d_backprop_filter' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if use_cudnn_on_gpu is None: use_cudnn_on_gpu = True use_cudnn_on_gpu = _execute.make_bool(use_cudnn_on_gpu, "use_cudnn_on_gpu") if explicit_paddings is None: explicit_paddings = [] if not isinstance(explicit_paddings, (list, tuple)): raise TypeError( "Expected list for 'explicit_paddings' argument to " "'conv2d_backprop_filter' Op, not %r." % explicit_paddings) explicit_paddings = [_execute.make_int(_i, "explicit_paddings") for _i in explicit_paddings] if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'conv2d_backprop_filter' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] _, _, _op, _outputs = _op_def_library._apply_op_helper( "Conv2DBackpropFilter", input=input, filter_sizes=filter_sizes, out_backprop=out_backprop, strides=strides, padding=padding, use_cudnn_on_gpu=use_cudnn_on_gpu, explicit_paddings=explicit_paddings, data_format=data_format, dilations=dilations, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "strides", _op.get_attr("strides"), "use_cudnn_on_gpu", _op._get_attr_bool("use_cudnn_on_gpu"), "padding", _op.get_attr("padding"), "explicit_paddings", _op.get_attr("explicit_paddings"), "data_format", _op.get_attr("data_format"), "dilations", _op.get_attr("dilations")) _inputs_flat = _op.inputs _execute.record_gradient( "Conv2DBackpropFilter", _inputs_flat, _attrs, _result) _result, = _result return _result Conv2DBackpropFilter = tf_export("raw_ops.Conv2DBackpropFilter")(_ops.to_raw_op(conv2d_backprop_filter)) def conv2d_backprop_filter_eager_fallback(input: Annotated[Any, TV_Conv2DBackpropFilter_T], filter_sizes: Annotated[Any, _atypes.Int32], out_backprop: Annotated[Any, TV_Conv2DBackpropFilter_T], strides, padding: str, use_cudnn_on_gpu: bool, explicit_paddings, data_format: str, dilations, name, ctx) -> Annotated[Any, TV_Conv2DBackpropFilter_T]: if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'conv2d_backprop_filter' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if use_cudnn_on_gpu is None: use_cudnn_on_gpu = True use_cudnn_on_gpu = _execute.make_bool(use_cudnn_on_gpu, "use_cudnn_on_gpu") if explicit_paddings is None: explicit_paddings = [] if not isinstance(explicit_paddings, (list, tuple)): raise TypeError( "Expected list for 'explicit_paddings' argument to " "'conv2d_backprop_filter' Op, not %r." % explicit_paddings) explicit_paddings = [_execute.make_int(_i, "explicit_paddings") for _i in explicit_paddings] if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'conv2d_backprop_filter' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] _attr_T, _inputs_T = _execute.args_to_matching_eager([input, out_backprop], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, _dtypes.float64, ]) (input, out_backprop) = _inputs_T filter_sizes = _ops.convert_to_tensor(filter_sizes, _dtypes.int32) _inputs_flat = [input, filter_sizes, out_backprop] _attrs = ("T", _attr_T, "strides", strides, "use_cudnn_on_gpu", use_cudnn_on_gpu, "padding", padding, "explicit_paddings", explicit_paddings, "data_format", data_format, "dilations", dilations) _result = _execute.execute(b"Conv2DBackpropFilter", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "Conv2DBackpropFilter", _inputs_flat, _attrs, _result) _result, = _result return _result TV_Conv2DBackpropFilterV2_T = TypeVar("TV_Conv2DBackpropFilterV2_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('conv2d_backprop_filter_v2') def conv2d_backprop_filter_v2(input: Annotated[Any, TV_Conv2DBackpropFilterV2_T], filter: Annotated[Any, TV_Conv2DBackpropFilterV2_T], out_backprop: Annotated[Any, TV_Conv2DBackpropFilterV2_T], strides, padding: str, use_cudnn_on_gpu:bool=True, explicit_paddings=[], data_format:str="NHWC", dilations=[1, 1, 1, 1], name=None) -> Annotated[Any, TV_Conv2DBackpropFilterV2_T]: r"""Computes the gradients of convolution with respect to the filter. Args: input: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`. 4-D with shape `[batch, in_height, in_width, in_channels]`. filter: A `Tensor`. Must have the same type as `input`. 4-D with shape `[filter_height, filter_width, in_channels, out_channels]`. Only shape of tensor is used. out_backprop: A `Tensor`. Must have the same type as `input`. 4-D with shape `[batch, out_height, out_width, out_channels]`. Gradients w.r.t. the output of the convolution. strides: A list of `ints`. The stride of the sliding window for each dimension of the input of the convolution. Must be in the same order as the dimension specified with format. padding: A `string` from: `"SAME", "VALID", "EXPLICIT"`. The type of padding algorithm to use. use_cudnn_on_gpu: An optional `bool`. Defaults to `True`. explicit_paddings: An optional list of `ints`. Defaults to `[]`. If `padding` is `"EXPLICIT"`, the list of explicit padding amounts. For the ith dimension, the amount of padding inserted before and after the dimension is `explicit_paddings[2 * i]` and `explicit_paddings[2 * i + 1]`, respectively. If `padding` is not `"EXPLICIT"`, `explicit_paddings` must be empty. data_format: An optional `string` from: `"NHWC", "NCHW"`. Defaults to `"NHWC"`. Specify the data format of the input and output data. With the default format "NHWC", the data is stored in the order of: [batch, in_height, in_width, in_channels]. Alternatively, the format could be "NCHW", the data storage order of: [batch, in_channels, in_height, in_width]. dilations: An optional list of `ints`. Defaults to `[1, 1, 1, 1]`. 1-D tensor of length 4. The dilation factor for each dimension of `input`. If set to k > 1, there will be k-1 skipped cells between each filter element on that dimension. The dimension order is determined by the value of `data_format`, see above for details. Dilations in the batch and depth dimensions must be 1. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "Conv2DBackpropFilterV2", name, input, filter, out_backprop, "strides", strides, "use_cudnn_on_gpu", use_cudnn_on_gpu, "padding", padding, "explicit_paddings", explicit_paddings, "data_format", data_format, "dilations", dilations) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_conv2d_backprop_filter_v2( (input, filter, out_backprop, strides, padding, use_cudnn_on_gpu, explicit_paddings, data_format, dilations, name,), None) if _result is not NotImplemented: return _result return conv2d_backprop_filter_v2_eager_fallback( input, filter, out_backprop, strides=strides, use_cudnn_on_gpu=use_cudnn_on_gpu, padding=padding, explicit_paddings=explicit_paddings, data_format=data_format, dilations=dilations, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( conv2d_backprop_filter_v2, (), dict(input=input, filter=filter, out_backprop=out_backprop, strides=strides, padding=padding, use_cudnn_on_gpu=use_cudnn_on_gpu, explicit_paddings=explicit_paddings, data_format=data_format, dilations=dilations, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_conv2d_backprop_filter_v2( (input, filter, out_backprop, strides, padding, use_cudnn_on_gpu, explicit_paddings, data_format, dilations, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'conv2d_backprop_filter_v2' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if use_cudnn_on_gpu is None: use_cudnn_on_gpu = True use_cudnn_on_gpu = _execute.make_bool(use_cudnn_on_gpu, "use_cudnn_on_gpu") if explicit_paddings is None: explicit_paddings = [] if not isinstance(explicit_paddings, (list, tuple)): raise TypeError( "Expected list for 'explicit_paddings' argument to " "'conv2d_backprop_filter_v2' Op, not %r." % explicit_paddings) explicit_paddings = [_execute.make_int(_i, "explicit_paddings") for _i in explicit_paddings] if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'conv2d_backprop_filter_v2' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "Conv2DBackpropFilterV2", input=input, filter=filter, out_backprop=out_backprop, strides=strides, padding=padding, use_cudnn_on_gpu=use_cudnn_on_gpu, explicit_paddings=explicit_paddings, data_format=data_format, dilations=dilations, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( conv2d_backprop_filter_v2, (), dict(input=input, filter=filter, out_backprop=out_backprop, strides=strides, padding=padding, use_cudnn_on_gpu=use_cudnn_on_gpu, explicit_paddings=explicit_paddings, data_format=data_format, dilations=dilations, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "strides", _op.get_attr("strides"), "use_cudnn_on_gpu", _op._get_attr_bool("use_cudnn_on_gpu"), "padding", _op.get_attr("padding"), "explicit_paddings", _op.get_attr("explicit_paddings"), "data_format", _op.get_attr("data_format"), "dilations", _op.get_attr("dilations")) _inputs_flat = _op.inputs _execute.record_gradient( "Conv2DBackpropFilterV2", _inputs_flat, _attrs, _result) _result, = _result return _result Conv2DBackpropFilterV2 = tf_export("raw_ops.Conv2DBackpropFilterV2")(_ops.to_raw_op(conv2d_backprop_filter_v2)) _dispatcher_for_conv2d_backprop_filter_v2 = conv2d_backprop_filter_v2._tf_type_based_dispatcher.Dispatch def conv2d_backprop_filter_v2_eager_fallback(input: Annotated[Any, TV_Conv2DBackpropFilterV2_T], filter: Annotated[Any, TV_Conv2DBackpropFilterV2_T], out_backprop: Annotated[Any, TV_Conv2DBackpropFilterV2_T], strides, padding: str, use_cudnn_on_gpu: bool, explicit_paddings, data_format: str, dilations, name, ctx) -> Annotated[Any, TV_Conv2DBackpropFilterV2_T]: if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'conv2d_backprop_filter_v2' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if use_cudnn_on_gpu is None: use_cudnn_on_gpu = True use_cudnn_on_gpu = _execute.make_bool(use_cudnn_on_gpu, "use_cudnn_on_gpu") if explicit_paddings is None: explicit_paddings = [] if not isinstance(explicit_paddings, (list, tuple)): raise TypeError( "Expected list for 'explicit_paddings' argument to " "'conv2d_backprop_filter_v2' Op, not %r." % explicit_paddings) explicit_paddings = [_execute.make_int(_i, "explicit_paddings") for _i in explicit_paddings] if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'conv2d_backprop_filter_v2' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] _attr_T, _inputs_T = _execute.args_to_matching_eager([input, filter, out_backprop], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, _dtypes.float64, ]) (input, filter, out_backprop) = _inputs_T _inputs_flat = [input, filter, out_backprop] _attrs = ("T", _attr_T, "strides", strides, "use_cudnn_on_gpu", use_cudnn_on_gpu, "padding", padding, "explicit_paddings", explicit_paddings, "data_format", data_format, "dilations", dilations) _result = _execute.execute(b"Conv2DBackpropFilterV2", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "Conv2DBackpropFilterV2", _inputs_flat, _attrs, _result) _result, = _result return _result TV_Conv2DBackpropInput_T = TypeVar("TV_Conv2DBackpropInput_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int32) def conv2d_backprop_input(input_sizes: Annotated[Any, _atypes.Int32], filter: Annotated[Any, TV_Conv2DBackpropInput_T], out_backprop: Annotated[Any, TV_Conv2DBackpropInput_T], strides, padding: str, use_cudnn_on_gpu:bool=True, explicit_paddings=[], data_format:str="NHWC", dilations=[1, 1, 1, 1], name=None) -> Annotated[Any, TV_Conv2DBackpropInput_T]: r"""Computes the gradients of convolution with respect to the input. Args: input_sizes: A `Tensor` of type `int32`. An integer vector representing the shape of `input`, where `input` is a 4-D `[batch, height, width, channels]` tensor. filter: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`, `int32`. 4-D with shape `[filter_height, filter_width, in_channels, out_channels]`. out_backprop: A `Tensor`. Must have the same type as `filter`. 4-D with shape `[batch, out_height, out_width, out_channels]`. Gradients w.r.t. the output of the convolution. strides: A list of `ints`. The stride of the sliding window for each dimension of the input of the convolution. Must be in the same order as the dimension specified with format. padding: A `string` from: `"SAME", "VALID", "EXPLICIT"`. The type of padding algorithm to use. use_cudnn_on_gpu: An optional `bool`. Defaults to `True`. explicit_paddings: An optional list of `ints`. Defaults to `[]`. If `padding` is `"EXPLICIT"`, the list of explicit padding amounts. For the ith dimension, the amount of padding inserted before and after the dimension is `explicit_paddings[2 * i]` and `explicit_paddings[2 * i + 1]`, respectively. If `padding` is not `"EXPLICIT"`, `explicit_paddings` must be empty. data_format: An optional `string` from: `"NHWC", "NCHW"`. Defaults to `"NHWC"`. Specify the data format of the input and output data. With the default format "NHWC", the data is stored in the order of: [batch, in_height, in_width, in_channels]. Alternatively, the format could be "NCHW", the data storage order of: [batch, in_channels, in_height, in_width]. dilations: An optional list of `ints`. Defaults to `[1, 1, 1, 1]`. 1-D tensor of length 4. The dilation factor for each dimension of `input`. If set to k > 1, there will be k-1 skipped cells between each filter element on that dimension. The dimension order is determined by the value of `data_format`, see above for details. Dilations in the batch and depth dimensions must be 1. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `filter`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "Conv2DBackpropInput", name, input_sizes, filter, out_backprop, "strides", strides, "use_cudnn_on_gpu", use_cudnn_on_gpu, "padding", padding, "explicit_paddings", explicit_paddings, "data_format", data_format, "dilations", dilations) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return conv2d_backprop_input_eager_fallback( input_sizes, filter, out_backprop, strides=strides, use_cudnn_on_gpu=use_cudnn_on_gpu, padding=padding, explicit_paddings=explicit_paddings, data_format=data_format, dilations=dilations, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'conv2d_backprop_input' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if use_cudnn_on_gpu is None: use_cudnn_on_gpu = True use_cudnn_on_gpu = _execute.make_bool(use_cudnn_on_gpu, "use_cudnn_on_gpu") if explicit_paddings is None: explicit_paddings = [] if not isinstance(explicit_paddings, (list, tuple)): raise TypeError( "Expected list for 'explicit_paddings' argument to " "'conv2d_backprop_input' Op, not %r." % explicit_paddings) explicit_paddings = [_execute.make_int(_i, "explicit_paddings") for _i in explicit_paddings] if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'conv2d_backprop_input' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] _, _, _op, _outputs = _op_def_library._apply_op_helper( "Conv2DBackpropInput", input_sizes=input_sizes, filter=filter, out_backprop=out_backprop, strides=strides, padding=padding, use_cudnn_on_gpu=use_cudnn_on_gpu, explicit_paddings=explicit_paddings, data_format=data_format, dilations=dilations, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "strides", _op.get_attr("strides"), "use_cudnn_on_gpu", _op._get_attr_bool("use_cudnn_on_gpu"), "padding", _op.get_attr("padding"), "explicit_paddings", _op.get_attr("explicit_paddings"), "data_format", _op.get_attr("data_format"), "dilations", _op.get_attr("dilations")) _inputs_flat = _op.inputs _execute.record_gradient( "Conv2DBackpropInput", _inputs_flat, _attrs, _result) _result, = _result return _result Conv2DBackpropInput = tf_export("raw_ops.Conv2DBackpropInput")(_ops.to_raw_op(conv2d_backprop_input)) def conv2d_backprop_input_eager_fallback(input_sizes: Annotated[Any, _atypes.Int32], filter: Annotated[Any, TV_Conv2DBackpropInput_T], out_backprop: Annotated[Any, TV_Conv2DBackpropInput_T], strides, padding: str, use_cudnn_on_gpu: bool, explicit_paddings, data_format: str, dilations, name, ctx) -> Annotated[Any, TV_Conv2DBackpropInput_T]: if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'conv2d_backprop_input' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if use_cudnn_on_gpu is None: use_cudnn_on_gpu = True use_cudnn_on_gpu = _execute.make_bool(use_cudnn_on_gpu, "use_cudnn_on_gpu") if explicit_paddings is None: explicit_paddings = [] if not isinstance(explicit_paddings, (list, tuple)): raise TypeError( "Expected list for 'explicit_paddings' argument to " "'conv2d_backprop_input' Op, not %r." % explicit_paddings) explicit_paddings = [_execute.make_int(_i, "explicit_paddings") for _i in explicit_paddings] if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'conv2d_backprop_input' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] _attr_T, _inputs_T = _execute.args_to_matching_eager([filter, out_backprop], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, _dtypes.float64, _dtypes.int32, ]) (filter, out_backprop) = _inputs_T input_sizes = _ops.convert_to_tensor(input_sizes, _dtypes.int32) _inputs_flat = [input_sizes, filter, out_backprop] _attrs = ("T", _attr_T, "strides", strides, "use_cudnn_on_gpu", use_cudnn_on_gpu, "padding", padding, "explicit_paddings", explicit_paddings, "data_format", data_format, "dilations", dilations) _result = _execute.execute(b"Conv2DBackpropInput", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "Conv2DBackpropInput", _inputs_flat, _attrs, _result) _result, = _result return _result TV_Conv2DBackpropInputV2_T = TypeVar("TV_Conv2DBackpropInputV2_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int32) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('conv2d_backprop_input_v2') def conv2d_backprop_input_v2(input: Annotated[Any, TV_Conv2DBackpropInputV2_T], filter: Annotated[Any, TV_Conv2DBackpropInputV2_T], out_backprop: Annotated[Any, TV_Conv2DBackpropInputV2_T], strides, padding: str, use_cudnn_on_gpu:bool=True, explicit_paddings=[], data_format:str="NHWC", dilations=[1, 1, 1, 1], name=None) -> Annotated[Any, TV_Conv2DBackpropInputV2_T]: r"""Computes the gradients of convolution with respect to the input. Args: input: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`, `int32`. 4-D with shape `[batch, in_height, in_width, in_channels]`. Only shape of tensor is used. filter: A `Tensor`. Must have the same type as `input`. 4-D with shape `[filter_height, filter_width, in_channels, out_channels]`. out_backprop: A `Tensor`. Must have the same type as `input`. 4-D with shape `[batch, out_height, out_width, out_channels]`. Gradients w.r.t. the output of the convolution. strides: A list of `ints`. The stride of the sliding window for each dimension of the input of the convolution. Must be in the same order as the dimension specified with format. padding: A `string` from: `"SAME", "VALID", "EXPLICIT"`. The type of padding algorithm to use. use_cudnn_on_gpu: An optional `bool`. Defaults to `True`. explicit_paddings: An optional list of `ints`. Defaults to `[]`. If `padding` is `"EXPLICIT"`, the list of explicit padding amounts. For the ith dimension, the amount of padding inserted before and after the dimension is `explicit_paddings[2 * i]` and `explicit_paddings[2 * i + 1]`, respectively. If `padding` is not `"EXPLICIT"`, `explicit_paddings` must be empty. data_format: An optional `string` from: `"NHWC", "NCHW"`. Defaults to `"NHWC"`. Specify the data format of the input and output data. With the default format "NHWC", the data is stored in the order of: [batch, in_height, in_width, in_channels]. Alternatively, the format could be "NCHW", the data storage order of: [batch, in_channels, in_height, in_width]. dilations: An optional list of `ints`. Defaults to `[1, 1, 1, 1]`. 1-D tensor of length 4. The dilation factor for each dimension of `input`. If set to k > 1, there will be k-1 skipped cells between each filter element on that dimension. The dimension order is determined by the value of `data_format`, see above for details. Dilations in the batch and depth dimensions must be 1. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "Conv2DBackpropInputV2", name, input, filter, out_backprop, "strides", strides, "use_cudnn_on_gpu", use_cudnn_on_gpu, "padding", padding, "explicit_paddings", explicit_paddings, "data_format", data_format, "dilations", dilations) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_conv2d_backprop_input_v2( (input, filter, out_backprop, strides, padding, use_cudnn_on_gpu, explicit_paddings, data_format, dilations, name,), None) if _result is not NotImplemented: return _result return conv2d_backprop_input_v2_eager_fallback( input, filter, out_backprop, strides=strides, use_cudnn_on_gpu=use_cudnn_on_gpu, padding=padding, explicit_paddings=explicit_paddings, data_format=data_format, dilations=dilations, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( conv2d_backprop_input_v2, (), dict(input=input, filter=filter, out_backprop=out_backprop, strides=strides, padding=padding, use_cudnn_on_gpu=use_cudnn_on_gpu, explicit_paddings=explicit_paddings, data_format=data_format, dilations=dilations, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_conv2d_backprop_input_v2( (input, filter, out_backprop, strides, padding, use_cudnn_on_gpu, explicit_paddings, data_format, dilations, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'conv2d_backprop_input_v2' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if use_cudnn_on_gpu is None: use_cudnn_on_gpu = True use_cudnn_on_gpu = _execute.make_bool(use_cudnn_on_gpu, "use_cudnn_on_gpu") if explicit_paddings is None: explicit_paddings = [] if not isinstance(explicit_paddings, (list, tuple)): raise TypeError( "Expected list for 'explicit_paddings' argument to " "'conv2d_backprop_input_v2' Op, not %r." % explicit_paddings) explicit_paddings = [_execute.make_int(_i, "explicit_paddings") for _i in explicit_paddings] if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'conv2d_backprop_input_v2' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "Conv2DBackpropInputV2", input=input, filter=filter, out_backprop=out_backprop, strides=strides, padding=padding, use_cudnn_on_gpu=use_cudnn_on_gpu, explicit_paddings=explicit_paddings, data_format=data_format, dilations=dilations, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( conv2d_backprop_input_v2, (), dict(input=input, filter=filter, out_backprop=out_backprop, strides=strides, padding=padding, use_cudnn_on_gpu=use_cudnn_on_gpu, explicit_paddings=explicit_paddings, data_format=data_format, dilations=dilations, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "strides", _op.get_attr("strides"), "use_cudnn_on_gpu", _op._get_attr_bool("use_cudnn_on_gpu"), "padding", _op.get_attr("padding"), "explicit_paddings", _op.get_attr("explicit_paddings"), "data_format", _op.get_attr("data_format"), "dilations", _op.get_attr("dilations")) _inputs_flat = _op.inputs _execute.record_gradient( "Conv2DBackpropInputV2", _inputs_flat, _attrs, _result) _result, = _result return _result Conv2DBackpropInputV2 = tf_export("raw_ops.Conv2DBackpropInputV2")(_ops.to_raw_op(conv2d_backprop_input_v2)) _dispatcher_for_conv2d_backprop_input_v2 = conv2d_backprop_input_v2._tf_type_based_dispatcher.Dispatch def conv2d_backprop_input_v2_eager_fallback(input: Annotated[Any, TV_Conv2DBackpropInputV2_T], filter: Annotated[Any, TV_Conv2DBackpropInputV2_T], out_backprop: Annotated[Any, TV_Conv2DBackpropInputV2_T], strides, padding: str, use_cudnn_on_gpu: bool, explicit_paddings, data_format: str, dilations, name, ctx) -> Annotated[Any, TV_Conv2DBackpropInputV2_T]: if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'conv2d_backprop_input_v2' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if use_cudnn_on_gpu is None: use_cudnn_on_gpu = True use_cudnn_on_gpu = _execute.make_bool(use_cudnn_on_gpu, "use_cudnn_on_gpu") if explicit_paddings is None: explicit_paddings = [] if not isinstance(explicit_paddings, (list, tuple)): raise TypeError( "Expected list for 'explicit_paddings' argument to " "'conv2d_backprop_input_v2' Op, not %r." % explicit_paddings) explicit_paddings = [_execute.make_int(_i, "explicit_paddings") for _i in explicit_paddings] if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'conv2d_backprop_input_v2' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] _attr_T, _inputs_T = _execute.args_to_matching_eager([input, filter, out_backprop], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, _dtypes.float64, _dtypes.int32, ]) (input, filter, out_backprop) = _inputs_T _inputs_flat = [input, filter, out_backprop] _attrs = ("T", _attr_T, "strides", strides, "use_cudnn_on_gpu", use_cudnn_on_gpu, "padding", padding, "explicit_paddings", explicit_paddings, "data_format", data_format, "dilations", dilations) _result = _execute.execute(b"Conv2DBackpropInputV2", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "Conv2DBackpropInputV2", _inputs_flat, _attrs, _result) _result, = _result return _result TV_Conv3D_T = TypeVar("TV_Conv3D_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half) def conv3d(input: Annotated[Any, TV_Conv3D_T], filter: Annotated[Any, TV_Conv3D_T], strides, padding: str, data_format:str="NDHWC", dilations=[1, 1, 1, 1, 1], name=None) -> Annotated[Any, TV_Conv3D_T]: r"""Computes a 3-D convolution given 5-D `input` and `filter` tensors. In signal processing, cross-correlation is a measure of similarity of two waveforms as a function of a time-lag applied to one of them. This is also known as a sliding dot product or sliding inner-product. Our Conv3D implements a form of cross-correlation. Args: input: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`. Shape `[batch, in_depth, in_height, in_width, in_channels]`. filter: A `Tensor`. Must have the same type as `input`. Shape `[filter_depth, filter_height, filter_width, in_channels, out_channels]`. `in_channels` must match between `input` and `filter`. strides: A list of `ints` that has length `>= 5`. 1-D tensor of length 5. The stride of the sliding window for each dimension of `input`. Must have `strides[0] = strides[4] = 1`. padding: A `string` from: `"SAME", "VALID"`. The type of padding algorithm to use. data_format: An optional `string` from: `"NDHWC", "NCDHW"`. Defaults to `"NDHWC"`. The data format of the input and output data. With the default format "NDHWC", the data is stored in the order of: [batch, in_depth, in_height, in_width, in_channels]. Alternatively, the format could be "NCDHW", the data storage order is: [batch, in_channels, in_depth, in_height, in_width]. dilations: An optional list of `ints`. Defaults to `[1, 1, 1, 1, 1]`. 1-D tensor of length 5. The dilation factor for each dimension of `input`. If set to k > 1, there will be k-1 skipped cells between each filter element on that dimension. The dimension order is determined by the value of `data_format`, see above for details. Dilations in the batch and depth dimensions must be 1. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "Conv3D", name, input, filter, "strides", strides, "padding", padding, "data_format", data_format, "dilations", dilations) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return conv3d_eager_fallback( input, filter, strides=strides, padding=padding, data_format=data_format, dilations=dilations, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'conv3d' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if data_format is None: data_format = "NDHWC" data_format = _execute.make_str(data_format, "data_format") if dilations is None: dilations = [1, 1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'conv3d' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] _, _, _op, _outputs = _op_def_library._apply_op_helper( "Conv3D", input=input, filter=filter, strides=strides, padding=padding, data_format=data_format, dilations=dilations, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "data_format", _op.get_attr("data_format"), "dilations", _op.get_attr("dilations")) _inputs_flat = _op.inputs _execute.record_gradient( "Conv3D", _inputs_flat, _attrs, _result) _result, = _result return _result Conv3D = tf_export("raw_ops.Conv3D")(_ops.to_raw_op(conv3d)) def conv3d_eager_fallback(input: Annotated[Any, TV_Conv3D_T], filter: Annotated[Any, TV_Conv3D_T], strides, padding: str, data_format: str, dilations, name, ctx) -> Annotated[Any, TV_Conv3D_T]: if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'conv3d' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if data_format is None: data_format = "NDHWC" data_format = _execute.make_str(data_format, "data_format") if dilations is None: dilations = [1, 1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'conv3d' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] _attr_T, _inputs_T = _execute.args_to_matching_eager([input, filter], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, _dtypes.float64, ]) (input, filter) = _inputs_T _inputs_flat = [input, filter] _attrs = ("T", _attr_T, "strides", strides, "padding", padding, "data_format", data_format, "dilations", dilations) _result = _execute.execute(b"Conv3D", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "Conv3D", _inputs_flat, _attrs, _result) _result, = _result return _result TV_Conv3DBackpropFilter_T = TypeVar("TV_Conv3DBackpropFilter_T", _atypes.Float32, _atypes.Float64, _atypes.Half) def conv3d_backprop_filter(input: Annotated[Any, TV_Conv3DBackpropFilter_T], filter: Annotated[Any, TV_Conv3DBackpropFilter_T], out_backprop: Annotated[Any, TV_Conv3DBackpropFilter_T], strides, padding: str, dilations=[1, 1, 1, 1, 1], name=None) -> Annotated[Any, TV_Conv3DBackpropFilter_T]: r"""Computes the gradients of 3-D convolution with respect to the filter. Args: input: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`. Shape `[batch, depth, rows, cols, in_channels]`. filter: A `Tensor`. Must have the same type as `input`. Shape `[depth, rows, cols, in_channels, out_channels]`. `in_channels` must match between `input` and `filter`. out_backprop: A `Tensor`. Must have the same type as `input`. Backprop signal of shape `[batch, out_depth, out_rows, out_cols, out_channels]`. strides: A list of `ints` that has length `>= 5`. 1-D tensor of length 5. The stride of the sliding window for each dimension of `input`. Must have `strides[0] = strides[4] = 1`. padding: A `string` from: `"SAME", "VALID"`. The type of padding algorithm to use. dilations: An optional list of `ints`. Defaults to `[1, 1, 1, 1, 1]`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "Conv3DBackpropFilter", name, input, filter, out_backprop, "strides", strides, "padding", padding, "dilations", dilations) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return conv3d_backprop_filter_eager_fallback( input, filter, out_backprop, strides=strides, padding=padding, dilations=dilations, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'conv3d_backprop_filter' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if dilations is None: dilations = [1, 1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'conv3d_backprop_filter' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] _, _, _op, _outputs = _op_def_library._apply_op_helper( "Conv3DBackpropFilter", input=input, filter=filter, out_backprop=out_backprop, strides=strides, padding=padding, dilations=dilations, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "dilations", _op.get_attr("dilations")) _inputs_flat = _op.inputs _execute.record_gradient( "Conv3DBackpropFilter", _inputs_flat, _attrs, _result) _result, = _result return _result Conv3DBackpropFilter = tf_export("raw_ops.Conv3DBackpropFilter")(_ops.to_raw_op(conv3d_backprop_filter)) def conv3d_backprop_filter_eager_fallback(input: Annotated[Any, TV_Conv3DBackpropFilter_T], filter: Annotated[Any, TV_Conv3DBackpropFilter_T], out_backprop: Annotated[Any, TV_Conv3DBackpropFilter_T], strides, padding: str, dilations, name, ctx) -> Annotated[Any, TV_Conv3DBackpropFilter_T]: if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'conv3d_backprop_filter' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if dilations is None: dilations = [1, 1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'conv3d_backprop_filter' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] _attr_T, _inputs_T = _execute.args_to_matching_eager([input, filter, out_backprop], ctx, [_dtypes.half, _dtypes.float32, _dtypes.float64, ]) (input, filter, out_backprop) = _inputs_T _inputs_flat = [input, filter, out_backprop] _attrs = ("T", _attr_T, "strides", strides, "padding", padding, "dilations", dilations) _result = _execute.execute(b"Conv3DBackpropFilter", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "Conv3DBackpropFilter", _inputs_flat, _attrs, _result) _result, = _result return _result TV_Conv3DBackpropFilterV2_T = TypeVar("TV_Conv3DBackpropFilterV2_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export(v1=['nn.conv3d_backprop_filter', 'nn.conv3d_backprop_filter_v2']) @deprecated_endpoints('nn.conv3d_backprop_filter', 'nn.conv3d_backprop_filter_v2') def conv3d_backprop_filter_v2(input: Annotated[Any, TV_Conv3DBackpropFilterV2_T], filter_sizes: Annotated[Any, _atypes.Int32], out_backprop: Annotated[Any, TV_Conv3DBackpropFilterV2_T], strides, padding: str, data_format:str="NDHWC", dilations=[1, 1, 1, 1, 1], name=None) -> Annotated[Any, TV_Conv3DBackpropFilterV2_T]: r"""Computes the gradients of 3-D convolution with respect to the filter. Args: input: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`. Shape `[batch, depth, rows, cols, in_channels]`. filter_sizes: A `Tensor` of type `int32`. An integer vector representing the tensor shape of `filter`, where `filter` is a 5-D `[filter_depth, filter_height, filter_width, in_channels, out_channels]` tensor. out_backprop: A `Tensor`. Must have the same type as `input`. Backprop signal of shape `[batch, out_depth, out_rows, out_cols, out_channels]`. strides: A list of `ints` that has length `>= 5`. 1-D tensor of length 5. The stride of the sliding window for each dimension of `input`. Must have `strides[0] = strides[4] = 1`. padding: A `string` from: `"SAME", "VALID"`. The type of padding algorithm to use. data_format: An optional `string` from: `"NDHWC", "NCDHW"`. Defaults to `"NDHWC"`. The data format of the input and output data. With the default format "NDHWC", the data is stored in the order of: [batch, in_depth, in_height, in_width, in_channels]. Alternatively, the format could be "NCDHW", the data storage order is: [batch, in_channels, in_depth, in_height, in_width]. dilations: An optional list of `ints`. Defaults to `[1, 1, 1, 1, 1]`. 1-D tensor of length 5. The dilation factor for each dimension of `input`. If set to k > 1, there will be k-1 skipped cells between each filter element on that dimension. The dimension order is determined by the value of `data_format`, see above for details. Dilations in the batch and depth dimensions must be 1. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "Conv3DBackpropFilterV2", name, input, filter_sizes, out_backprop, "strides", strides, "padding", padding, "data_format", data_format, "dilations", dilations) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_conv3d_backprop_filter_v2( (input, filter_sizes, out_backprop, strides, padding, data_format, dilations, name,), None) if _result is not NotImplemented: return _result return conv3d_backprop_filter_v2_eager_fallback( input, filter_sizes, out_backprop, strides=strides, padding=padding, data_format=data_format, dilations=dilations, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( conv3d_backprop_filter_v2, (), dict(input=input, filter_sizes=filter_sizes, out_backprop=out_backprop, strides=strides, padding=padding, data_format=data_format, dilations=dilations, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_conv3d_backprop_filter_v2( (input, filter_sizes, out_backprop, strides, padding, data_format, dilations, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'conv3d_backprop_filter_v2' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if data_format is None: data_format = "NDHWC" data_format = _execute.make_str(data_format, "data_format") if dilations is None: dilations = [1, 1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'conv3d_backprop_filter_v2' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "Conv3DBackpropFilterV2", input=input, filter_sizes=filter_sizes, out_backprop=out_backprop, strides=strides, padding=padding, data_format=data_format, dilations=dilations, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( conv3d_backprop_filter_v2, (), dict(input=input, filter_sizes=filter_sizes, out_backprop=out_backprop, strides=strides, padding=padding, data_format=data_format, dilations=dilations, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "data_format", _op.get_attr("data_format"), "dilations", _op.get_attr("dilations")) _inputs_flat = _op.inputs _execute.record_gradient( "Conv3DBackpropFilterV2", _inputs_flat, _attrs, _result) _result, = _result return _result Conv3DBackpropFilterV2 = tf_export("raw_ops.Conv3DBackpropFilterV2")(_ops.to_raw_op(conv3d_backprop_filter_v2)) _dispatcher_for_conv3d_backprop_filter_v2 = conv3d_backprop_filter_v2._tf_type_based_dispatcher.Dispatch def conv3d_backprop_filter_v2_eager_fallback(input: Annotated[Any, TV_Conv3DBackpropFilterV2_T], filter_sizes: Annotated[Any, _atypes.Int32], out_backprop: Annotated[Any, TV_Conv3DBackpropFilterV2_T], strides, padding: str, data_format: str, dilations, name, ctx) -> Annotated[Any, TV_Conv3DBackpropFilterV2_T]: if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'conv3d_backprop_filter_v2' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if data_format is None: data_format = "NDHWC" data_format = _execute.make_str(data_format, "data_format") if dilations is None: dilations = [1, 1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'conv3d_backprop_filter_v2' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] _attr_T, _inputs_T = _execute.args_to_matching_eager([input, out_backprop], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, _dtypes.float64, ]) (input, out_backprop) = _inputs_T filter_sizes = _ops.convert_to_tensor(filter_sizes, _dtypes.int32) _inputs_flat = [input, filter_sizes, out_backprop] _attrs = ("T", _attr_T, "strides", strides, "padding", padding, "data_format", data_format, "dilations", dilations) _result = _execute.execute(b"Conv3DBackpropFilterV2", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "Conv3DBackpropFilterV2", _inputs_flat, _attrs, _result) _result, = _result return _result TV_Conv3DBackpropInput_T = TypeVar("TV_Conv3DBackpropInput_T", _atypes.Float32, _atypes.Float64, _atypes.Half) def conv3d_backprop_input(input: Annotated[Any, TV_Conv3DBackpropInput_T], filter: Annotated[Any, TV_Conv3DBackpropInput_T], out_backprop: Annotated[Any, TV_Conv3DBackpropInput_T], strides, padding: str, dilations=[1, 1, 1, 1, 1], name=None) -> Annotated[Any, TV_Conv3DBackpropInput_T]: r"""Computes the gradients of 3-D convolution with respect to the input. Args: input: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`. Shape `[batch, depth, rows, cols, in_channels]`. filter: A `Tensor`. Must have the same type as `input`. Shape `[depth, rows, cols, in_channels, out_channels]`. `in_channels` must match between `input` and `filter`. out_backprop: A `Tensor`. Must have the same type as `input`. Backprop signal of shape `[batch, out_depth, out_rows, out_cols, out_channels]`. strides: A list of `ints` that has length `>= 5`. 1-D tensor of length 5. The stride of the sliding window for each dimension of `input`. Must have `strides[0] = strides[4] = 1`. padding: A `string` from: `"SAME", "VALID"`. The type of padding algorithm to use. dilations: An optional list of `ints`. Defaults to `[1, 1, 1, 1, 1]`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "Conv3DBackpropInput", name, input, filter, out_backprop, "strides", strides, "padding", padding, "dilations", dilations) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return conv3d_backprop_input_eager_fallback( input, filter, out_backprop, strides=strides, padding=padding, dilations=dilations, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'conv3d_backprop_input' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if dilations is None: dilations = [1, 1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'conv3d_backprop_input' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] _, _, _op, _outputs = _op_def_library._apply_op_helper( "Conv3DBackpropInput", input=input, filter=filter, out_backprop=out_backprop, strides=strides, padding=padding, dilations=dilations, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "dilations", _op.get_attr("dilations")) _inputs_flat = _op.inputs _execute.record_gradient( "Conv3DBackpropInput", _inputs_flat, _attrs, _result) _result, = _result return _result Conv3DBackpropInput = tf_export("raw_ops.Conv3DBackpropInput")(_ops.to_raw_op(conv3d_backprop_input)) def conv3d_backprop_input_eager_fallback(input: Annotated[Any, TV_Conv3DBackpropInput_T], filter: Annotated[Any, TV_Conv3DBackpropInput_T], out_backprop: Annotated[Any, TV_Conv3DBackpropInput_T], strides, padding: str, dilations, name, ctx) -> Annotated[Any, TV_Conv3DBackpropInput_T]: if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'conv3d_backprop_input' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if dilations is None: dilations = [1, 1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'conv3d_backprop_input' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] _attr_T, _inputs_T = _execute.args_to_matching_eager([input, filter, out_backprop], ctx, [_dtypes.half, _dtypes.float32, _dtypes.float64, ]) (input, filter, out_backprop) = _inputs_T _inputs_flat = [input, filter, out_backprop] _attrs = ("T", _attr_T, "strides", strides, "padding", padding, "dilations", dilations) _result = _execute.execute(b"Conv3DBackpropInput", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "Conv3DBackpropInput", _inputs_flat, _attrs, _result) _result, = _result return _result TV_Conv3DBackpropInputV2_T = TypeVar("TV_Conv3DBackpropInputV2_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half) TV_Conv3DBackpropInputV2_Tshape = TypeVar("TV_Conv3DBackpropInputV2_Tshape", _atypes.Int32, _atypes.Int64) def conv3d_backprop_input_v2(input_sizes: Annotated[Any, TV_Conv3DBackpropInputV2_Tshape], filter: Annotated[Any, TV_Conv3DBackpropInputV2_T], out_backprop: Annotated[Any, TV_Conv3DBackpropInputV2_T], strides, padding: str, data_format:str="NDHWC", dilations=[1, 1, 1, 1, 1], name=None) -> Annotated[Any, TV_Conv3DBackpropInputV2_T]: r"""Computes the gradients of 3-D convolution with respect to the input. Args: input_sizes: A `Tensor`. Must be one of the following types: `int32`, `int64`. An integer vector representing the tensor shape of `input`, where `input` is a 5-D `[batch, depth, rows, cols, in_channels]` tensor. filter: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`. Shape `[depth, rows, cols, in_channels, out_channels]`. `in_channels` must match between `input` and `filter`. out_backprop: A `Tensor`. Must have the same type as `filter`. Backprop signal of shape `[batch, out_depth, out_rows, out_cols, out_channels]`. strides: A list of `ints` that has length `>= 5`. 1-D tensor of length 5. The stride of the sliding window for each dimension of `input`. Must have `strides[0] = strides[4] = 1`. padding: A `string` from: `"SAME", "VALID"`. The type of padding algorithm to use. data_format: An optional `string` from: `"NDHWC", "NCDHW"`. Defaults to `"NDHWC"`. The data format of the input and output data. With the default format "NDHWC", the data is stored in the order of: [batch, in_depth, in_height, in_width, in_channels]. Alternatively, the format could be "NCDHW", the data storage order is: [batch, in_channels, in_depth, in_height, in_width]. dilations: An optional list of `ints`. Defaults to `[1, 1, 1, 1, 1]`. 1-D tensor of length 5. The dilation factor for each dimension of `input`. If set to k > 1, there will be k-1 skipped cells between each filter element on that dimension. The dimension order is determined by the value of `data_format`, see above for details. Dilations in the batch and depth dimensions must be 1. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `filter`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "Conv3DBackpropInputV2", name, input_sizes, filter, out_backprop, "strides", strides, "padding", padding, "data_format", data_format, "dilations", dilations) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return conv3d_backprop_input_v2_eager_fallback( input_sizes, filter, out_backprop, strides=strides, padding=padding, data_format=data_format, dilations=dilations, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'conv3d_backprop_input_v2' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if data_format is None: data_format = "NDHWC" data_format = _execute.make_str(data_format, "data_format") if dilations is None: dilations = [1, 1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'conv3d_backprop_input_v2' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] _, _, _op, _outputs = _op_def_library._apply_op_helper( "Conv3DBackpropInputV2", input_sizes=input_sizes, filter=filter, out_backprop=out_backprop, strides=strides, padding=padding, data_format=data_format, dilations=dilations, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "data_format", _op.get_attr("data_format"), "dilations", _op.get_attr("dilations"), "Tshape", _op._get_attr_type("Tshape")) _inputs_flat = _op.inputs _execute.record_gradient( "Conv3DBackpropInputV2", _inputs_flat, _attrs, _result) _result, = _result return _result Conv3DBackpropInputV2 = tf_export("raw_ops.Conv3DBackpropInputV2")(_ops.to_raw_op(conv3d_backprop_input_v2)) def conv3d_backprop_input_v2_eager_fallback(input_sizes: Annotated[Any, TV_Conv3DBackpropInputV2_Tshape], filter: Annotated[Any, TV_Conv3DBackpropInputV2_T], out_backprop: Annotated[Any, TV_Conv3DBackpropInputV2_T], strides, padding: str, data_format: str, dilations, name, ctx) -> Annotated[Any, TV_Conv3DBackpropInputV2_T]: if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'conv3d_backprop_input_v2' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if data_format is None: data_format = "NDHWC" data_format = _execute.make_str(data_format, "data_format") if dilations is None: dilations = [1, 1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'conv3d_backprop_input_v2' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] _attr_T, _inputs_T = _execute.args_to_matching_eager([filter, out_backprop], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, _dtypes.float64, ]) (filter, out_backprop) = _inputs_T _attr_Tshape, (input_sizes,) = _execute.args_to_matching_eager([input_sizes], ctx, [_dtypes.int32, _dtypes.int64, ], _dtypes.int32) _inputs_flat = [input_sizes, filter, out_backprop] _attrs = ("T", _attr_T, "strides", strides, "padding", padding, "data_format", data_format, "dilations", dilations, "Tshape", _attr_Tshape) _result = _execute.execute(b"Conv3DBackpropInputV2", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "Conv3DBackpropInputV2", _inputs_flat, _attrs, _result) _result, = _result return _result TV_DataFormatDimMap_T = TypeVar("TV_DataFormatDimMap_T", _atypes.Int32, _atypes.Int64) def data_format_dim_map(x: Annotated[Any, TV_DataFormatDimMap_T], src_format:str="NHWC", dst_format:str="NCHW", name=None) -> Annotated[Any, TV_DataFormatDimMap_T]: r"""Returns the dimension index in the destination data format given the one in the source data format. Args: x: A `Tensor`. Must be one of the following types: `int32`, `int64`. A Tensor with each element as a dimension index in source data format. Must be in the range [-4, 4). src_format: An optional `string`. Defaults to `"NHWC"`. source data format. dst_format: An optional `string`. Defaults to `"NCHW"`. destination data format. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "DataFormatDimMap", name, x, "src_format", src_format, "dst_format", dst_format) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return data_format_dim_map_eager_fallback( x, src_format=src_format, dst_format=dst_format, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if src_format is None: src_format = "NHWC" src_format = _execute.make_str(src_format, "src_format") if dst_format is None: dst_format = "NCHW" dst_format = _execute.make_str(dst_format, "dst_format") _, _, _op, _outputs = _op_def_library._apply_op_helper( "DataFormatDimMap", x=x, src_format=src_format, dst_format=dst_format, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "src_format", _op.get_attr("src_format"), "dst_format", _op.get_attr("dst_format")) _inputs_flat = _op.inputs _execute.record_gradient( "DataFormatDimMap", _inputs_flat, _attrs, _result) _result, = _result return _result DataFormatDimMap = tf_export("raw_ops.DataFormatDimMap")(_ops.to_raw_op(data_format_dim_map)) def data_format_dim_map_eager_fallback(x: Annotated[Any, TV_DataFormatDimMap_T], src_format: str, dst_format: str, name, ctx) -> Annotated[Any, TV_DataFormatDimMap_T]: if src_format is None: src_format = "NHWC" src_format = _execute.make_str(src_format, "src_format") if dst_format is None: dst_format = "NCHW" dst_format = _execute.make_str(dst_format, "dst_format") _attr_T, (x,) = _execute.args_to_matching_eager([x], ctx, [_dtypes.int32, _dtypes.int64, ], _dtypes.int32) _inputs_flat = [x] _attrs = ("T", _attr_T, "src_format", src_format, "dst_format", dst_format) _result = _execute.execute(b"DataFormatDimMap", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "DataFormatDimMap", _inputs_flat, _attrs, _result) _result, = _result return _result TV_DataFormatVecPermute_T = TypeVar("TV_DataFormatVecPermute_T", _atypes.Int32, _atypes.Int64) def data_format_vec_permute(x: Annotated[Any, TV_DataFormatVecPermute_T], src_format:str="NHWC", dst_format:str="NCHW", name=None) -> Annotated[Any, TV_DataFormatVecPermute_T]: r"""Permute input tensor from `src_format` to `dst_format`. Given source and destination format strings of length n=4 or 5, the input tensor must be a vector of size n or n-2, or a 2D tensor of shape (n, 2) or (n-2, 2). If the first dimension of the input tensor is n-2, it is assumed that non-spatial dimensions are omitted (i.e `N`, `C`). For example, with `src_format` of `NHWC`, `dst_format` of `NCHW`, and input: ``` [1, 2, 3, 4] ``` , the output will be: ``` [1, 4, 2, 3] ``` With `src_format` of `NDHWC`, `dst_format` of `NCDHW`, and input: ``` [[1, 6], [2, 7], [3, 8], [4, 9], [5, 10]] ``` , the output will be: ``` [[1, 6], [5, 10], [2, 7], [3, 8], [4, 9]] ``` With `src_format` of `NHWC`, `dst_format` of `NCHW`, and input: ``` [1, 2] ``` , the output will be: ``` [1, 2] ``` Args: x: A `Tensor`. Must be one of the following types: `int32`, `int64`. Tensor of rank 1 or 2 in source data format. src_format: An optional `string`. Defaults to `"NHWC"`. source data format. dst_format: An optional `string`. Defaults to `"NCHW"`. destination data format. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "DataFormatVecPermute", name, x, "src_format", src_format, "dst_format", dst_format) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return data_format_vec_permute_eager_fallback( x, src_format=src_format, dst_format=dst_format, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if src_format is None: src_format = "NHWC" src_format = _execute.make_str(src_format, "src_format") if dst_format is None: dst_format = "NCHW" dst_format = _execute.make_str(dst_format, "dst_format") _, _, _op, _outputs = _op_def_library._apply_op_helper( "DataFormatVecPermute", x=x, src_format=src_format, dst_format=dst_format, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "src_format", _op.get_attr("src_format"), "dst_format", _op.get_attr("dst_format")) _inputs_flat = _op.inputs _execute.record_gradient( "DataFormatVecPermute", _inputs_flat, _attrs, _result) _result, = _result return _result DataFormatVecPermute = tf_export("raw_ops.DataFormatVecPermute")(_ops.to_raw_op(data_format_vec_permute)) def data_format_vec_permute_eager_fallback(x: Annotated[Any, TV_DataFormatVecPermute_T], src_format: str, dst_format: str, name, ctx) -> Annotated[Any, TV_DataFormatVecPermute_T]: if src_format is None: src_format = "NHWC" src_format = _execute.make_str(src_format, "src_format") if dst_format is None: dst_format = "NCHW" dst_format = _execute.make_str(dst_format, "dst_format") _attr_T, (x,) = _execute.args_to_matching_eager([x], ctx, [_dtypes.int32, _dtypes.int64, ], _dtypes.int32) _inputs_flat = [x] _attrs = ("T", _attr_T, "src_format", src_format, "dst_format", dst_format) _result = _execute.execute(b"DataFormatVecPermute", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "DataFormatVecPermute", _inputs_flat, _attrs, _result) _result, = _result return _result TV_DepthwiseConv2dNative_T = TypeVar("TV_DepthwiseConv2dNative_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half) def depthwise_conv2d_native(input: Annotated[Any, TV_DepthwiseConv2dNative_T], filter: Annotated[Any, TV_DepthwiseConv2dNative_T], strides, padding: str, explicit_paddings=[], data_format:str="NHWC", dilations=[1, 1, 1, 1], name=None) -> Annotated[Any, TV_DepthwiseConv2dNative_T]: r"""Computes a 2-D depthwise convolution given 4-D `input` and `filter` tensors. Given an input tensor of shape `[batch, in_height, in_width, in_channels]` and a filter / kernel tensor of shape `[filter_height, filter_width, in_channels, channel_multiplier]`, containing `in_channels` convolutional filters of depth 1, `depthwise_conv2d` applies a different filter to each input channel (expanding from 1 channel to `channel_multiplier` channels for each), then concatenates the results together. Thus, the output has `in_channels * channel_multiplier` channels. ``` for k in 0..in_channels-1 for q in 0..channel_multiplier-1 output[b, i, j, k * channel_multiplier + q] = sum_{di, dj} input[b, strides[1] * i + di, strides[2] * j + dj, k] * filter[di, dj, k, q] ``` Must have `strides[0] = strides[3] = 1`. For the most common case of the same horizontal and vertices strides, `strides = [1, stride, stride, 1]`. Args: input: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`. filter: A `Tensor`. Must have the same type as `input`. strides: A list of `ints`. 1-D of length 4. The stride of the sliding window for each dimension of `input`. padding: A `string` from: `"SAME", "VALID", "EXPLICIT"`. The type of padding algorithm to use. explicit_paddings: An optional list of `ints`. Defaults to `[]`. data_format: An optional `string` from: `"NHWC", "NCHW"`. Defaults to `"NHWC"`. Specify the data format of the input and output data. With the default format "NHWC", the data is stored in the order of: [batch, height, width, channels]. Alternatively, the format could be "NCHW", the data storage order of: [batch, channels, height, width]. dilations: An optional list of `ints`. Defaults to `[1, 1, 1, 1]`. 1-D tensor of length 4. The dilation factor for each dimension of `input`. If set to k > 1, there will be k-1 skipped cells between each filter element on that dimension. The dimension order is determined by the value of `data_format`, see above for details. Dilations in the batch and depth dimensions must be 1. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "DepthwiseConv2dNative", name, input, filter, "strides", strides, "padding", padding, "explicit_paddings", explicit_paddings, "data_format", data_format, "dilations", dilations) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return depthwise_conv2d_native_eager_fallback( input, filter, strides=strides, padding=padding, explicit_paddings=explicit_paddings, data_format=data_format, dilations=dilations, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'depthwise_conv2d_native' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if explicit_paddings is None: explicit_paddings = [] if not isinstance(explicit_paddings, (list, tuple)): raise TypeError( "Expected list for 'explicit_paddings' argument to " "'depthwise_conv2d_native' Op, not %r." % explicit_paddings) explicit_paddings = [_execute.make_int(_i, "explicit_paddings") for _i in explicit_paddings] if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'depthwise_conv2d_native' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] _, _, _op, _outputs = _op_def_library._apply_op_helper( "DepthwiseConv2dNative", input=input, filter=filter, strides=strides, padding=padding, explicit_paddings=explicit_paddings, data_format=data_format, dilations=dilations, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "explicit_paddings", _op.get_attr("explicit_paddings"), "data_format", _op.get_attr("data_format"), "dilations", _op.get_attr("dilations")) _inputs_flat = _op.inputs _execute.record_gradient( "DepthwiseConv2dNative", _inputs_flat, _attrs, _result) _result, = _result return _result DepthwiseConv2dNative = tf_export("raw_ops.DepthwiseConv2dNative")(_ops.to_raw_op(depthwise_conv2d_native)) def depthwise_conv2d_native_eager_fallback(input: Annotated[Any, TV_DepthwiseConv2dNative_T], filter: Annotated[Any, TV_DepthwiseConv2dNative_T], strides, padding: str, explicit_paddings, data_format: str, dilations, name, ctx) -> Annotated[Any, TV_DepthwiseConv2dNative_T]: if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'depthwise_conv2d_native' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if explicit_paddings is None: explicit_paddings = [] if not isinstance(explicit_paddings, (list, tuple)): raise TypeError( "Expected list for 'explicit_paddings' argument to " "'depthwise_conv2d_native' Op, not %r." % explicit_paddings) explicit_paddings = [_execute.make_int(_i, "explicit_paddings") for _i in explicit_paddings] if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'depthwise_conv2d_native' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] _attr_T, _inputs_T = _execute.args_to_matching_eager([input, filter], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, _dtypes.float64, ]) (input, filter) = _inputs_T _inputs_flat = [input, filter] _attrs = ("T", _attr_T, "strides", strides, "padding", padding, "explicit_paddings", explicit_paddings, "data_format", data_format, "dilations", dilations) _result = _execute.execute(b"DepthwiseConv2dNative", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "DepthwiseConv2dNative", _inputs_flat, _attrs, _result) _result, = _result return _result TV_DepthwiseConv2dNativeBackpropFilter_T = TypeVar("TV_DepthwiseConv2dNativeBackpropFilter_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half) def depthwise_conv2d_native_backprop_filter(input: Annotated[Any, TV_DepthwiseConv2dNativeBackpropFilter_T], filter_sizes: Annotated[Any, _atypes.Int32], out_backprop: Annotated[Any, TV_DepthwiseConv2dNativeBackpropFilter_T], strides, padding: str, explicit_paddings=[], data_format:str="NHWC", dilations=[1, 1, 1, 1], name=None) -> Annotated[Any, TV_DepthwiseConv2dNativeBackpropFilter_T]: r"""Computes the gradients of depthwise convolution with respect to the filter. Args: input: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`. 4-D with shape based on `data_format`. For example, if `data_format` is 'NHWC' then `input` is a 4-D `[batch, in_height, in_width, in_channels]` tensor. filter_sizes: A `Tensor` of type `int32`. An integer vector representing the tensor shape of `filter`, where `filter` is a 4-D `[filter_height, filter_width, in_channels, depthwise_multiplier]` tensor. out_backprop: A `Tensor`. Must have the same type as `input`. 4-D with shape based on `data_format`. For example, if `data_format` is 'NHWC' then out_backprop shape is `[batch, out_height, out_width, out_channels]`. Gradients w.r.t. the output of the convolution. strides: A list of `ints`. The stride of the sliding window for each dimension of the input of the convolution. padding: A `string` from: `"SAME", "VALID", "EXPLICIT"`. The type of padding algorithm to use. explicit_paddings: An optional list of `ints`. Defaults to `[]`. data_format: An optional `string` from: `"NHWC", "NCHW"`. Defaults to `"NHWC"`. Specify the data format of the input and output data. With the default format "NHWC", the data is stored in the order of: [batch, height, width, channels]. Alternatively, the format could be "NCHW", the data storage order of: [batch, channels, height, width]. dilations: An optional list of `ints`. Defaults to `[1, 1, 1, 1]`. 1-D tensor of length 4. The dilation factor for each dimension of `input`. If set to k > 1, there will be k-1 skipped cells between each filter element on that dimension. The dimension order is determined by the value of `data_format`, see above for details. Dilations in the batch and depth dimensions must be 1. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "DepthwiseConv2dNativeBackpropFilter", name, input, filter_sizes, out_backprop, "strides", strides, "padding", padding, "explicit_paddings", explicit_paddings, "data_format", data_format, "dilations", dilations) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return depthwise_conv2d_native_backprop_filter_eager_fallback( input, filter_sizes, out_backprop, strides=strides, padding=padding, explicit_paddings=explicit_paddings, data_format=data_format, dilations=dilations, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'depthwise_conv2d_native_backprop_filter' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if explicit_paddings is None: explicit_paddings = [] if not isinstance(explicit_paddings, (list, tuple)): raise TypeError( "Expected list for 'explicit_paddings' argument to " "'depthwise_conv2d_native_backprop_filter' Op, not %r." % explicit_paddings) explicit_paddings = [_execute.make_int(_i, "explicit_paddings") for _i in explicit_paddings] if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'depthwise_conv2d_native_backprop_filter' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] _, _, _op, _outputs = _op_def_library._apply_op_helper( "DepthwiseConv2dNativeBackpropFilter", input=input, filter_sizes=filter_sizes, out_backprop=out_backprop, strides=strides, padding=padding, explicit_paddings=explicit_paddings, data_format=data_format, dilations=dilations, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "explicit_paddings", _op.get_attr("explicit_paddings"), "data_format", _op.get_attr("data_format"), "dilations", _op.get_attr("dilations")) _inputs_flat = _op.inputs _execute.record_gradient( "DepthwiseConv2dNativeBackpropFilter", _inputs_flat, _attrs, _result) _result, = _result return _result DepthwiseConv2dNativeBackpropFilter = tf_export("raw_ops.DepthwiseConv2dNativeBackpropFilter")(_ops.to_raw_op(depthwise_conv2d_native_backprop_filter)) def depthwise_conv2d_native_backprop_filter_eager_fallback(input: Annotated[Any, TV_DepthwiseConv2dNativeBackpropFilter_T], filter_sizes: Annotated[Any, _atypes.Int32], out_backprop: Annotated[Any, TV_DepthwiseConv2dNativeBackpropFilter_T], strides, padding: str, explicit_paddings, data_format: str, dilations, name, ctx) -> Annotated[Any, TV_DepthwiseConv2dNativeBackpropFilter_T]: if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'depthwise_conv2d_native_backprop_filter' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if explicit_paddings is None: explicit_paddings = [] if not isinstance(explicit_paddings, (list, tuple)): raise TypeError( "Expected list for 'explicit_paddings' argument to " "'depthwise_conv2d_native_backprop_filter' Op, not %r." % explicit_paddings) explicit_paddings = [_execute.make_int(_i, "explicit_paddings") for _i in explicit_paddings] if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'depthwise_conv2d_native_backprop_filter' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] _attr_T, _inputs_T = _execute.args_to_matching_eager([input, out_backprop], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, _dtypes.float64, ]) (input, out_backprop) = _inputs_T filter_sizes = _ops.convert_to_tensor(filter_sizes, _dtypes.int32) _inputs_flat = [input, filter_sizes, out_backprop] _attrs = ("T", _attr_T, "strides", strides, "padding", padding, "explicit_paddings", explicit_paddings, "data_format", data_format, "dilations", dilations) _result = _execute.execute(b"DepthwiseConv2dNativeBackpropFilter", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "DepthwiseConv2dNativeBackpropFilter", _inputs_flat, _attrs, _result) _result, = _result return _result TV_DepthwiseConv2dNativeBackpropInput_T = TypeVar("TV_DepthwiseConv2dNativeBackpropInput_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half) def depthwise_conv2d_native_backprop_input(input_sizes: Annotated[Any, _atypes.Int32], filter: Annotated[Any, TV_DepthwiseConv2dNativeBackpropInput_T], out_backprop: Annotated[Any, TV_DepthwiseConv2dNativeBackpropInput_T], strides, padding: str, explicit_paddings=[], data_format:str="NHWC", dilations=[1, 1, 1, 1], name=None) -> Annotated[Any, TV_DepthwiseConv2dNativeBackpropInput_T]: r"""Computes the gradients of depthwise convolution with respect to the input. Args: input_sizes: A `Tensor` of type `int32`. An integer vector representing the shape of `input`, based on `data_format`. For example, if `data_format` is 'NHWC' then `input` is a 4-D `[batch, height, width, channels]` tensor. filter: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`. 4-D with shape `[filter_height, filter_width, in_channels, depthwise_multiplier]`. out_backprop: A `Tensor`. Must have the same type as `filter`. 4-D with shape based on `data_format`. For example, if `data_format` is 'NHWC' then out_backprop shape is `[batch, out_height, out_width, out_channels]`. Gradients w.r.t. the output of the convolution. strides: A list of `ints`. The stride of the sliding window for each dimension of the input of the convolution. padding: A `string` from: `"SAME", "VALID", "EXPLICIT"`. The type of padding algorithm to use. explicit_paddings: An optional list of `ints`. Defaults to `[]`. data_format: An optional `string` from: `"NHWC", "NCHW"`. Defaults to `"NHWC"`. Specify the data format of the input and output data. With the default format "NHWC", the data is stored in the order of: [batch, height, width, channels]. Alternatively, the format could be "NCHW", the data storage order of: [batch, channels, height, width]. dilations: An optional list of `ints`. Defaults to `[1, 1, 1, 1]`. 1-D tensor of length 4. The dilation factor for each dimension of `input`. If set to k > 1, there will be k-1 skipped cells between each filter element on that dimension. The dimension order is determined by the value of `data_format`, see above for details. Dilations in the batch and depth dimensions must be 1. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `filter`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "DepthwiseConv2dNativeBackpropInput", name, input_sizes, filter, out_backprop, "strides", strides, "padding", padding, "explicit_paddings", explicit_paddings, "data_format", data_format, "dilations", dilations) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return depthwise_conv2d_native_backprop_input_eager_fallback( input_sizes, filter, out_backprop, strides=strides, padding=padding, explicit_paddings=explicit_paddings, data_format=data_format, dilations=dilations, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'depthwise_conv2d_native_backprop_input' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if explicit_paddings is None: explicit_paddings = [] if not isinstance(explicit_paddings, (list, tuple)): raise TypeError( "Expected list for 'explicit_paddings' argument to " "'depthwise_conv2d_native_backprop_input' Op, not %r." % explicit_paddings) explicit_paddings = [_execute.make_int(_i, "explicit_paddings") for _i in explicit_paddings] if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'depthwise_conv2d_native_backprop_input' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] _, _, _op, _outputs = _op_def_library._apply_op_helper( "DepthwiseConv2dNativeBackpropInput", input_sizes=input_sizes, filter=filter, out_backprop=out_backprop, strides=strides, padding=padding, explicit_paddings=explicit_paddings, data_format=data_format, dilations=dilations, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "explicit_paddings", _op.get_attr("explicit_paddings"), "data_format", _op.get_attr("data_format"), "dilations", _op.get_attr("dilations")) _inputs_flat = _op.inputs _execute.record_gradient( "DepthwiseConv2dNativeBackpropInput", _inputs_flat, _attrs, _result) _result, = _result return _result DepthwiseConv2dNativeBackpropInput = tf_export("raw_ops.DepthwiseConv2dNativeBackpropInput")(_ops.to_raw_op(depthwise_conv2d_native_backprop_input)) def depthwise_conv2d_native_backprop_input_eager_fallback(input_sizes: Annotated[Any, _atypes.Int32], filter: Annotated[Any, TV_DepthwiseConv2dNativeBackpropInput_T], out_backprop: Annotated[Any, TV_DepthwiseConv2dNativeBackpropInput_T], strides, padding: str, explicit_paddings, data_format: str, dilations, name, ctx) -> Annotated[Any, TV_DepthwiseConv2dNativeBackpropInput_T]: if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'depthwise_conv2d_native_backprop_input' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if explicit_paddings is None: explicit_paddings = [] if not isinstance(explicit_paddings, (list, tuple)): raise TypeError( "Expected list for 'explicit_paddings' argument to " "'depthwise_conv2d_native_backprop_input' Op, not %r." % explicit_paddings) explicit_paddings = [_execute.make_int(_i, "explicit_paddings") for _i in explicit_paddings] if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'depthwise_conv2d_native_backprop_input' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] _attr_T, _inputs_T = _execute.args_to_matching_eager([filter, out_backprop], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, _dtypes.float64, ]) (filter, out_backprop) = _inputs_T input_sizes = _ops.convert_to_tensor(input_sizes, _dtypes.int32) _inputs_flat = [input_sizes, filter, out_backprop] _attrs = ("T", _attr_T, "strides", strides, "padding", padding, "explicit_paddings", explicit_paddings, "data_format", data_format, "dilations", dilations) _result = _execute.execute(b"DepthwiseConv2dNativeBackpropInput", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "DepthwiseConv2dNativeBackpropInput", _inputs_flat, _attrs, _result) _result, = _result return _result TV_Dilation2D_T = TypeVar("TV_Dilation2D_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.UInt16, _atypes.UInt32, _atypes.UInt64, _atypes.UInt8) def dilation2d(input: Annotated[Any, TV_Dilation2D_T], filter: Annotated[Any, TV_Dilation2D_T], strides, rates, padding: str, name=None) -> Annotated[Any, TV_Dilation2D_T]: r"""Computes the grayscale dilation of 4-D `input` and 3-D `filter` tensors. The `input` tensor has shape `[batch, in_height, in_width, depth]` and the `filter` tensor has shape `[filter_height, filter_width, depth]`, i.e., each input channel is processed independently of the others with its own structuring function. The `output` tensor has shape `[batch, out_height, out_width, depth]`. The spatial dimensions of the output tensor depend on the `padding` algorithm. We currently only support the default "NHWC" `data_format`. In detail, the grayscale morphological 2-D dilation is the max-sum correlation (for consistency with `conv2d`, we use unmirrored filters): output[b, y, x, c] = max_{dy, dx} input[b, strides[1] * y + rates[1] * dy, strides[2] * x + rates[2] * dx, c] + filter[dy, dx, c] Max-pooling is a special case when the filter has size equal to the pooling kernel size and contains all zeros. Note on duality: The dilation of `input` by the `filter` is equal to the negation of the erosion of `-input` by the reflected `filter`. Args: input: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`. 4-D with shape `[batch, in_height, in_width, depth]`. filter: A `Tensor`. Must have the same type as `input`. 3-D with shape `[filter_height, filter_width, depth]`. strides: A list of `ints` that has length `>= 4`. The stride of the sliding window for each dimension of the input tensor. Must be: `[1, stride_height, stride_width, 1]`. rates: A list of `ints` that has length `>= 4`. The input stride for atrous morphological dilation. Must be: `[1, rate_height, rate_width, 1]`. padding: A `string` from: `"SAME", "VALID"`. The type of padding algorithm to use. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "Dilation2D", name, input, filter, "strides", strides, "rates", rates, "padding", padding) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return dilation2d_eager_fallback( input, filter, strides=strides, rates=rates, padding=padding, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'dilation2d' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] if not isinstance(rates, (list, tuple)): raise TypeError( "Expected list for 'rates' argument to " "'dilation2d' Op, not %r." % rates) rates = [_execute.make_int(_i, "rates") for _i in rates] padding = _execute.make_str(padding, "padding") _, _, _op, _outputs = _op_def_library._apply_op_helper( "Dilation2D", input=input, filter=filter, strides=strides, rates=rates, padding=padding, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "strides", _op.get_attr("strides"), "rates", _op.get_attr("rates"), "padding", _op.get_attr("padding")) _inputs_flat = _op.inputs _execute.record_gradient( "Dilation2D", _inputs_flat, _attrs, _result) _result, = _result return _result Dilation2D = tf_export("raw_ops.Dilation2D")(_ops.to_raw_op(dilation2d)) def dilation2d_eager_fallback(input: Annotated[Any, TV_Dilation2D_T], filter: Annotated[Any, TV_Dilation2D_T], strides, rates, padding: str, name, ctx) -> Annotated[Any, TV_Dilation2D_T]: if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'dilation2d' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] if not isinstance(rates, (list, tuple)): raise TypeError( "Expected list for 'rates' argument to " "'dilation2d' Op, not %r." % rates) rates = [_execute.make_int(_i, "rates") for _i in rates] padding = _execute.make_str(padding, "padding") _attr_T, _inputs_T = _execute.args_to_matching_eager([input, filter], ctx, [_dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.uint8, _dtypes.int16, _dtypes.int8, _dtypes.int64, _dtypes.bfloat16, _dtypes.uint16, _dtypes.half, _dtypes.uint32, _dtypes.uint64, ]) (input, filter) = _inputs_T _inputs_flat = [input, filter] _attrs = ("T", _attr_T, "strides", strides, "rates", rates, "padding", padding) _result = _execute.execute(b"Dilation2D", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "Dilation2D", _inputs_flat, _attrs, _result) _result, = _result return _result TV_Dilation2DBackpropFilter_T = TypeVar("TV_Dilation2DBackpropFilter_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.UInt16, _atypes.UInt32, _atypes.UInt64, _atypes.UInt8) def dilation2d_backprop_filter(input: Annotated[Any, TV_Dilation2DBackpropFilter_T], filter: Annotated[Any, TV_Dilation2DBackpropFilter_T], out_backprop: Annotated[Any, TV_Dilation2DBackpropFilter_T], strides, rates, padding: str, name=None) -> Annotated[Any, TV_Dilation2DBackpropFilter_T]: r"""Computes the gradient of morphological 2-D dilation with respect to the filter. Args: input: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`. 4-D with shape `[batch, in_height, in_width, depth]`. filter: A `Tensor`. Must have the same type as `input`. 3-D with shape `[filter_height, filter_width, depth]`. out_backprop: A `Tensor`. Must have the same type as `input`. 4-D with shape `[batch, out_height, out_width, depth]`. strides: A list of `ints` that has length `>= 4`. 1-D of length 4. The stride of the sliding window for each dimension of the input tensor. Must be: `[1, stride_height, stride_width, 1]`. rates: A list of `ints` that has length `>= 4`. 1-D of length 4. The input stride for atrous morphological dilation. Must be: `[1, rate_height, rate_width, 1]`. padding: A `string` from: `"SAME", "VALID"`. The type of padding algorithm to use. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "Dilation2DBackpropFilter", name, input, filter, out_backprop, "strides", strides, "rates", rates, "padding", padding) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return dilation2d_backprop_filter_eager_fallback( input, filter, out_backprop, strides=strides, rates=rates, padding=padding, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'dilation2d_backprop_filter' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] if not isinstance(rates, (list, tuple)): raise TypeError( "Expected list for 'rates' argument to " "'dilation2d_backprop_filter' Op, not %r." % rates) rates = [_execute.make_int(_i, "rates") for _i in rates] padding = _execute.make_str(padding, "padding") _, _, _op, _outputs = _op_def_library._apply_op_helper( "Dilation2DBackpropFilter", input=input, filter=filter, out_backprop=out_backprop, strides=strides, rates=rates, padding=padding, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "strides", _op.get_attr("strides"), "rates", _op.get_attr("rates"), "padding", _op.get_attr("padding")) _inputs_flat = _op.inputs _execute.record_gradient( "Dilation2DBackpropFilter", _inputs_flat, _attrs, _result) _result, = _result return _result Dilation2DBackpropFilter = tf_export("raw_ops.Dilation2DBackpropFilter")(_ops.to_raw_op(dilation2d_backprop_filter)) def dilation2d_backprop_filter_eager_fallback(input: Annotated[Any, TV_Dilation2DBackpropFilter_T], filter: Annotated[Any, TV_Dilation2DBackpropFilter_T], out_backprop: Annotated[Any, TV_Dilation2DBackpropFilter_T], strides, rates, padding: str, name, ctx) -> Annotated[Any, TV_Dilation2DBackpropFilter_T]: if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'dilation2d_backprop_filter' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] if not isinstance(rates, (list, tuple)): raise TypeError( "Expected list for 'rates' argument to " "'dilation2d_backprop_filter' Op, not %r." % rates) rates = [_execute.make_int(_i, "rates") for _i in rates] padding = _execute.make_str(padding, "padding") _attr_T, _inputs_T = _execute.args_to_matching_eager([input, filter, out_backprop], ctx, [_dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.uint8, _dtypes.int16, _dtypes.int8, _dtypes.int64, _dtypes.bfloat16, _dtypes.uint16, _dtypes.half, _dtypes.uint32, _dtypes.uint64, ]) (input, filter, out_backprop) = _inputs_T _inputs_flat = [input, filter, out_backprop] _attrs = ("T", _attr_T, "strides", strides, "rates", rates, "padding", padding) _result = _execute.execute(b"Dilation2DBackpropFilter", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "Dilation2DBackpropFilter", _inputs_flat, _attrs, _result) _result, = _result return _result TV_Dilation2DBackpropInput_T = TypeVar("TV_Dilation2DBackpropInput_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.UInt16, _atypes.UInt32, _atypes.UInt64, _atypes.UInt8) def dilation2d_backprop_input(input: Annotated[Any, TV_Dilation2DBackpropInput_T], filter: Annotated[Any, TV_Dilation2DBackpropInput_T], out_backprop: Annotated[Any, TV_Dilation2DBackpropInput_T], strides, rates, padding: str, name=None) -> Annotated[Any, TV_Dilation2DBackpropInput_T]: r"""Computes the gradient of morphological 2-D dilation with respect to the input. Args: input: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`. 4-D with shape `[batch, in_height, in_width, depth]`. filter: A `Tensor`. Must have the same type as `input`. 3-D with shape `[filter_height, filter_width, depth]`. out_backprop: A `Tensor`. Must have the same type as `input`. 4-D with shape `[batch, out_height, out_width, depth]`. strides: A list of `ints` that has length `>= 4`. 1-D of length 4. The stride of the sliding window for each dimension of the input tensor. Must be: `[1, stride_height, stride_width, 1]`. rates: A list of `ints` that has length `>= 4`. 1-D of length 4. The input stride for atrous morphological dilation. Must be: `[1, rate_height, rate_width, 1]`. padding: A `string` from: `"SAME", "VALID"`. The type of padding algorithm to use. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "Dilation2DBackpropInput", name, input, filter, out_backprop, "strides", strides, "rates", rates, "padding", padding) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return dilation2d_backprop_input_eager_fallback( input, filter, out_backprop, strides=strides, rates=rates, padding=padding, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'dilation2d_backprop_input' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] if not isinstance(rates, (list, tuple)): raise TypeError( "Expected list for 'rates' argument to " "'dilation2d_backprop_input' Op, not %r." % rates) rates = [_execute.make_int(_i, "rates") for _i in rates] padding = _execute.make_str(padding, "padding") _, _, _op, _outputs = _op_def_library._apply_op_helper( "Dilation2DBackpropInput", input=input, filter=filter, out_backprop=out_backprop, strides=strides, rates=rates, padding=padding, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "strides", _op.get_attr("strides"), "rates", _op.get_attr("rates"), "padding", _op.get_attr("padding")) _inputs_flat = _op.inputs _execute.record_gradient( "Dilation2DBackpropInput", _inputs_flat, _attrs, _result) _result, = _result return _result Dilation2DBackpropInput = tf_export("raw_ops.Dilation2DBackpropInput")(_ops.to_raw_op(dilation2d_backprop_input)) def dilation2d_backprop_input_eager_fallback(input: Annotated[Any, TV_Dilation2DBackpropInput_T], filter: Annotated[Any, TV_Dilation2DBackpropInput_T], out_backprop: Annotated[Any, TV_Dilation2DBackpropInput_T], strides, rates, padding: str, name, ctx) -> Annotated[Any, TV_Dilation2DBackpropInput_T]: if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'dilation2d_backprop_input' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] if not isinstance(rates, (list, tuple)): raise TypeError( "Expected list for 'rates' argument to " "'dilation2d_backprop_input' Op, not %r." % rates) rates = [_execute.make_int(_i, "rates") for _i in rates] padding = _execute.make_str(padding, "padding") _attr_T, _inputs_T = _execute.args_to_matching_eager([input, filter, out_backprop], ctx, [_dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.uint8, _dtypes.int16, _dtypes.int8, _dtypes.int64, _dtypes.bfloat16, _dtypes.uint16, _dtypes.half, _dtypes.uint32, _dtypes.uint64, ]) (input, filter, out_backprop) = _inputs_T _inputs_flat = [input, filter, out_backprop] _attrs = ("T", _attr_T, "strides", strides, "rates", rates, "padding", padding) _result = _execute.execute(b"Dilation2DBackpropInput", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "Dilation2DBackpropInput", _inputs_flat, _attrs, _result) _result, = _result return _result TV_Elu_T = TypeVar("TV_Elu_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('nn.elu') def elu(features: Annotated[Any, TV_Elu_T], name=None) -> Annotated[Any, TV_Elu_T]: r"""Computes the exponential linear function. The ELU function is defined as: * $ e ^ x - 1 $ if $ x < 0 $ * $ x $ if $ x >= 0 $ Examples: >>> tf.nn.elu(1.0) >>> tf.nn.elu(0.0) >>> tf.nn.elu(-1000.0) See [Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) ](http://arxiv.org/abs/1511.07289) Args: features: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `features`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "Elu", name, features) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_elu( (features, name,), None) if _result is not NotImplemented: return _result return elu_eager_fallback( features, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( elu, (), dict(features=features, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_elu( (features, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "Elu", features=features, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( elu, (), dict(features=features, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "Elu", _inputs_flat, _attrs, _result) _result, = _result return _result Elu = tf_export("raw_ops.Elu")(_ops.to_raw_op(elu)) _dispatcher_for_elu = elu._tf_type_based_dispatcher.Dispatch def elu_eager_fallback(features: Annotated[Any, TV_Elu_T], name, ctx) -> Annotated[Any, TV_Elu_T]: _attr_T, (features,) = _execute.args_to_matching_eager([features], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, _dtypes.float64, ]) _inputs_flat = [features] _attrs = ("T", _attr_T) _result = _execute.execute(b"Elu", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "Elu", _inputs_flat, _attrs, _result) _result, = _result return _result TV_EluGrad_T = TypeVar("TV_EluGrad_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half) def elu_grad(gradients: Annotated[Any, TV_EluGrad_T], outputs: Annotated[Any, TV_EluGrad_T], name=None) -> Annotated[Any, TV_EluGrad_T]: r"""Computes gradients for the exponential linear (Elu) operation. Args: gradients: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`. The backpropagated gradients to the corresponding Elu operation. outputs: A `Tensor`. Must have the same type as `gradients`. The outputs of the corresponding Elu operation. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `gradients`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "EluGrad", name, gradients, outputs) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return elu_grad_eager_fallback( gradients, outputs, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "EluGrad", gradients=gradients, outputs=outputs, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "EluGrad", _inputs_flat, _attrs, _result) _result, = _result return _result EluGrad = tf_export("raw_ops.EluGrad")(_ops.to_raw_op(elu_grad)) def elu_grad_eager_fallback(gradients: Annotated[Any, TV_EluGrad_T], outputs: Annotated[Any, TV_EluGrad_T], name, ctx) -> Annotated[Any, TV_EluGrad_T]: _attr_T, _inputs_T = _execute.args_to_matching_eager([gradients, outputs], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, _dtypes.float64, ]) (gradients, outputs) = _inputs_T _inputs_flat = [gradients, outputs] _attrs = ("T", _attr_T) _result = _execute.execute(b"EluGrad", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "EluGrad", _inputs_flat, _attrs, _result) _result, = _result return _result _FractionalAvgPoolOutput = collections.namedtuple( "FractionalAvgPool", ["output", "row_pooling_sequence", "col_pooling_sequence"]) TV_FractionalAvgPool_T = TypeVar("TV_FractionalAvgPool_T", _atypes.Float32, _atypes.Float64, _atypes.Int32, _atypes.Int64) def fractional_avg_pool(value: Annotated[Any, TV_FractionalAvgPool_T], pooling_ratio, pseudo_random:bool=False, overlapping:bool=False, deterministic:bool=False, seed:int=0, seed2:int=0, name=None): r"""Performs fractional average pooling on the input. Fractional average pooling is similar to Fractional max pooling in the pooling region generation step. The only difference is that after pooling regions are generated, a mean operation is performed instead of a max operation in each pooling region. Args: value: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `int64`. 4-D with shape `[batch, height, width, channels]`. pooling_ratio: A list of `floats` that has length `>= 4`. Pooling ratio for each dimension of `value`, currently only supports row and col dimension and should be >= 1.0. For example, a valid pooling ratio looks like [1.0, 1.44, 1.73, 1.0]. The first and last elements must be 1.0 because we don't allow pooling on batch and channels dimensions. 1.44 and 1.73 are pooling ratio on height and width dimensions respectively. pseudo_random: An optional `bool`. Defaults to `False`. When set to True, generates the pooling sequence in a pseudorandom fashion, otherwise, in a random fashion. Check paper [Benjamin Graham, Fractional Max-Pooling](http://arxiv.org/abs/1412.6071) for difference between pseudorandom and random. overlapping: An optional `bool`. Defaults to `False`. When set to True, it means when pooling, the values at the boundary of adjacent pooling cells are used by both cells. For example: `index 0 1 2 3 4` `value 20 5 16 3 7` If the pooling sequence is [0, 2, 4], then 16, at index 2 will be used twice. The result would be [41/3, 26/3] for fractional avg pooling. deterministic: An optional `bool`. Defaults to `False`. When set to True, a fixed pooling region will be used when iterating over a FractionalAvgPool node in the computation graph. Mainly used in unit test to make FractionalAvgPool deterministic. seed: An optional `int`. Defaults to `0`. If either seed or seed2 are set to be non-zero, the random number generator is seeded by the given seed. Otherwise, it is seeded by a random seed. seed2: An optional `int`. Defaults to `0`. An second seed to avoid seed collision. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (output, row_pooling_sequence, col_pooling_sequence). output: A `Tensor`. Has the same type as `value`. row_pooling_sequence: A `Tensor` of type `int64`. col_pooling_sequence: A `Tensor` of type `int64`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "FractionalAvgPool", name, value, "pooling_ratio", pooling_ratio, "pseudo_random", pseudo_random, "overlapping", overlapping, "deterministic", deterministic, "seed", seed, "seed2", seed2) _result = _FractionalAvgPoolOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return fractional_avg_pool_eager_fallback( value, pooling_ratio=pooling_ratio, pseudo_random=pseudo_random, overlapping=overlapping, deterministic=deterministic, seed=seed, seed2=seed2, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(pooling_ratio, (list, tuple)): raise TypeError( "Expected list for 'pooling_ratio' argument to " "'fractional_avg_pool' Op, not %r." % pooling_ratio) pooling_ratio = [_execute.make_float(_f, "pooling_ratio") for _f in pooling_ratio] if pseudo_random is None: pseudo_random = False pseudo_random = _execute.make_bool(pseudo_random, "pseudo_random") if overlapping is None: overlapping = False overlapping = _execute.make_bool(overlapping, "overlapping") if deterministic is None: deterministic = False deterministic = _execute.make_bool(deterministic, "deterministic") if seed is None: seed = 0 seed = _execute.make_int(seed, "seed") if seed2 is None: seed2 = 0 seed2 = _execute.make_int(seed2, "seed2") _, _, _op, _outputs = _op_def_library._apply_op_helper( "FractionalAvgPool", value=value, pooling_ratio=pooling_ratio, pseudo_random=pseudo_random, overlapping=overlapping, deterministic=deterministic, seed=seed, seed2=seed2, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("pooling_ratio", _op.get_attr("pooling_ratio"), "pseudo_random", _op._get_attr_bool("pseudo_random"), "overlapping", _op._get_attr_bool("overlapping"), "deterministic", _op._get_attr_bool("deterministic"), "seed", _op._get_attr_int("seed"), "seed2", _op._get_attr_int("seed2"), "T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "FractionalAvgPool", _inputs_flat, _attrs, _result) _result = _FractionalAvgPoolOutput._make(_result) return _result FractionalAvgPool = tf_export("raw_ops.FractionalAvgPool")(_ops.to_raw_op(fractional_avg_pool)) def fractional_avg_pool_eager_fallback(value: Annotated[Any, TV_FractionalAvgPool_T], pooling_ratio, pseudo_random: bool, overlapping: bool, deterministic: bool, seed: int, seed2: int, name, ctx): if not isinstance(pooling_ratio, (list, tuple)): raise TypeError( "Expected list for 'pooling_ratio' argument to " "'fractional_avg_pool' Op, not %r." % pooling_ratio) pooling_ratio = [_execute.make_float(_f, "pooling_ratio") for _f in pooling_ratio] if pseudo_random is None: pseudo_random = False pseudo_random = _execute.make_bool(pseudo_random, "pseudo_random") if overlapping is None: overlapping = False overlapping = _execute.make_bool(overlapping, "overlapping") if deterministic is None: deterministic = False deterministic = _execute.make_bool(deterministic, "deterministic") if seed is None: seed = 0 seed = _execute.make_int(seed, "seed") if seed2 is None: seed2 = 0 seed2 = _execute.make_int(seed2, "seed2") _attr_T, (value,) = _execute.args_to_matching_eager([value], ctx, [_dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.int64, ]) _inputs_flat = [value] _attrs = ("pooling_ratio", pooling_ratio, "pseudo_random", pseudo_random, "overlapping", overlapping, "deterministic", deterministic, "seed", seed, "seed2", seed2, "T", _attr_T) _result = _execute.execute(b"FractionalAvgPool", 3, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "FractionalAvgPool", _inputs_flat, _attrs, _result) _result = _FractionalAvgPoolOutput._make(_result) return _result TV_FractionalAvgPoolGrad_T = TypeVar("TV_FractionalAvgPoolGrad_T", _atypes.Float32, _atypes.Float64, _atypes.Int32, _atypes.Int64) def fractional_avg_pool_grad(orig_input_tensor_shape: Annotated[Any, _atypes.Int64], out_backprop: Annotated[Any, TV_FractionalAvgPoolGrad_T], row_pooling_sequence: Annotated[Any, _atypes.Int64], col_pooling_sequence: Annotated[Any, _atypes.Int64], overlapping:bool=False, name=None) -> Annotated[Any, TV_FractionalAvgPoolGrad_T]: r"""Computes gradient of the FractionalAvgPool function. Unlike FractionalMaxPoolGrad, we don't need to find arg_max for FractionalAvgPoolGrad, we just need to evenly back-propagate each element of out_backprop to those indices that form the same pooling cell. Therefore, we just need to know the shape of original input tensor, instead of the whole tensor. Args: orig_input_tensor_shape: A `Tensor` of type `int64`. Original input tensor shape for `fractional_avg_pool` out_backprop: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `int64`. 4-D with shape `[batch, height, width, channels]`. Gradients w.r.t. the output of `fractional_avg_pool`. row_pooling_sequence: A `Tensor` of type `int64`. row pooling sequence, form pooling region with col_pooling_sequence. col_pooling_sequence: A `Tensor` of type `int64`. column pooling sequence, form pooling region with row_pooling sequence. overlapping: An optional `bool`. Defaults to `False`. When set to True, it means when pooling, the values at the boundary of adjacent pooling cells are used by both cells. For example: `index 0 1 2 3 4` `value 20 5 16 3 7` If the pooling sequence is [0, 2, 4], then 16, at index 2 will be used twice. The result would be [41/3, 26/3] for fractional avg pooling. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `out_backprop`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "FractionalAvgPoolGrad", name, orig_input_tensor_shape, out_backprop, row_pooling_sequence, col_pooling_sequence, "overlapping", overlapping) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return fractional_avg_pool_grad_eager_fallback( orig_input_tensor_shape, out_backprop, row_pooling_sequence, col_pooling_sequence, overlapping=overlapping, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if overlapping is None: overlapping = False overlapping = _execute.make_bool(overlapping, "overlapping") _, _, _op, _outputs = _op_def_library._apply_op_helper( "FractionalAvgPoolGrad", orig_input_tensor_shape=orig_input_tensor_shape, out_backprop=out_backprop, row_pooling_sequence=row_pooling_sequence, col_pooling_sequence=col_pooling_sequence, overlapping=overlapping, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("overlapping", _op._get_attr_bool("overlapping"), "T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "FractionalAvgPoolGrad", _inputs_flat, _attrs, _result) _result, = _result return _result FractionalAvgPoolGrad = tf_export("raw_ops.FractionalAvgPoolGrad")(_ops.to_raw_op(fractional_avg_pool_grad)) def fractional_avg_pool_grad_eager_fallback(orig_input_tensor_shape: Annotated[Any, _atypes.Int64], out_backprop: Annotated[Any, TV_FractionalAvgPoolGrad_T], row_pooling_sequence: Annotated[Any, _atypes.Int64], col_pooling_sequence: Annotated[Any, _atypes.Int64], overlapping: bool, name, ctx) -> Annotated[Any, TV_FractionalAvgPoolGrad_T]: if overlapping is None: overlapping = False overlapping = _execute.make_bool(overlapping, "overlapping") _attr_T, (out_backprop,) = _execute.args_to_matching_eager([out_backprop], ctx, [_dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.int64, ]) orig_input_tensor_shape = _ops.convert_to_tensor(orig_input_tensor_shape, _dtypes.int64) row_pooling_sequence = _ops.convert_to_tensor(row_pooling_sequence, _dtypes.int64) col_pooling_sequence = _ops.convert_to_tensor(col_pooling_sequence, _dtypes.int64) _inputs_flat = [orig_input_tensor_shape, out_backprop, row_pooling_sequence, col_pooling_sequence] _attrs = ("overlapping", overlapping, "T", _attr_T) _result = _execute.execute(b"FractionalAvgPoolGrad", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "FractionalAvgPoolGrad", _inputs_flat, _attrs, _result) _result, = _result return _result _FractionalMaxPoolOutput = collections.namedtuple( "FractionalMaxPool", ["output", "row_pooling_sequence", "col_pooling_sequence"]) TV_FractionalMaxPool_T = TypeVar("TV_FractionalMaxPool_T", _atypes.Float32, _atypes.Float64, _atypes.Int32, _atypes.Int64) def fractional_max_pool(value: Annotated[Any, TV_FractionalMaxPool_T], pooling_ratio, pseudo_random:bool=False, overlapping:bool=False, deterministic:bool=False, seed:int=0, seed2:int=0, name=None): r"""Performs fractional max pooling on the input. Fractional max pooling is slightly different than regular max pooling. In regular max pooling, you downsize an input set by taking the maximum value of smaller N x N subsections of the set (often 2x2), and try to reduce the set by a factor of N, where N is an integer. Fractional max pooling, as you might expect from the word "fractional", means that the overall reduction ratio N does not have to be an integer. The sizes of the pooling regions are generated randomly but are fairly uniform. For example, let's look at the height dimension, and the constraints on the list of rows that will be pool boundaries. First we define the following: 1. input_row_length : the number of rows from the input set 2. output_row_length : which will be smaller than the input 3. alpha = input_row_length / output_row_length : our reduction ratio 4. K = floor(alpha) 5. row_pooling_sequence : this is the result list of pool boundary rows Then, row_pooling_sequence should satisfy: 1. a[0] = 0 : the first value of the sequence is 0 2. a[end] = input_row_length : the last value of the sequence is the size 3. K <= (a[i+1] - a[i]) <= K+1 : all intervals are K or K+1 size 4. length(row_pooling_sequence) = output_row_length+1 For more details on fractional max pooling, see this paper: [Benjamin Graham, Fractional Max-Pooling](http://arxiv.org/abs/1412.6071) Args: value: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `int64`. 4-D with shape `[batch, height, width, channels]`. pooling_ratio: A list of `floats` that has length `>= 4`. Pooling ratio for each dimension of `value`, currently only supports row and col dimension and should be >= 1.0. For example, a valid pooling ratio looks like [1.0, 1.44, 1.73, 1.0]. The first and last elements must be 1.0 because we don't allow pooling on batch and channels dimensions. 1.44 and 1.73 are pooling ratio on height and width dimensions respectively. pseudo_random: An optional `bool`. Defaults to `False`. When set to True, generates the pooling sequence in a pseudorandom fashion, otherwise, in a random fashion. Check paper [Benjamin Graham, Fractional Max-Pooling](http://arxiv.org/abs/1412.6071) for difference between pseudorandom and random. overlapping: An optional `bool`. Defaults to `False`. When set to True, it means when pooling, the values at the boundary of adjacent pooling cells are used by both cells. For example: `index 0 1 2 3 4` `value 20 5 16 3 7` If the pooling sequence is [0, 2, 4], then 16, at index 2 will be used twice. The result would be [20, 16] for fractional max pooling. deterministic: An optional `bool`. Defaults to `False`. When set to True, a fixed pooling region will be used when iterating over a FractionalMaxPool node in the computation graph. Mainly used in unit test to make FractionalMaxPool deterministic. seed: An optional `int`. Defaults to `0`. If either seed or seed2 are set to be non-zero, the random number generator is seeded by the given seed. Otherwise, it is seeded by a random seed. seed2: An optional `int`. Defaults to `0`. An second seed to avoid seed collision. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (output, row_pooling_sequence, col_pooling_sequence). output: A `Tensor`. Has the same type as `value`. row_pooling_sequence: A `Tensor` of type `int64`. col_pooling_sequence: A `Tensor` of type `int64`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "FractionalMaxPool", name, value, "pooling_ratio", pooling_ratio, "pseudo_random", pseudo_random, "overlapping", overlapping, "deterministic", deterministic, "seed", seed, "seed2", seed2) _result = _FractionalMaxPoolOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return fractional_max_pool_eager_fallback( value, pooling_ratio=pooling_ratio, pseudo_random=pseudo_random, overlapping=overlapping, deterministic=deterministic, seed=seed, seed2=seed2, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(pooling_ratio, (list, tuple)): raise TypeError( "Expected list for 'pooling_ratio' argument to " "'fractional_max_pool' Op, not %r." % pooling_ratio) pooling_ratio = [_execute.make_float(_f, "pooling_ratio") for _f in pooling_ratio] if pseudo_random is None: pseudo_random = False pseudo_random = _execute.make_bool(pseudo_random, "pseudo_random") if overlapping is None: overlapping = False overlapping = _execute.make_bool(overlapping, "overlapping") if deterministic is None: deterministic = False deterministic = _execute.make_bool(deterministic, "deterministic") if seed is None: seed = 0 seed = _execute.make_int(seed, "seed") if seed2 is None: seed2 = 0 seed2 = _execute.make_int(seed2, "seed2") _, _, _op, _outputs = _op_def_library._apply_op_helper( "FractionalMaxPool", value=value, pooling_ratio=pooling_ratio, pseudo_random=pseudo_random, overlapping=overlapping, deterministic=deterministic, seed=seed, seed2=seed2, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("pooling_ratio", _op.get_attr("pooling_ratio"), "pseudo_random", _op._get_attr_bool("pseudo_random"), "overlapping", _op._get_attr_bool("overlapping"), "deterministic", _op._get_attr_bool("deterministic"), "seed", _op._get_attr_int("seed"), "seed2", _op._get_attr_int("seed2"), "T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "FractionalMaxPool", _inputs_flat, _attrs, _result) _result = _FractionalMaxPoolOutput._make(_result) return _result FractionalMaxPool = tf_export("raw_ops.FractionalMaxPool")(_ops.to_raw_op(fractional_max_pool)) def fractional_max_pool_eager_fallback(value: Annotated[Any, TV_FractionalMaxPool_T], pooling_ratio, pseudo_random: bool, overlapping: bool, deterministic: bool, seed: int, seed2: int, name, ctx): if not isinstance(pooling_ratio, (list, tuple)): raise TypeError( "Expected list for 'pooling_ratio' argument to " "'fractional_max_pool' Op, not %r." % pooling_ratio) pooling_ratio = [_execute.make_float(_f, "pooling_ratio") for _f in pooling_ratio] if pseudo_random is None: pseudo_random = False pseudo_random = _execute.make_bool(pseudo_random, "pseudo_random") if overlapping is None: overlapping = False overlapping = _execute.make_bool(overlapping, "overlapping") if deterministic is None: deterministic = False deterministic = _execute.make_bool(deterministic, "deterministic") if seed is None: seed = 0 seed = _execute.make_int(seed, "seed") if seed2 is None: seed2 = 0 seed2 = _execute.make_int(seed2, "seed2") _attr_T, (value,) = _execute.args_to_matching_eager([value], ctx, [_dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.int64, ]) _inputs_flat = [value] _attrs = ("pooling_ratio", pooling_ratio, "pseudo_random", pseudo_random, "overlapping", overlapping, "deterministic", deterministic, "seed", seed, "seed2", seed2, "T", _attr_T) _result = _execute.execute(b"FractionalMaxPool", 3, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "FractionalMaxPool", _inputs_flat, _attrs, _result) _result = _FractionalMaxPoolOutput._make(_result) return _result TV_FractionalMaxPoolGrad_T = TypeVar("TV_FractionalMaxPoolGrad_T", _atypes.Float32, _atypes.Float64, _atypes.Int32, _atypes.Int64) def fractional_max_pool_grad(orig_input: Annotated[Any, TV_FractionalMaxPoolGrad_T], orig_output: Annotated[Any, TV_FractionalMaxPoolGrad_T], out_backprop: Annotated[Any, TV_FractionalMaxPoolGrad_T], row_pooling_sequence: Annotated[Any, _atypes.Int64], col_pooling_sequence: Annotated[Any, _atypes.Int64], overlapping:bool=False, name=None) -> Annotated[Any, TV_FractionalMaxPoolGrad_T]: r"""Computes gradient of the FractionalMaxPool function. Args: orig_input: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `int64`. Original input for `fractional_max_pool` orig_output: A `Tensor`. Must have the same type as `orig_input`. Original output for `fractional_max_pool` out_backprop: A `Tensor`. Must have the same type as `orig_input`. 4-D with shape `[batch, height, width, channels]`. Gradients w.r.t. the output of `fractional_max_pool`. row_pooling_sequence: A `Tensor` of type `int64`. row pooling sequence, form pooling region with col_pooling_sequence. col_pooling_sequence: A `Tensor` of type `int64`. column pooling sequence, form pooling region with row_pooling sequence. overlapping: An optional `bool`. Defaults to `False`. When set to True, it means when pooling, the values at the boundary of adjacent pooling cells are used by both cells. For example: `index 0 1 2 3 4` `value 20 5 16 3 7` If the pooling sequence is [0, 2, 4], then 16, at index 2 will be used twice. The result would be [20, 16] for fractional max pooling. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `orig_input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "FractionalMaxPoolGrad", name, orig_input, orig_output, out_backprop, row_pooling_sequence, col_pooling_sequence, "overlapping", overlapping) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return fractional_max_pool_grad_eager_fallback( orig_input, orig_output, out_backprop, row_pooling_sequence, col_pooling_sequence, overlapping=overlapping, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if overlapping is None: overlapping = False overlapping = _execute.make_bool(overlapping, "overlapping") _, _, _op, _outputs = _op_def_library._apply_op_helper( "FractionalMaxPoolGrad", orig_input=orig_input, orig_output=orig_output, out_backprop=out_backprop, row_pooling_sequence=row_pooling_sequence, col_pooling_sequence=col_pooling_sequence, overlapping=overlapping, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("overlapping", _op._get_attr_bool("overlapping"), "T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "FractionalMaxPoolGrad", _inputs_flat, _attrs, _result) _result, = _result return _result FractionalMaxPoolGrad = tf_export("raw_ops.FractionalMaxPoolGrad")(_ops.to_raw_op(fractional_max_pool_grad)) def fractional_max_pool_grad_eager_fallback(orig_input: Annotated[Any, TV_FractionalMaxPoolGrad_T], orig_output: Annotated[Any, TV_FractionalMaxPoolGrad_T], out_backprop: Annotated[Any, TV_FractionalMaxPoolGrad_T], row_pooling_sequence: Annotated[Any, _atypes.Int64], col_pooling_sequence: Annotated[Any, _atypes.Int64], overlapping: bool, name, ctx) -> Annotated[Any, TV_FractionalMaxPoolGrad_T]: if overlapping is None: overlapping = False overlapping = _execute.make_bool(overlapping, "overlapping") _attr_T, _inputs_T = _execute.args_to_matching_eager([orig_input, orig_output, out_backprop], ctx, [_dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.int64, ]) (orig_input, orig_output, out_backprop) = _inputs_T row_pooling_sequence = _ops.convert_to_tensor(row_pooling_sequence, _dtypes.int64) col_pooling_sequence = _ops.convert_to_tensor(col_pooling_sequence, _dtypes.int64) _inputs_flat = [orig_input, orig_output, out_backprop, row_pooling_sequence, col_pooling_sequence] _attrs = ("overlapping", overlapping, "T", _attr_T) _result = _execute.execute(b"FractionalMaxPoolGrad", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "FractionalMaxPoolGrad", _inputs_flat, _attrs, _result) _result, = _result return _result _FusedBatchNormOutput = collections.namedtuple( "FusedBatchNorm", ["y", "batch_mean", "batch_variance", "reserve_space_1", "reserve_space_2"]) TV_FusedBatchNorm_T = TypeVar("TV_FusedBatchNorm_T", bound=_atypes.Float32) def _fused_batch_norm(x: Annotated[Any, TV_FusedBatchNorm_T], scale: Annotated[Any, TV_FusedBatchNorm_T], offset: Annotated[Any, TV_FusedBatchNorm_T], mean: Annotated[Any, TV_FusedBatchNorm_T], variance: Annotated[Any, TV_FusedBatchNorm_T], epsilon:float=0.0001, exponential_avg_factor:float=1, data_format:str="NHWC", is_training:bool=True, name=None): r"""Batch normalization. Note that the size of 4D Tensors are defined by either "NHWC" or "NCHW". The size of 1D Tensors matches the dimension C of the 4D Tensors. Args: x: A `Tensor`. Must be one of the following types: `float32`. A 4D Tensor for input data. scale: A `Tensor`. Must have the same type as `x`. A 1D Tensor for scaling factor, to scale the normalized x. offset: A `Tensor`. Must have the same type as `x`. A 1D Tensor for offset, to shift to the normalized x. mean: A `Tensor`. Must have the same type as `x`. A 1D Tensor for population mean. Used for inference only; must be empty for training. variance: A `Tensor`. Must have the same type as `x`. A 1D Tensor for population variance. Used for inference only; must be empty for training. epsilon: An optional `float`. Defaults to `0.0001`. A small float number added to the variance of x. exponential_avg_factor: An optional `float`. Defaults to `1`. data_format: An optional `string` from: `"NHWC", "NCHW"`. Defaults to `"NHWC"`. The data format for x and y. Either "NHWC" (default) or "NCHW". is_training: An optional `bool`. Defaults to `True`. A bool value to indicate the operation is for training (default) or inference. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (y, batch_mean, batch_variance, reserve_space_1, reserve_space_2). y: A `Tensor`. Has the same type as `x`. batch_mean: A `Tensor`. Has the same type as `x`. batch_variance: A `Tensor`. Has the same type as `x`. reserve_space_1: A `Tensor`. Has the same type as `x`. reserve_space_2: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "FusedBatchNorm", name, x, scale, offset, mean, variance, "epsilon", epsilon, "exponential_avg_factor", exponential_avg_factor, "data_format", data_format, "is_training", is_training) _result = _FusedBatchNormOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return _fused_batch_norm_eager_fallback( x, scale, offset, mean, variance, epsilon=epsilon, exponential_avg_factor=exponential_avg_factor, data_format=data_format, is_training=is_training, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if epsilon is None: epsilon = 0.0001 epsilon = _execute.make_float(epsilon, "epsilon") if exponential_avg_factor is None: exponential_avg_factor = 1 exponential_avg_factor = _execute.make_float(exponential_avg_factor, "exponential_avg_factor") if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") if is_training is None: is_training = True is_training = _execute.make_bool(is_training, "is_training") _, _, _op, _outputs = _op_def_library._apply_op_helper( "FusedBatchNorm", x=x, scale=scale, offset=offset, mean=mean, variance=variance, epsilon=epsilon, exponential_avg_factor=exponential_avg_factor, data_format=data_format, is_training=is_training, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "epsilon", _op.get_attr("epsilon"), "exponential_avg_factor", _op.get_attr("exponential_avg_factor"), "data_format", _op.get_attr("data_format"), "is_training", _op._get_attr_bool("is_training")) _inputs_flat = _op.inputs _execute.record_gradient( "FusedBatchNorm", _inputs_flat, _attrs, _result) _result = _FusedBatchNormOutput._make(_result) return _result FusedBatchNorm = tf_export("raw_ops.FusedBatchNorm")(_ops.to_raw_op(_fused_batch_norm)) def _fused_batch_norm_eager_fallback(x: Annotated[Any, TV_FusedBatchNorm_T], scale: Annotated[Any, TV_FusedBatchNorm_T], offset: Annotated[Any, TV_FusedBatchNorm_T], mean: Annotated[Any, TV_FusedBatchNorm_T], variance: Annotated[Any, TV_FusedBatchNorm_T], epsilon: float, exponential_avg_factor: float, data_format: str, is_training: bool, name, ctx): if epsilon is None: epsilon = 0.0001 epsilon = _execute.make_float(epsilon, "epsilon") if exponential_avg_factor is None: exponential_avg_factor = 1 exponential_avg_factor = _execute.make_float(exponential_avg_factor, "exponential_avg_factor") if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") if is_training is None: is_training = True is_training = _execute.make_bool(is_training, "is_training") _attr_T, _inputs_T = _execute.args_to_matching_eager([x, scale, offset, mean, variance], ctx, [_dtypes.float32, ]) (x, scale, offset, mean, variance) = _inputs_T _inputs_flat = [x, scale, offset, mean, variance] _attrs = ("T", _attr_T, "epsilon", epsilon, "exponential_avg_factor", exponential_avg_factor, "data_format", data_format, "is_training", is_training) _result = _execute.execute(b"FusedBatchNorm", 5, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "FusedBatchNorm", _inputs_flat, _attrs, _result) _result = _FusedBatchNormOutput._make(_result) return _result _FusedBatchNormGradOutput = collections.namedtuple( "FusedBatchNormGrad", ["x_backprop", "scale_backprop", "offset_backprop", "reserve_space_3", "reserve_space_4"]) TV_FusedBatchNormGrad_T = TypeVar("TV_FusedBatchNormGrad_T", bound=_atypes.Float32) def fused_batch_norm_grad(y_backprop: Annotated[Any, TV_FusedBatchNormGrad_T], x: Annotated[Any, TV_FusedBatchNormGrad_T], scale: Annotated[Any, TV_FusedBatchNormGrad_T], reserve_space_1: Annotated[Any, TV_FusedBatchNormGrad_T], reserve_space_2: Annotated[Any, TV_FusedBatchNormGrad_T], epsilon:float=0.0001, data_format:str="NHWC", is_training:bool=True, name=None): r"""Gradient for batch normalization. Note that the size of 4D Tensors are defined by either "NHWC" or "NCHW". The size of 1D Tensors matches the dimension C of the 4D Tensors. Args: y_backprop: A `Tensor`. Must be one of the following types: `float32`. A 4D Tensor for the gradient with respect to y. x: A `Tensor`. Must have the same type as `y_backprop`. A 4D Tensor for input data. scale: A `Tensor`. Must have the same type as `y_backprop`. A 1D Tensor for scaling factor, to scale the normalized x. reserve_space_1: A `Tensor`. Must have the same type as `y_backprop`. When is_training is True, a 1D Tensor for the computed batch mean to be reused in gradient computation. When is_training is False, a 1D Tensor for the population mean to be reused in both 1st and 2nd order gradient computation. reserve_space_2: A `Tensor`. Must have the same type as `y_backprop`. When is_training is True, a 1D Tensor for the computed batch variance (inverted variance in the cuDNN case) to be reused in gradient computation. When is_training is False, a 1D Tensor for the population variance to be reused in both 1st and 2nd order gradient computation. epsilon: An optional `float`. Defaults to `0.0001`. A small float number added to the variance of x. data_format: An optional `string` from: `"NHWC", "NCHW"`. Defaults to `"NHWC"`. The data format for y_backprop, x, x_backprop. Either "NHWC" (default) or "NCHW". is_training: An optional `bool`. Defaults to `True`. A bool value to indicate the operation is for training (default) or inference. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (x_backprop, scale_backprop, offset_backprop, reserve_space_3, reserve_space_4). x_backprop: A `Tensor`. Has the same type as `y_backprop`. scale_backprop: A `Tensor`. Has the same type as `y_backprop`. offset_backprop: A `Tensor`. Has the same type as `y_backprop`. reserve_space_3: A `Tensor`. Has the same type as `y_backprop`. reserve_space_4: A `Tensor`. Has the same type as `y_backprop`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "FusedBatchNormGrad", name, y_backprop, x, scale, reserve_space_1, reserve_space_2, "epsilon", epsilon, "data_format", data_format, "is_training", is_training) _result = _FusedBatchNormGradOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return fused_batch_norm_grad_eager_fallback( y_backprop, x, scale, reserve_space_1, reserve_space_2, epsilon=epsilon, data_format=data_format, is_training=is_training, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if epsilon is None: epsilon = 0.0001 epsilon = _execute.make_float(epsilon, "epsilon") if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") if is_training is None: is_training = True is_training = _execute.make_bool(is_training, "is_training") _, _, _op, _outputs = _op_def_library._apply_op_helper( "FusedBatchNormGrad", y_backprop=y_backprop, x=x, scale=scale, reserve_space_1=reserve_space_1, reserve_space_2=reserve_space_2, epsilon=epsilon, data_format=data_format, is_training=is_training, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "epsilon", _op.get_attr("epsilon"), "data_format", _op.get_attr("data_format"), "is_training", _op._get_attr_bool("is_training")) _inputs_flat = _op.inputs _execute.record_gradient( "FusedBatchNormGrad", _inputs_flat, _attrs, _result) _result = _FusedBatchNormGradOutput._make(_result) return _result FusedBatchNormGrad = tf_export("raw_ops.FusedBatchNormGrad")(_ops.to_raw_op(fused_batch_norm_grad)) def fused_batch_norm_grad_eager_fallback(y_backprop: Annotated[Any, TV_FusedBatchNormGrad_T], x: Annotated[Any, TV_FusedBatchNormGrad_T], scale: Annotated[Any, TV_FusedBatchNormGrad_T], reserve_space_1: Annotated[Any, TV_FusedBatchNormGrad_T], reserve_space_2: Annotated[Any, TV_FusedBatchNormGrad_T], epsilon: float, data_format: str, is_training: bool, name, ctx): if epsilon is None: epsilon = 0.0001 epsilon = _execute.make_float(epsilon, "epsilon") if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") if is_training is None: is_training = True is_training = _execute.make_bool(is_training, "is_training") _attr_T, _inputs_T = _execute.args_to_matching_eager([y_backprop, x, scale, reserve_space_1, reserve_space_2], ctx, [_dtypes.float32, ]) (y_backprop, x, scale, reserve_space_1, reserve_space_2) = _inputs_T _inputs_flat = [y_backprop, x, scale, reserve_space_1, reserve_space_2] _attrs = ("T", _attr_T, "epsilon", epsilon, "data_format", data_format, "is_training", is_training) _result = _execute.execute(b"FusedBatchNormGrad", 5, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "FusedBatchNormGrad", _inputs_flat, _attrs, _result) _result = _FusedBatchNormGradOutput._make(_result) return _result _FusedBatchNormGradV2Output = collections.namedtuple( "FusedBatchNormGradV2", ["x_backprop", "scale_backprop", "offset_backprop", "reserve_space_3", "reserve_space_4"]) TV_FusedBatchNormGradV2_T = TypeVar("TV_FusedBatchNormGradV2_T", _atypes.BFloat16, _atypes.Float32, _atypes.Half) TV_FusedBatchNormGradV2_U = TypeVar("TV_FusedBatchNormGradV2_U", bound=_atypes.Float32) def fused_batch_norm_grad_v2(y_backprop: Annotated[Any, TV_FusedBatchNormGradV2_T], x: Annotated[Any, TV_FusedBatchNormGradV2_T], scale: Annotated[Any, _atypes.Float32], reserve_space_1: Annotated[Any, TV_FusedBatchNormGradV2_U], reserve_space_2: Annotated[Any, TV_FusedBatchNormGradV2_U], epsilon:float=0.0001, data_format:str="NHWC", is_training:bool=True, name=None): r"""Gradient for batch normalization. Note that the size of 4D Tensors are defined by either "NHWC" or "NCHW". The size of 1D Tensors matches the dimension C of the 4D Tensors. Args: y_backprop: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`. A 4D Tensor for the gradient with respect to y. x: A `Tensor`. Must have the same type as `y_backprop`. A 4D Tensor for input data. scale: A `Tensor` of type `float32`. A 1D Tensor for scaling factor, to scale the normalized x. reserve_space_1: A `Tensor`. Must be one of the following types: `float32`. When is_training is True, a 1D Tensor for the computed batch mean to be reused in gradient computation. When is_training is False, a 1D Tensor for the population mean to be reused in both 1st and 2nd order gradient computation. reserve_space_2: A `Tensor`. Must have the same type as `reserve_space_1`. When is_training is True, a 1D Tensor for the computed batch variance (inverted variance in the cuDNN case) to be reused in gradient computation. When is_training is False, a 1D Tensor for the population variance to be reused in both 1st and 2nd order gradient computation. epsilon: An optional `float`. Defaults to `0.0001`. A small float number added to the variance of x. data_format: An optional `string` from: `"NHWC", "NCHW"`. Defaults to `"NHWC"`. The data format for y_backprop, x, x_backprop. Either "NHWC" (default) or "NCHW". is_training: An optional `bool`. Defaults to `True`. A bool value to indicate the operation is for training (default) or inference. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (x_backprop, scale_backprop, offset_backprop, reserve_space_3, reserve_space_4). x_backprop: A `Tensor`. Has the same type as `y_backprop`. scale_backprop: A `Tensor`. Has the same type as `reserve_space_1`. offset_backprop: A `Tensor`. Has the same type as `reserve_space_1`. reserve_space_3: A `Tensor`. Has the same type as `reserve_space_1`. reserve_space_4: A `Tensor`. Has the same type as `reserve_space_1`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "FusedBatchNormGradV2", name, y_backprop, x, scale, reserve_space_1, reserve_space_2, "epsilon", epsilon, "data_format", data_format, "is_training", is_training) _result = _FusedBatchNormGradV2Output._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return fused_batch_norm_grad_v2_eager_fallback( y_backprop, x, scale, reserve_space_1, reserve_space_2, epsilon=epsilon, data_format=data_format, is_training=is_training, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if epsilon is None: epsilon = 0.0001 epsilon = _execute.make_float(epsilon, "epsilon") if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") if is_training is None: is_training = True is_training = _execute.make_bool(is_training, "is_training") _, _, _op, _outputs = _op_def_library._apply_op_helper( "FusedBatchNormGradV2", y_backprop=y_backprop, x=x, scale=scale, reserve_space_1=reserve_space_1, reserve_space_2=reserve_space_2, epsilon=epsilon, data_format=data_format, is_training=is_training, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "U", _op._get_attr_type("U"), "epsilon", _op.get_attr("epsilon"), "data_format", _op.get_attr("data_format"), "is_training", _op._get_attr_bool("is_training")) _inputs_flat = _op.inputs _execute.record_gradient( "FusedBatchNormGradV2", _inputs_flat, _attrs, _result) _result = _FusedBatchNormGradV2Output._make(_result) return _result FusedBatchNormGradV2 = tf_export("raw_ops.FusedBatchNormGradV2")(_ops.to_raw_op(fused_batch_norm_grad_v2)) def fused_batch_norm_grad_v2_eager_fallback(y_backprop: Annotated[Any, TV_FusedBatchNormGradV2_T], x: Annotated[Any, TV_FusedBatchNormGradV2_T], scale: Annotated[Any, _atypes.Float32], reserve_space_1: Annotated[Any, TV_FusedBatchNormGradV2_U], reserve_space_2: Annotated[Any, TV_FusedBatchNormGradV2_U], epsilon: float, data_format: str, is_training: bool, name, ctx): if epsilon is None: epsilon = 0.0001 epsilon = _execute.make_float(epsilon, "epsilon") if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") if is_training is None: is_training = True is_training = _execute.make_bool(is_training, "is_training") _attr_T, _inputs_T = _execute.args_to_matching_eager([y_backprop, x], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, ]) (y_backprop, x) = _inputs_T _attr_U, _inputs_U = _execute.args_to_matching_eager([reserve_space_1, reserve_space_2], ctx, [_dtypes.float32, ]) (reserve_space_1, reserve_space_2) = _inputs_U scale = _ops.convert_to_tensor(scale, _dtypes.float32) _inputs_flat = [y_backprop, x, scale, reserve_space_1, reserve_space_2] _attrs = ("T", _attr_T, "U", _attr_U, "epsilon", epsilon, "data_format", data_format, "is_training", is_training) _result = _execute.execute(b"FusedBatchNormGradV2", 5, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "FusedBatchNormGradV2", _inputs_flat, _attrs, _result) _result = _FusedBatchNormGradV2Output._make(_result) return _result _FusedBatchNormGradV3Output = collections.namedtuple( "FusedBatchNormGradV3", ["x_backprop", "scale_backprop", "offset_backprop", "reserve_space_4", "reserve_space_5"]) TV_FusedBatchNormGradV3_T = TypeVar("TV_FusedBatchNormGradV3_T", _atypes.BFloat16, _atypes.Float32, _atypes.Half) TV_FusedBatchNormGradV3_U = TypeVar("TV_FusedBatchNormGradV3_U", bound=_atypes.Float32) def fused_batch_norm_grad_v3(y_backprop: Annotated[Any, TV_FusedBatchNormGradV3_T], x: Annotated[Any, TV_FusedBatchNormGradV3_T], scale: Annotated[Any, _atypes.Float32], reserve_space_1: Annotated[Any, TV_FusedBatchNormGradV3_U], reserve_space_2: Annotated[Any, TV_FusedBatchNormGradV3_U], reserve_space_3: Annotated[Any, TV_FusedBatchNormGradV3_U], epsilon:float=0.0001, data_format:str="NHWC", is_training:bool=True, name=None): r"""Gradient for batch normalization. Note that the size of 4D Tensors are defined by either "NHWC" or "NCHW". The size of 1D Tensors matches the dimension C of the 4D Tensors. Args: y_backprop: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`. A 4D Tensor for the gradient with respect to y. x: A `Tensor`. Must have the same type as `y_backprop`. A 4D Tensor for input data. scale: A `Tensor` of type `float32`. A 1D Tensor for scaling factor, to scale the normalized x. reserve_space_1: A `Tensor`. Must be one of the following types: `float32`. When is_training is True, a 1D Tensor for the computed batch mean to be reused in gradient computation. When is_training is False, a 1D Tensor for the population mean to be reused in both 1st and 2nd order gradient computation. reserve_space_2: A `Tensor`. Must have the same type as `reserve_space_1`. When is_training is True, a 1D Tensor for the computed batch variance (inverted variance in the cuDNN case) to be reused in gradient computation. When is_training is False, a 1D Tensor for the population variance to be reused in both 1st and 2nd order gradient computation. reserve_space_3: A `Tensor`. Must have the same type as `reserve_space_1`. When is_training is True, a 1D Tensor for some intermediate results to be reused in gradient computation. When is_training is False, a dummy empty Tensor will be created. epsilon: An optional `float`. Defaults to `0.0001`. A small float number added to the variance of x. data_format: An optional `string` from: `"NHWC", "NCHW", "NDHWC", "NCDHW"`. Defaults to `"NHWC"`. The data format for y_backprop, x, x_backprop. Either "NHWC" (default) or "NCHW". is_training: An optional `bool`. Defaults to `True`. A bool value to indicate the operation is for training (default) or inference. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (x_backprop, scale_backprop, offset_backprop, reserve_space_4, reserve_space_5). x_backprop: A `Tensor`. Has the same type as `y_backprop`. scale_backprop: A `Tensor`. Has the same type as `reserve_space_1`. offset_backprop: A `Tensor`. Has the same type as `reserve_space_1`. reserve_space_4: A `Tensor`. Has the same type as `reserve_space_1`. reserve_space_5: A `Tensor`. Has the same type as `reserve_space_1`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "FusedBatchNormGradV3", name, y_backprop, x, scale, reserve_space_1, reserve_space_2, reserve_space_3, "epsilon", epsilon, "data_format", data_format, "is_training", is_training) _result = _FusedBatchNormGradV3Output._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return fused_batch_norm_grad_v3_eager_fallback( y_backprop, x, scale, reserve_space_1, reserve_space_2, reserve_space_3, epsilon=epsilon, data_format=data_format, is_training=is_training, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if epsilon is None: epsilon = 0.0001 epsilon = _execute.make_float(epsilon, "epsilon") if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") if is_training is None: is_training = True is_training = _execute.make_bool(is_training, "is_training") _, _, _op, _outputs = _op_def_library._apply_op_helper( "FusedBatchNormGradV3", y_backprop=y_backprop, x=x, scale=scale, reserve_space_1=reserve_space_1, reserve_space_2=reserve_space_2, reserve_space_3=reserve_space_3, epsilon=epsilon, data_format=data_format, is_training=is_training, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "U", _op._get_attr_type("U"), "epsilon", _op.get_attr("epsilon"), "data_format", _op.get_attr("data_format"), "is_training", _op._get_attr_bool("is_training")) _inputs_flat = _op.inputs _execute.record_gradient( "FusedBatchNormGradV3", _inputs_flat, _attrs, _result) _result = _FusedBatchNormGradV3Output._make(_result) return _result FusedBatchNormGradV3 = tf_export("raw_ops.FusedBatchNormGradV3")(_ops.to_raw_op(fused_batch_norm_grad_v3)) def fused_batch_norm_grad_v3_eager_fallback(y_backprop: Annotated[Any, TV_FusedBatchNormGradV3_T], x: Annotated[Any, TV_FusedBatchNormGradV3_T], scale: Annotated[Any, _atypes.Float32], reserve_space_1: Annotated[Any, TV_FusedBatchNormGradV3_U], reserve_space_2: Annotated[Any, TV_FusedBatchNormGradV3_U], reserve_space_3: Annotated[Any, TV_FusedBatchNormGradV3_U], epsilon: float, data_format: str, is_training: bool, name, ctx): if epsilon is None: epsilon = 0.0001 epsilon = _execute.make_float(epsilon, "epsilon") if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") if is_training is None: is_training = True is_training = _execute.make_bool(is_training, "is_training") _attr_T, _inputs_T = _execute.args_to_matching_eager([y_backprop, x], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, ]) (y_backprop, x) = _inputs_T _attr_U, _inputs_U = _execute.args_to_matching_eager([reserve_space_1, reserve_space_2, reserve_space_3], ctx, [_dtypes.float32, ]) (reserve_space_1, reserve_space_2, reserve_space_3) = _inputs_U scale = _ops.convert_to_tensor(scale, _dtypes.float32) _inputs_flat = [y_backprop, x, scale, reserve_space_1, reserve_space_2, reserve_space_3] _attrs = ("T", _attr_T, "U", _attr_U, "epsilon", epsilon, "data_format", data_format, "is_training", is_training) _result = _execute.execute(b"FusedBatchNormGradV3", 5, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "FusedBatchNormGradV3", _inputs_flat, _attrs, _result) _result = _FusedBatchNormGradV3Output._make(_result) return _result _FusedBatchNormV2Output = collections.namedtuple( "FusedBatchNormV2", ["y", "batch_mean", "batch_variance", "reserve_space_1", "reserve_space_2"]) TV_FusedBatchNormV2_T = TypeVar("TV_FusedBatchNormV2_T", _atypes.BFloat16, _atypes.Float32, _atypes.Half) TV_FusedBatchNormV2_U = TypeVar("TV_FusedBatchNormV2_U", bound=_atypes.Float32) def fused_batch_norm_v2(x: Annotated[Any, TV_FusedBatchNormV2_T], scale: Annotated[Any, TV_FusedBatchNormV2_U], offset: Annotated[Any, TV_FusedBatchNormV2_U], mean: Annotated[Any, TV_FusedBatchNormV2_U], variance: Annotated[Any, TV_FusedBatchNormV2_U], epsilon:float=0.0001, exponential_avg_factor:float=1, data_format:str="NHWC", is_training:bool=True, name=None): r"""Batch normalization. Note that the size of 4D Tensors are defined by either "NHWC" or "NCHW". The size of 1D Tensors matches the dimension C of the 4D Tensors. Args: x: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`. A 4D Tensor for input data. scale: A `Tensor`. Must be one of the following types: `float32`. A 1D Tensor for scaling factor, to scale the normalized x. offset: A `Tensor`. Must have the same type as `scale`. A 1D Tensor for offset, to shift to the normalized x. mean: A `Tensor`. Must have the same type as `scale`. A 1D Tensor for population mean. Used for inference only; must be empty for training. variance: A `Tensor`. Must have the same type as `scale`. A 1D Tensor for population variance. Used for inference only; must be empty for training. epsilon: An optional `float`. Defaults to `0.0001`. A small float number added to the variance of x. exponential_avg_factor: An optional `float`. Defaults to `1`. data_format: An optional `string` from: `"NHWC", "NCHW"`. Defaults to `"NHWC"`. The data format for x and y. Either "NHWC" (default) or "NCHW". is_training: An optional `bool`. Defaults to `True`. A bool value to indicate the operation is for training (default) or inference. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (y, batch_mean, batch_variance, reserve_space_1, reserve_space_2). y: A `Tensor`. Has the same type as `x`. batch_mean: A `Tensor`. Has the same type as `scale`. batch_variance: A `Tensor`. Has the same type as `scale`. reserve_space_1: A `Tensor`. Has the same type as `scale`. reserve_space_2: A `Tensor`. Has the same type as `scale`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "FusedBatchNormV2", name, x, scale, offset, mean, variance, "epsilon", epsilon, "exponential_avg_factor", exponential_avg_factor, "data_format", data_format, "is_training", is_training) _result = _FusedBatchNormV2Output._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return fused_batch_norm_v2_eager_fallback( x, scale, offset, mean, variance, epsilon=epsilon, exponential_avg_factor=exponential_avg_factor, data_format=data_format, is_training=is_training, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if epsilon is None: epsilon = 0.0001 epsilon = _execute.make_float(epsilon, "epsilon") if exponential_avg_factor is None: exponential_avg_factor = 1 exponential_avg_factor = _execute.make_float(exponential_avg_factor, "exponential_avg_factor") if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") if is_training is None: is_training = True is_training = _execute.make_bool(is_training, "is_training") _, _, _op, _outputs = _op_def_library._apply_op_helper( "FusedBatchNormV2", x=x, scale=scale, offset=offset, mean=mean, variance=variance, epsilon=epsilon, exponential_avg_factor=exponential_avg_factor, data_format=data_format, is_training=is_training, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "U", _op._get_attr_type("U"), "epsilon", _op.get_attr("epsilon"), "exponential_avg_factor", _op.get_attr("exponential_avg_factor"), "data_format", _op.get_attr("data_format"), "is_training", _op._get_attr_bool("is_training")) _inputs_flat = _op.inputs _execute.record_gradient( "FusedBatchNormV2", _inputs_flat, _attrs, _result) _result = _FusedBatchNormV2Output._make(_result) return _result FusedBatchNormV2 = tf_export("raw_ops.FusedBatchNormV2")(_ops.to_raw_op(fused_batch_norm_v2)) def fused_batch_norm_v2_eager_fallback(x: Annotated[Any, TV_FusedBatchNormV2_T], scale: Annotated[Any, TV_FusedBatchNormV2_U], offset: Annotated[Any, TV_FusedBatchNormV2_U], mean: Annotated[Any, TV_FusedBatchNormV2_U], variance: Annotated[Any, TV_FusedBatchNormV2_U], epsilon: float, exponential_avg_factor: float, data_format: str, is_training: bool, name, ctx): if epsilon is None: epsilon = 0.0001 epsilon = _execute.make_float(epsilon, "epsilon") if exponential_avg_factor is None: exponential_avg_factor = 1 exponential_avg_factor = _execute.make_float(exponential_avg_factor, "exponential_avg_factor") if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") if is_training is None: is_training = True is_training = _execute.make_bool(is_training, "is_training") _attr_T, (x,) = _execute.args_to_matching_eager([x], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, ]) _attr_U, _inputs_U = _execute.args_to_matching_eager([scale, offset, mean, variance], ctx, [_dtypes.float32, ]) (scale, offset, mean, variance) = _inputs_U _inputs_flat = [x, scale, offset, mean, variance] _attrs = ("T", _attr_T, "U", _attr_U, "epsilon", epsilon, "exponential_avg_factor", exponential_avg_factor, "data_format", data_format, "is_training", is_training) _result = _execute.execute(b"FusedBatchNormV2", 5, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "FusedBatchNormV2", _inputs_flat, _attrs, _result) _result = _FusedBatchNormV2Output._make(_result) return _result _FusedBatchNormV3Output = collections.namedtuple( "FusedBatchNormV3", ["y", "batch_mean", "batch_variance", "reserve_space_1", "reserve_space_2", "reserve_space_3"]) TV_FusedBatchNormV3_T = TypeVar("TV_FusedBatchNormV3_T", _atypes.BFloat16, _atypes.Float32, _atypes.Half) TV_FusedBatchNormV3_U = TypeVar("TV_FusedBatchNormV3_U", _atypes.BFloat16, _atypes.Float32) def fused_batch_norm_v3(x: Annotated[Any, TV_FusedBatchNormV3_T], scale: Annotated[Any, TV_FusedBatchNormV3_U], offset: Annotated[Any, TV_FusedBatchNormV3_U], mean: Annotated[Any, TV_FusedBatchNormV3_U], variance: Annotated[Any, TV_FusedBatchNormV3_U], epsilon:float=0.0001, exponential_avg_factor:float=1, data_format:str="NHWC", is_training:bool=True, name=None): r"""Batch normalization. Note that the size of 4D Tensors are defined by either "NHWC" or "NCHW". The size of 1D Tensors matches the dimension C of the 4D Tensors. Args: x: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`. A 4D Tensor for input data. scale: A `Tensor`. Must be one of the following types: `bfloat16`, `float32`. A 1D Tensor for scaling factor, to scale the normalized x. offset: A `Tensor`. Must have the same type as `scale`. A 1D Tensor for offset, to shift to the normalized x. mean: A `Tensor`. Must have the same type as `scale`. A 1D Tensor for population mean. Used for inference only; must be empty for training. variance: A `Tensor`. Must have the same type as `scale`. A 1D Tensor for population variance. Used for inference only; must be empty for training. epsilon: An optional `float`. Defaults to `0.0001`. A small float number added to the variance of x. exponential_avg_factor: An optional `float`. Defaults to `1`. data_format: An optional `string` from: `"NHWC", "NCHW", "NDHWC", "NCDHW"`. Defaults to `"NHWC"`. The data format for x and y. Either "NHWC" (default) or "NCHW". is_training: An optional `bool`. Defaults to `True`. A bool value to indicate the operation is for training (default) or inference. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (y, batch_mean, batch_variance, reserve_space_1, reserve_space_2, reserve_space_3). y: A `Tensor`. Has the same type as `x`. batch_mean: A `Tensor`. Has the same type as `scale`. batch_variance: A `Tensor`. Has the same type as `scale`. reserve_space_1: A `Tensor`. Has the same type as `scale`. reserve_space_2: A `Tensor`. Has the same type as `scale`. reserve_space_3: A `Tensor`. Has the same type as `scale`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "FusedBatchNormV3", name, x, scale, offset, mean, variance, "epsilon", epsilon, "exponential_avg_factor", exponential_avg_factor, "data_format", data_format, "is_training", is_training) _result = _FusedBatchNormV3Output._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return fused_batch_norm_v3_eager_fallback( x, scale, offset, mean, variance, epsilon=epsilon, exponential_avg_factor=exponential_avg_factor, data_format=data_format, is_training=is_training, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if epsilon is None: epsilon = 0.0001 epsilon = _execute.make_float(epsilon, "epsilon") if exponential_avg_factor is None: exponential_avg_factor = 1 exponential_avg_factor = _execute.make_float(exponential_avg_factor, "exponential_avg_factor") if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") if is_training is None: is_training = True is_training = _execute.make_bool(is_training, "is_training") _, _, _op, _outputs = _op_def_library._apply_op_helper( "FusedBatchNormV3", x=x, scale=scale, offset=offset, mean=mean, variance=variance, epsilon=epsilon, exponential_avg_factor=exponential_avg_factor, data_format=data_format, is_training=is_training, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "U", _op._get_attr_type("U"), "epsilon", _op.get_attr("epsilon"), "exponential_avg_factor", _op.get_attr("exponential_avg_factor"), "data_format", _op.get_attr("data_format"), "is_training", _op._get_attr_bool("is_training")) _inputs_flat = _op.inputs _execute.record_gradient( "FusedBatchNormV3", _inputs_flat, _attrs, _result) _result = _FusedBatchNormV3Output._make(_result) return _result FusedBatchNormV3 = tf_export("raw_ops.FusedBatchNormV3")(_ops.to_raw_op(fused_batch_norm_v3)) def fused_batch_norm_v3_eager_fallback(x: Annotated[Any, TV_FusedBatchNormV3_T], scale: Annotated[Any, TV_FusedBatchNormV3_U], offset: Annotated[Any, TV_FusedBatchNormV3_U], mean: Annotated[Any, TV_FusedBatchNormV3_U], variance: Annotated[Any, TV_FusedBatchNormV3_U], epsilon: float, exponential_avg_factor: float, data_format: str, is_training: bool, name, ctx): if epsilon is None: epsilon = 0.0001 epsilon = _execute.make_float(epsilon, "epsilon") if exponential_avg_factor is None: exponential_avg_factor = 1 exponential_avg_factor = _execute.make_float(exponential_avg_factor, "exponential_avg_factor") if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") if is_training is None: is_training = True is_training = _execute.make_bool(is_training, "is_training") _attr_T, (x,) = _execute.args_to_matching_eager([x], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, ]) _attr_U, _inputs_U = _execute.args_to_matching_eager([scale, offset, mean, variance], ctx, [_dtypes.bfloat16, _dtypes.float32, ]) (scale, offset, mean, variance) = _inputs_U _inputs_flat = [x, scale, offset, mean, variance] _attrs = ("T", _attr_T, "U", _attr_U, "epsilon", epsilon, "exponential_avg_factor", exponential_avg_factor, "data_format", data_format, "is_training", is_training) _result = _execute.execute(b"FusedBatchNormV3", 6, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "FusedBatchNormV3", _inputs_flat, _attrs, _result) _result = _FusedBatchNormV3Output._make(_result) return _result TV_FusedPadConv2D_T = TypeVar("TV_FusedPadConv2D_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half) def fused_pad_conv2d(input: Annotated[Any, TV_FusedPadConv2D_T], paddings: Annotated[Any, _atypes.Int32], filter: Annotated[Any, TV_FusedPadConv2D_T], mode: str, strides, padding: str, name=None) -> Annotated[Any, TV_FusedPadConv2D_T]: r"""Performs a padding as a preprocess during a convolution. Similar to FusedResizeAndPadConv2d, this op allows for an optimized implementation where the spatial padding transformation stage is fused with the im2col lookup, but in this case without the bilinear filtering required for resizing. Fusing the padding prevents the need to write out the intermediate results as whole tensors, reducing memory pressure, and we can get some latency gains by merging the transformation calculations. The data_format attribute for Conv2D isn't supported by this op, and 'NHWC' order is used instead. Internally this op uses a single per-graph scratch buffer, which means that it will block if multiple versions are being run in parallel. This is because this operator is primarily an optimization to minimize memory usage. Args: input: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`. 4-D with shape `[batch, in_height, in_width, in_channels]`. paddings: A `Tensor` of type `int32`. A two-column matrix specifying the padding sizes. The number of rows must be the same as the rank of `input`. filter: A `Tensor`. Must have the same type as `input`. 4-D with shape `[filter_height, filter_width, in_channels, out_channels]`. mode: A `string` from: `"REFLECT", "SYMMETRIC"`. strides: A list of `ints`. 1-D of length 4. The stride of the sliding window for each dimension of `input`. Must be in the same order as the dimension specified with format. padding: A `string` from: `"SAME", "VALID"`. The type of padding algorithm to use. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "FusedPadConv2D", name, input, paddings, filter, "mode", mode, "strides", strides, "padding", padding) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return fused_pad_conv2d_eager_fallback( input, paddings, filter, mode=mode, strides=strides, padding=padding, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. mode = _execute.make_str(mode, "mode") if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'fused_pad_conv2d' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") _, _, _op, _outputs = _op_def_library._apply_op_helper( "FusedPadConv2D", input=input, paddings=paddings, filter=filter, mode=mode, strides=strides, padding=padding, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "mode", _op.get_attr("mode"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding")) _inputs_flat = _op.inputs _execute.record_gradient( "FusedPadConv2D", _inputs_flat, _attrs, _result) _result, = _result return _result FusedPadConv2D = tf_export("raw_ops.FusedPadConv2D")(_ops.to_raw_op(fused_pad_conv2d)) def fused_pad_conv2d_eager_fallback(input: Annotated[Any, TV_FusedPadConv2D_T], paddings: Annotated[Any, _atypes.Int32], filter: Annotated[Any, TV_FusedPadConv2D_T], mode: str, strides, padding: str, name, ctx) -> Annotated[Any, TV_FusedPadConv2D_T]: mode = _execute.make_str(mode, "mode") if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'fused_pad_conv2d' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") _attr_T, _inputs_T = _execute.args_to_matching_eager([input, filter], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, _dtypes.float64, ]) (input, filter) = _inputs_T paddings = _ops.convert_to_tensor(paddings, _dtypes.int32) _inputs_flat = [input, paddings, filter] _attrs = ("T", _attr_T, "mode", mode, "strides", strides, "padding", padding) _result = _execute.execute(b"FusedPadConv2D", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "FusedPadConv2D", _inputs_flat, _attrs, _result) _result, = _result return _result TV_FusedResizeAndPadConv2D_T = TypeVar("TV_FusedResizeAndPadConv2D_T", _atypes.Float32, _atypes.Float64, _atypes.Half) def fused_resize_and_pad_conv2d(input: Annotated[Any, TV_FusedResizeAndPadConv2D_T], size: Annotated[Any, _atypes.Int32], paddings: Annotated[Any, _atypes.Int32], filter: Annotated[Any, TV_FusedResizeAndPadConv2D_T], mode: str, strides, padding: str, resize_align_corners:bool=False, name=None) -> Annotated[Any, TV_FusedResizeAndPadConv2D_T]: r"""Performs a resize and padding as a preprocess during a convolution. It's often possible to do spatial transformations more efficiently as part of the packing stage of a convolution, so this op allows for an optimized implementation where these stages are fused together. This prevents the need to write out the intermediate results as whole tensors, reducing memory pressure, and we can get some latency gains by merging the transformation calculations. The data_format attribute for Conv2D isn't supported by this op, and defaults to 'NHWC' order. Internally this op uses a single per-graph scratch buffer, which means that it will block if multiple versions are being run in parallel. This is because this operator is primarily an optimization to minimize memory usage. Args: input: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`. 4-D with shape `[batch, in_height, in_width, in_channels]`. size: A `Tensor` of type `int32`. A 1-D int32 Tensor of 2 elements: `new_height, new_width`. The new size for the images. paddings: A `Tensor` of type `int32`. A two-column matrix specifying the padding sizes. The number of rows must be the same as the rank of `input`. filter: A `Tensor`. Must have the same type as `input`. 4-D with shape `[filter_height, filter_width, in_channels, out_channels]`. mode: A `string` from: `"REFLECT", "SYMMETRIC"`. strides: A list of `ints`. 1-D of length 4. The stride of the sliding window for each dimension of `input`. Must be in the same order as the dimension specified with format. padding: A `string` from: `"SAME", "VALID"`. The type of padding algorithm to use. resize_align_corners: An optional `bool`. Defaults to `False`. If true, the centers of the 4 corner pixels of the input and output tensors are aligned, preserving the values at the corner pixels. Defaults to false. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "FusedResizeAndPadConv2D", name, input, size, paddings, filter, "resize_align_corners", resize_align_corners, "mode", mode, "strides", strides, "padding", padding) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return fused_resize_and_pad_conv2d_eager_fallback( input, size, paddings, filter, resize_align_corners=resize_align_corners, mode=mode, strides=strides, padding=padding, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. mode = _execute.make_str(mode, "mode") if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'fused_resize_and_pad_conv2d' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if resize_align_corners is None: resize_align_corners = False resize_align_corners = _execute.make_bool(resize_align_corners, "resize_align_corners") _, _, _op, _outputs = _op_def_library._apply_op_helper( "FusedResizeAndPadConv2D", input=input, size=size, paddings=paddings, filter=filter, mode=mode, strides=strides, padding=padding, resize_align_corners=resize_align_corners, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "resize_align_corners", _op._get_attr_bool("resize_align_corners"), "mode", _op.get_attr("mode"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding")) _inputs_flat = _op.inputs _execute.record_gradient( "FusedResizeAndPadConv2D", _inputs_flat, _attrs, _result) _result, = _result return _result FusedResizeAndPadConv2D = tf_export("raw_ops.FusedResizeAndPadConv2D")(_ops.to_raw_op(fused_resize_and_pad_conv2d)) def fused_resize_and_pad_conv2d_eager_fallback(input: Annotated[Any, TV_FusedResizeAndPadConv2D_T], size: Annotated[Any, _atypes.Int32], paddings: Annotated[Any, _atypes.Int32], filter: Annotated[Any, TV_FusedResizeAndPadConv2D_T], mode: str, strides, padding: str, resize_align_corners: bool, name, ctx) -> Annotated[Any, TV_FusedResizeAndPadConv2D_T]: mode = _execute.make_str(mode, "mode") if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'fused_resize_and_pad_conv2d' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if resize_align_corners is None: resize_align_corners = False resize_align_corners = _execute.make_bool(resize_align_corners, "resize_align_corners") _attr_T, _inputs_T = _execute.args_to_matching_eager([input, filter], ctx, [_dtypes.half, _dtypes.float32, _dtypes.float64, ]) (input, filter) = _inputs_T size = _ops.convert_to_tensor(size, _dtypes.int32) paddings = _ops.convert_to_tensor(paddings, _dtypes.int32) _inputs_flat = [input, size, paddings, filter] _attrs = ("T", _attr_T, "resize_align_corners", resize_align_corners, "mode", mode, "strides", strides, "padding", padding) _result = _execute.execute(b"FusedResizeAndPadConv2D", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "FusedResizeAndPadConv2D", _inputs_flat, _attrs, _result) _result, = _result return _result TV_InTopK_T = TypeVar("TV_InTopK_T", _atypes.Int32, _atypes.Int64) def in_top_k(predictions: Annotated[Any, _atypes.Float32], targets: Annotated[Any, TV_InTopK_T], k: int, name=None) -> Annotated[Any, _atypes.Bool]: r"""Says whether the targets are in the top `K` predictions. This outputs a `batch_size` bool array, an entry `out[i]` is `true` if the prediction for the target class is among the top `k` predictions among all predictions for example `i`. Note that the behavior of `InTopK` differs from the `TopK` op in its handling of ties; if multiple classes have the same prediction value and straddle the top-`k` boundary, all of those classes are considered to be in the top `k`. More formally, let \\(predictions_i\\) be the predictions for all classes for example `i`, \\(targets_i\\) be the target class for example `i`, \\(out_i\\) be the output for example `i`, $$out_i = predictions_{i, targets_i} \in TopKIncludingTies(predictions_i)$$ Args: predictions: A `Tensor` of type `float32`. A `batch_size` x `classes` tensor. targets: A `Tensor`. Must be one of the following types: `int32`, `int64`. A `batch_size` vector of class ids. k: An `int`. Number of top elements to look at for computing precision. name: A name for the operation (optional). Returns: A `Tensor` of type `bool`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "InTopK", name, predictions, targets, "k", k) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return in_top_k_eager_fallback( predictions, targets, k=k, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. k = _execute.make_int(k, "k") _, _, _op, _outputs = _op_def_library._apply_op_helper( "InTopK", predictions=predictions, targets=targets, k=k, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("k", _op._get_attr_int("k"), "T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "InTopK", _inputs_flat, _attrs, _result) _result, = _result return _result InTopK = tf_export("raw_ops.InTopK")(_ops.to_raw_op(in_top_k)) def in_top_k_eager_fallback(predictions: Annotated[Any, _atypes.Float32], targets: Annotated[Any, TV_InTopK_T], k: int, name, ctx) -> Annotated[Any, _atypes.Bool]: k = _execute.make_int(k, "k") _attr_T, (targets,) = _execute.args_to_matching_eager([targets], ctx, [_dtypes.int32, _dtypes.int64, ], _dtypes.int32) predictions = _ops.convert_to_tensor(predictions, _dtypes.float32) _inputs_flat = [predictions, targets] _attrs = ("k", k, "T", _attr_T) _result = _execute.execute(b"InTopK", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "InTopK", _inputs_flat, _attrs, _result) _result, = _result return _result TV_InTopKV2_T = TypeVar("TV_InTopKV2_T", _atypes.Int32, _atypes.Int64) def in_top_kv2(predictions: Annotated[Any, _atypes.Float32], targets: Annotated[Any, TV_InTopKV2_T], k: Annotated[Any, TV_InTopKV2_T], name=None) -> Annotated[Any, _atypes.Bool]: r"""Says whether the targets are in the top `K` predictions. This outputs a `batch_size` bool array, an entry `out[i]` is `true` if the prediction for the target class is among the top `k` predictions among all predictions for example `i`. Note that the behavior of `InTopK` differs from the `TopK` op in its handling of ties; if multiple classes have the same prediction value and straddle the top-`k` boundary, all of those classes are considered to be in the top `k`. More formally, let \\(predictions_i\\) be the predictions for all classes for example `i`, \\(targets_i\\) be the target class for example `i`, \\(out_i\\) be the output for example `i`, $$out_i = predictions_{i, targets_i} \in TopKIncludingTies(predictions_i)$$ Args: predictions: A `Tensor` of type `float32`. A `batch_size` x `classes` tensor. targets: A `Tensor`. Must be one of the following types: `int32`, `int64`. A `batch_size` vector of class ids. k: A `Tensor`. Must have the same type as `targets`. Number of top elements to look at for computing precision. name: A name for the operation (optional). Returns: A `Tensor` of type `bool`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "InTopKV2", name, predictions, targets, k) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return in_top_kv2_eager_fallback( predictions, targets, k, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "InTopKV2", predictions=predictions, targets=targets, k=k, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "InTopKV2", _inputs_flat, _attrs, _result) _result, = _result return _result InTopKV2 = tf_export("raw_ops.InTopKV2")(_ops.to_raw_op(in_top_kv2)) def in_top_kv2_eager_fallback(predictions: Annotated[Any, _atypes.Float32], targets: Annotated[Any, TV_InTopKV2_T], k: Annotated[Any, TV_InTopKV2_T], name, ctx) -> Annotated[Any, _atypes.Bool]: _attr_T, _inputs_T = _execute.args_to_matching_eager([targets, k], ctx, [_dtypes.int32, _dtypes.int64, ], _dtypes.int32) (targets, k) = _inputs_T predictions = _ops.convert_to_tensor(predictions, _dtypes.float32) _inputs_flat = [predictions, targets, k] _attrs = ("T", _attr_T) _result = _execute.execute(b"InTopKV2", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "InTopKV2", _inputs_flat, _attrs, _result) _result, = _result return _result _IsotonicRegressionOutput = collections.namedtuple( "IsotonicRegression", ["output", "segments"]) TV_IsotonicRegression_T = TypeVar("TV_IsotonicRegression_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.UInt16, _atypes.UInt32, _atypes.UInt64, _atypes.UInt8) TV_IsotonicRegression_output_dtype = TypeVar("TV_IsotonicRegression_output_dtype", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half) def isotonic_regression(input: Annotated[Any, TV_IsotonicRegression_T], output_dtype:TV_IsotonicRegression_output_dtype=_dtypes.float32, name=None): r"""Solves a batch of isotonic regression problems. Args: input: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`. A (batch_size, dim)-tensor holding a batch of inputs. output_dtype: An optional `tf.DType` from: `tf.half, tf.bfloat16, tf.float32, tf.float64`. Defaults to `tf.float32`. Dtype of output. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (output, segments). output: A `Tensor` of type `output_dtype`. segments: A `Tensor` of type `int32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "IsotonicRegression", name, input, "output_dtype", output_dtype) _result = _IsotonicRegressionOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return isotonic_regression_eager_fallback( input, output_dtype=output_dtype, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if output_dtype is None: output_dtype = _dtypes.float32 output_dtype = _execute.make_type(output_dtype, "output_dtype") _, _, _op, _outputs = _op_def_library._apply_op_helper( "IsotonicRegression", input=input, output_dtype=output_dtype, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "output_dtype", _op._get_attr_type("output_dtype")) _inputs_flat = _op.inputs _execute.record_gradient( "IsotonicRegression", _inputs_flat, _attrs, _result) _result = _IsotonicRegressionOutput._make(_result) return _result IsotonicRegression = tf_export("raw_ops.IsotonicRegression")(_ops.to_raw_op(isotonic_regression)) def isotonic_regression_eager_fallback(input: Annotated[Any, TV_IsotonicRegression_T], output_dtype: TV_IsotonicRegression_output_dtype, name, ctx): if output_dtype is None: output_dtype = _dtypes.float32 output_dtype = _execute.make_type(output_dtype, "output_dtype") _attr_T, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.uint8, _dtypes.int16, _dtypes.int8, _dtypes.int64, _dtypes.bfloat16, _dtypes.uint16, _dtypes.half, _dtypes.uint32, _dtypes.uint64, ]) _inputs_flat = [input] _attrs = ("T", _attr_T, "output_dtype", output_dtype) _result = _execute.execute(b"IsotonicRegression", 2, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "IsotonicRegression", _inputs_flat, _attrs, _result) _result = _IsotonicRegressionOutput._make(_result) return _result TV_L2Loss_T = TypeVar("TV_L2Loss_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('nn.l2_loss') def l2_loss(t: Annotated[Any, TV_L2Loss_T], name=None) -> Annotated[Any, TV_L2Loss_T]: r"""L2 Loss. Computes half the L2 norm of a tensor without the `sqrt`: output = sum(t ** 2) / 2 Args: t: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`. Typically 2-D, but may have any dimensions. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `t`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "L2Loss", name, t) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_l2_loss( (t, name,), None) if _result is not NotImplemented: return _result return l2_loss_eager_fallback( t, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( l2_loss, (), dict(t=t, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_l2_loss( (t, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "L2Loss", t=t, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( l2_loss, (), dict(t=t, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "L2Loss", _inputs_flat, _attrs, _result) _result, = _result return _result L2Loss = tf_export("raw_ops.L2Loss")(_ops.to_raw_op(l2_loss)) _dispatcher_for_l2_loss = l2_loss._tf_type_based_dispatcher.Dispatch def l2_loss_eager_fallback(t: Annotated[Any, TV_L2Loss_T], name, ctx) -> Annotated[Any, TV_L2Loss_T]: _attr_T, (t,) = _execute.args_to_matching_eager([t], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, _dtypes.float64, ]) _inputs_flat = [t] _attrs = ("T", _attr_T) _result = _execute.execute(b"L2Loss", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "L2Loss", _inputs_flat, _attrs, _result) _result, = _result return _result TV_LRN_T = TypeVar("TV_LRN_T", _atypes.BFloat16, _atypes.Float32, _atypes.Half) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('nn.local_response_normalization', 'nn.lrn') def lrn(input: Annotated[Any, TV_LRN_T], depth_radius:int=5, bias:float=1, alpha:float=1, beta:float=0.5, name=None) -> Annotated[Any, TV_LRN_T]: r"""Local Response Normalization. The 4-D `input` tensor is treated as a 3-D array of 1-D vectors (along the last dimension), and each vector is normalized independently. Within a given vector, each component is divided by the weighted, squared sum of inputs within `depth_radius`. In detail, sqr_sum[a, b, c, d] = sum(input[a, b, c, d - depth_radius : d + depth_radius + 1] ** 2) output = input / (bias + alpha * sqr_sum) ** beta For details, see [Krizhevsky et al., ImageNet classification with deep convolutional neural networks (NIPS 2012)](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks). Args: input: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`. 4-D. depth_radius: An optional `int`. Defaults to `5`. 0-D. Half-width of the 1-D normalization window. bias: An optional `float`. Defaults to `1`. An offset (usually positive to avoid dividing by 0). alpha: An optional `float`. Defaults to `1`. A scale factor, usually positive. beta: An optional `float`. Defaults to `0.5`. An exponent. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "LRN", name, input, "depth_radius", depth_radius, "bias", bias, "alpha", alpha, "beta", beta) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_lrn( (input, depth_radius, bias, alpha, beta, name,), None) if _result is not NotImplemented: return _result return lrn_eager_fallback( input, depth_radius=depth_radius, bias=bias, alpha=alpha, beta=beta, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( lrn, (), dict(input=input, depth_radius=depth_radius, bias=bias, alpha=alpha, beta=beta, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_lrn( (input, depth_radius, bias, alpha, beta, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if depth_radius is None: depth_radius = 5 depth_radius = _execute.make_int(depth_radius, "depth_radius") if bias is None: bias = 1 bias = _execute.make_float(bias, "bias") if alpha is None: alpha = 1 alpha = _execute.make_float(alpha, "alpha") if beta is None: beta = 0.5 beta = _execute.make_float(beta, "beta") try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "LRN", input=input, depth_radius=depth_radius, bias=bias, alpha=alpha, beta=beta, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( lrn, (), dict(input=input, depth_radius=depth_radius, bias=bias, alpha=alpha, beta=beta, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("depth_radius", _op._get_attr_int("depth_radius"), "bias", _op.get_attr("bias"), "alpha", _op.get_attr("alpha"), "beta", _op.get_attr("beta"), "T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "LRN", _inputs_flat, _attrs, _result) _result, = _result return _result LRN = tf_export("raw_ops.LRN")(_ops.to_raw_op(lrn)) _dispatcher_for_lrn = lrn._tf_type_based_dispatcher.Dispatch def lrn_eager_fallback(input: Annotated[Any, TV_LRN_T], depth_radius: int, bias: float, alpha: float, beta: float, name, ctx) -> Annotated[Any, TV_LRN_T]: if depth_radius is None: depth_radius = 5 depth_radius = _execute.make_int(depth_radius, "depth_radius") if bias is None: bias = 1 bias = _execute.make_float(bias, "bias") if alpha is None: alpha = 1 alpha = _execute.make_float(alpha, "alpha") if beta is None: beta = 0.5 beta = _execute.make_float(beta, "beta") _attr_T, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, ], _dtypes.float32) _inputs_flat = [input] _attrs = ("depth_radius", depth_radius, "bias", bias, "alpha", alpha, "beta", beta, "T", _attr_T) _result = _execute.execute(b"LRN", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "LRN", _inputs_flat, _attrs, _result) _result, = _result return _result TV_LRNGrad_T = TypeVar("TV_LRNGrad_T", _atypes.BFloat16, _atypes.Float32, _atypes.Half) def lrn_grad(input_grads: Annotated[Any, TV_LRNGrad_T], input_image: Annotated[Any, TV_LRNGrad_T], output_image: Annotated[Any, TV_LRNGrad_T], depth_radius:int=5, bias:float=1, alpha:float=1, beta:float=0.5, name=None) -> Annotated[Any, TV_LRNGrad_T]: r"""Gradients for Local Response Normalization. Args: input_grads: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`. 4-D with shape `[batch, height, width, channels]`. input_image: A `Tensor`. Must have the same type as `input_grads`. 4-D with shape `[batch, height, width, channels]`. output_image: A `Tensor`. Must have the same type as `input_grads`. 4-D with shape `[batch, height, width, channels]`. depth_radius: An optional `int`. Defaults to `5`. A depth radius. bias: An optional `float`. Defaults to `1`. An offset (usually > 0 to avoid dividing by 0). alpha: An optional `float`. Defaults to `1`. A scale factor, usually positive. beta: An optional `float`. Defaults to `0.5`. An exponent. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input_grads`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "LRNGrad", name, input_grads, input_image, output_image, "depth_radius", depth_radius, "bias", bias, "alpha", alpha, "beta", beta) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return lrn_grad_eager_fallback( input_grads, input_image, output_image, depth_radius=depth_radius, bias=bias, alpha=alpha, beta=beta, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if depth_radius is None: depth_radius = 5 depth_radius = _execute.make_int(depth_radius, "depth_radius") if bias is None: bias = 1 bias = _execute.make_float(bias, "bias") if alpha is None: alpha = 1 alpha = _execute.make_float(alpha, "alpha") if beta is None: beta = 0.5 beta = _execute.make_float(beta, "beta") _, _, _op, _outputs = _op_def_library._apply_op_helper( "LRNGrad", input_grads=input_grads, input_image=input_image, output_image=output_image, depth_radius=depth_radius, bias=bias, alpha=alpha, beta=beta, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("depth_radius", _op._get_attr_int("depth_radius"), "bias", _op.get_attr("bias"), "alpha", _op.get_attr("alpha"), "beta", _op.get_attr("beta"), "T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "LRNGrad", _inputs_flat, _attrs, _result) _result, = _result return _result LRNGrad = tf_export("raw_ops.LRNGrad")(_ops.to_raw_op(lrn_grad)) def lrn_grad_eager_fallback(input_grads: Annotated[Any, TV_LRNGrad_T], input_image: Annotated[Any, TV_LRNGrad_T], output_image: Annotated[Any, TV_LRNGrad_T], depth_radius: int, bias: float, alpha: float, beta: float, name, ctx) -> Annotated[Any, TV_LRNGrad_T]: if depth_radius is None: depth_radius = 5 depth_radius = _execute.make_int(depth_radius, "depth_radius") if bias is None: bias = 1 bias = _execute.make_float(bias, "bias") if alpha is None: alpha = 1 alpha = _execute.make_float(alpha, "alpha") if beta is None: beta = 0.5 beta = _execute.make_float(beta, "beta") _attr_T, _inputs_T = _execute.args_to_matching_eager([input_grads, input_image, output_image], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, ], _dtypes.float32) (input_grads, input_image, output_image) = _inputs_T _inputs_flat = [input_grads, input_image, output_image] _attrs = ("depth_radius", depth_radius, "bias", bias, "alpha", alpha, "beta", beta, "T", _attr_T) _result = _execute.execute(b"LRNGrad", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "LRNGrad", _inputs_flat, _attrs, _result) _result, = _result return _result TV_LeakyRelu_T = TypeVar("TV_LeakyRelu_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half) def leaky_relu(features: Annotated[Any, TV_LeakyRelu_T], alpha:float=0.2, name=None) -> Annotated[Any, TV_LeakyRelu_T]: r"""Computes rectified linear: `max(features, features * alpha)`. Args: features: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`. alpha: An optional `float`. Defaults to `0.2`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `features`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "LeakyRelu", name, features, "alpha", alpha) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return leaky_relu_eager_fallback( features, alpha=alpha, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if alpha is None: alpha = 0.2 alpha = _execute.make_float(alpha, "alpha") _, _, _op, _outputs = _op_def_library._apply_op_helper( "LeakyRelu", features=features, alpha=alpha, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("alpha", _op.get_attr("alpha"), "T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "LeakyRelu", _inputs_flat, _attrs, _result) _result, = _result return _result LeakyRelu = tf_export("raw_ops.LeakyRelu")(_ops.to_raw_op(leaky_relu)) def leaky_relu_eager_fallback(features: Annotated[Any, TV_LeakyRelu_T], alpha: float, name, ctx) -> Annotated[Any, TV_LeakyRelu_T]: if alpha is None: alpha = 0.2 alpha = _execute.make_float(alpha, "alpha") _attr_T, (features,) = _execute.args_to_matching_eager([features], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, _dtypes.float64, ], _dtypes.float32) _inputs_flat = [features] _attrs = ("alpha", alpha, "T", _attr_T) _result = _execute.execute(b"LeakyRelu", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "LeakyRelu", _inputs_flat, _attrs, _result) _result, = _result return _result TV_LeakyReluGrad_T = TypeVar("TV_LeakyReluGrad_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half) def leaky_relu_grad(gradients: Annotated[Any, TV_LeakyReluGrad_T], features: Annotated[Any, TV_LeakyReluGrad_T], alpha:float=0.2, name=None) -> Annotated[Any, TV_LeakyReluGrad_T]: r"""Computes rectified linear gradients for a LeakyRelu operation. Args: gradients: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`. The backpropagated gradients to the corresponding LeakyRelu operation. features: A `Tensor`. Must have the same type as `gradients`. The features passed as input to the corresponding LeakyRelu operation, OR the outputs of that operation (both work equivalently). alpha: An optional `float`. Defaults to `0.2`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `gradients`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "LeakyReluGrad", name, gradients, features, "alpha", alpha) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return leaky_relu_grad_eager_fallback( gradients, features, alpha=alpha, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if alpha is None: alpha = 0.2 alpha = _execute.make_float(alpha, "alpha") _, _, _op, _outputs = _op_def_library._apply_op_helper( "LeakyReluGrad", gradients=gradients, features=features, alpha=alpha, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("alpha", _op.get_attr("alpha"), "T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "LeakyReluGrad", _inputs_flat, _attrs, _result) _result, = _result return _result LeakyReluGrad = tf_export("raw_ops.LeakyReluGrad")(_ops.to_raw_op(leaky_relu_grad)) def leaky_relu_grad_eager_fallback(gradients: Annotated[Any, TV_LeakyReluGrad_T], features: Annotated[Any, TV_LeakyReluGrad_T], alpha: float, name, ctx) -> Annotated[Any, TV_LeakyReluGrad_T]: if alpha is None: alpha = 0.2 alpha = _execute.make_float(alpha, "alpha") _attr_T, _inputs_T = _execute.args_to_matching_eager([gradients, features], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, _dtypes.float64, ], _dtypes.float32) (gradients, features) = _inputs_T _inputs_flat = [gradients, features] _attrs = ("alpha", alpha, "T", _attr_T) _result = _execute.execute(b"LeakyReluGrad", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "LeakyReluGrad", _inputs_flat, _attrs, _result) _result, = _result return _result TV_LogSoftmax_T = TypeVar("TV_LogSoftmax_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half) def log_softmax(logits: Annotated[Any, TV_LogSoftmax_T], name=None) -> Annotated[Any, TV_LogSoftmax_T]: r"""Computes log softmax activations. For each batch `i` and class `j` we have logsoftmax[i, j] = logits[i, j] - log(sum(exp(logits[i]))) Args: logits: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`. 2-D with shape `[batch_size, num_classes]`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `logits`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "LogSoftmax", name, logits) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return log_softmax_eager_fallback( logits, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "LogSoftmax", logits=logits, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "LogSoftmax", _inputs_flat, _attrs, _result) _result, = _result return _result LogSoftmax = tf_export("raw_ops.LogSoftmax")(_ops.to_raw_op(log_softmax)) def log_softmax_eager_fallback(logits: Annotated[Any, TV_LogSoftmax_T], name, ctx) -> Annotated[Any, TV_LogSoftmax_T]: _attr_T, (logits,) = _execute.args_to_matching_eager([logits], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, _dtypes.float64, ]) _inputs_flat = [logits] _attrs = ("T", _attr_T) _result = _execute.execute(b"LogSoftmax", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "LogSoftmax", _inputs_flat, _attrs, _result) _result, = _result return _result TV_MaxPool_T = TypeVar("TV_MaxPool_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.QInt8, _atypes.UInt16, _atypes.UInt8) def max_pool(input: Annotated[Any, TV_MaxPool_T], ksize, strides, padding: str, explicit_paddings=[], data_format:str="NHWC", name=None) -> Annotated[Any, TV_MaxPool_T]: r"""Performs max pooling on the input. Args: input: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`, `int32`, `int64`, `uint8`, `int16`, `int8`, `uint16`, `qint8`. 4-D input to pool over. ksize: A list of `ints` that has length `>= 4`. The size of the window for each dimension of the input tensor. strides: A list of `ints` that has length `>= 4`. The stride of the sliding window for each dimension of the input tensor. padding: A `string` from: `"SAME", "VALID", "EXPLICIT"`. The type of padding algorithm to use. explicit_paddings: An optional list of `ints`. Defaults to `[]`. data_format: An optional `string` from: `"NHWC", "NCHW", "NCHW_VECT_C"`. Defaults to `"NHWC"`. Specify the data format of the input and output data. With the default format "NHWC", the data is stored in the order of: [batch, in_height, in_width, in_channels]. Alternatively, the format could be "NCHW", the data storage order of: [batch, in_channels, in_height, in_width]. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "MaxPool", name, input, "ksize", ksize, "strides", strides, "padding", padding, "explicit_paddings", explicit_paddings, "data_format", data_format) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return max_pool_eager_fallback( input, ksize=ksize, strides=strides, padding=padding, explicit_paddings=explicit_paddings, data_format=data_format, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(ksize, (list, tuple)): raise TypeError( "Expected list for 'ksize' argument to " "'max_pool' Op, not %r." % ksize) ksize = [_execute.make_int(_i, "ksize") for _i in ksize] if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'max_pool' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if explicit_paddings is None: explicit_paddings = [] if not isinstance(explicit_paddings, (list, tuple)): raise TypeError( "Expected list for 'explicit_paddings' argument to " "'max_pool' Op, not %r." % explicit_paddings) explicit_paddings = [_execute.make_int(_i, "explicit_paddings") for _i in explicit_paddings] if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") _, _, _op, _outputs = _op_def_library._apply_op_helper( "MaxPool", input=input, ksize=ksize, strides=strides, padding=padding, explicit_paddings=explicit_paddings, data_format=data_format, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "ksize", _op.get_attr("ksize"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "explicit_paddings", _op.get_attr("explicit_paddings"), "data_format", _op.get_attr("data_format")) _inputs_flat = _op.inputs _execute.record_gradient( "MaxPool", _inputs_flat, _attrs, _result) _result, = _result return _result MaxPool = tf_export("raw_ops.MaxPool")(_ops.to_raw_op(max_pool)) def max_pool_eager_fallback(input: Annotated[Any, TV_MaxPool_T], ksize, strides, padding: str, explicit_paddings, data_format: str, name, ctx) -> Annotated[Any, TV_MaxPool_T]: if not isinstance(ksize, (list, tuple)): raise TypeError( "Expected list for 'ksize' argument to " "'max_pool' Op, not %r." % ksize) ksize = [_execute.make_int(_i, "ksize") for _i in ksize] if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'max_pool' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if explicit_paddings is None: explicit_paddings = [] if not isinstance(explicit_paddings, (list, tuple)): raise TypeError( "Expected list for 'explicit_paddings' argument to " "'max_pool' Op, not %r." % explicit_paddings) explicit_paddings = [_execute.make_int(_i, "explicit_paddings") for _i in explicit_paddings] if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") _attr_T, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.int64, _dtypes.uint8, _dtypes.int16, _dtypes.int8, _dtypes.uint16, _dtypes.qint8, ], _dtypes.float32) _inputs_flat = [input] _attrs = ("T", _attr_T, "ksize", ksize, "strides", strides, "padding", padding, "explicit_paddings", explicit_paddings, "data_format", data_format) _result = _execute.execute(b"MaxPool", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "MaxPool", _inputs_flat, _attrs, _result) _result, = _result return _result TV_MaxPool3D_T = TypeVar("TV_MaxPool3D_T", _atypes.BFloat16, _atypes.Float32, _atypes.Half) def max_pool3d(input: Annotated[Any, TV_MaxPool3D_T], ksize, strides, padding: str, data_format:str="NDHWC", name=None) -> Annotated[Any, TV_MaxPool3D_T]: r"""Performs 3D max pooling on the input. Args: input: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`. Shape `[batch, depth, rows, cols, channels]` tensor to pool over. ksize: A list of `ints` that has length `>= 5`. 1-D tensor of length 5. The size of the window for each dimension of the input tensor. Must have `ksize[0] = ksize[4] = 1`. strides: A list of `ints` that has length `>= 5`. 1-D tensor of length 5. The stride of the sliding window for each dimension of `input`. Must have `strides[0] = strides[4] = 1`. padding: A `string` from: `"SAME", "VALID"`. The type of padding algorithm to use. data_format: An optional `string` from: `"NDHWC", "NCDHW"`. Defaults to `"NDHWC"`. The data format of the input and output data. With the default format "NDHWC", the data is stored in the order of: [batch, in_depth, in_height, in_width, in_channels]. Alternatively, the format could be "NCDHW", the data storage order is: [batch, in_channels, in_depth, in_height, in_width]. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "MaxPool3D", name, input, "ksize", ksize, "strides", strides, "padding", padding, "data_format", data_format) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return max_pool3d_eager_fallback( input, ksize=ksize, strides=strides, padding=padding, data_format=data_format, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(ksize, (list, tuple)): raise TypeError( "Expected list for 'ksize' argument to " "'max_pool3d' Op, not %r." % ksize) ksize = [_execute.make_int(_i, "ksize") for _i in ksize] if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'max_pool3d' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if data_format is None: data_format = "NDHWC" data_format = _execute.make_str(data_format, "data_format") _, _, _op, _outputs = _op_def_library._apply_op_helper( "MaxPool3D", input=input, ksize=ksize, strides=strides, padding=padding, data_format=data_format, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("ksize", _op.get_attr("ksize"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "data_format", _op.get_attr("data_format"), "T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "MaxPool3D", _inputs_flat, _attrs, _result) _result, = _result return _result MaxPool3D = tf_export("raw_ops.MaxPool3D")(_ops.to_raw_op(max_pool3d)) def max_pool3d_eager_fallback(input: Annotated[Any, TV_MaxPool3D_T], ksize, strides, padding: str, data_format: str, name, ctx) -> Annotated[Any, TV_MaxPool3D_T]: if not isinstance(ksize, (list, tuple)): raise TypeError( "Expected list for 'ksize' argument to " "'max_pool3d' Op, not %r." % ksize) ksize = [_execute.make_int(_i, "ksize") for _i in ksize] if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'max_pool3d' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if data_format is None: data_format = "NDHWC" data_format = _execute.make_str(data_format, "data_format") _attr_T, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, ]) _inputs_flat = [input] _attrs = ("ksize", ksize, "strides", strides, "padding", padding, "data_format", data_format, "T", _attr_T) _result = _execute.execute(b"MaxPool3D", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "MaxPool3D", _inputs_flat, _attrs, _result) _result, = _result return _result TV_MaxPool3DGrad_T = TypeVar("TV_MaxPool3DGrad_T", _atypes.BFloat16, _atypes.Float32, _atypes.Half) TV_MaxPool3DGrad_TInput = TypeVar("TV_MaxPool3DGrad_TInput", _atypes.BFloat16, _atypes.Float32, _atypes.Half) def max_pool3d_grad(orig_input: Annotated[Any, TV_MaxPool3DGrad_TInput], orig_output: Annotated[Any, TV_MaxPool3DGrad_TInput], grad: Annotated[Any, TV_MaxPool3DGrad_T], ksize, strides, padding: str, data_format:str="NDHWC", name=None) -> Annotated[Any, TV_MaxPool3DGrad_T]: r"""Computes gradients of 3D max pooling function. Args: orig_input: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`. The original input tensor. orig_output: A `Tensor`. Must have the same type as `orig_input`. The original output tensor. grad: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`. Output backprop of shape `[batch, depth, rows, cols, channels]`. ksize: A list of `ints` that has length `>= 5`. 1-D tensor of length 5. The size of the window for each dimension of the input tensor. Must have `ksize[0] = ksize[4] = 1`. strides: A list of `ints` that has length `>= 5`. 1-D tensor of length 5. The stride of the sliding window for each dimension of `input`. Must have `strides[0] = strides[4] = 1`. padding: A `string` from: `"SAME", "VALID"`. The type of padding algorithm to use. data_format: An optional `string` from: `"NDHWC", "NCDHW"`. Defaults to `"NDHWC"`. The data format of the input and output data. With the default format "NDHWC", the data is stored in the order of: [batch, in_depth, in_height, in_width, in_channels]. Alternatively, the format could be "NCDHW", the data storage order is: [batch, in_channels, in_depth, in_height, in_width]. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `grad`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "MaxPool3DGrad", name, orig_input, orig_output, grad, "ksize", ksize, "strides", strides, "padding", padding, "data_format", data_format) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return max_pool3d_grad_eager_fallback( orig_input, orig_output, grad, ksize=ksize, strides=strides, padding=padding, data_format=data_format, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(ksize, (list, tuple)): raise TypeError( "Expected list for 'ksize' argument to " "'max_pool3d_grad' Op, not %r." % ksize) ksize = [_execute.make_int(_i, "ksize") for _i in ksize] if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'max_pool3d_grad' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if data_format is None: data_format = "NDHWC" data_format = _execute.make_str(data_format, "data_format") _, _, _op, _outputs = _op_def_library._apply_op_helper( "MaxPool3DGrad", orig_input=orig_input, orig_output=orig_output, grad=grad, ksize=ksize, strides=strides, padding=padding, data_format=data_format, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("ksize", _op.get_attr("ksize"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "data_format", _op.get_attr("data_format"), "T", _op._get_attr_type("T"), "TInput", _op._get_attr_type("TInput")) _inputs_flat = _op.inputs _execute.record_gradient( "MaxPool3DGrad", _inputs_flat, _attrs, _result) _result, = _result return _result MaxPool3DGrad = tf_export("raw_ops.MaxPool3DGrad")(_ops.to_raw_op(max_pool3d_grad)) def max_pool3d_grad_eager_fallback(orig_input: Annotated[Any, TV_MaxPool3DGrad_TInput], orig_output: Annotated[Any, TV_MaxPool3DGrad_TInput], grad: Annotated[Any, TV_MaxPool3DGrad_T], ksize, strides, padding: str, data_format: str, name, ctx) -> Annotated[Any, TV_MaxPool3DGrad_T]: if not isinstance(ksize, (list, tuple)): raise TypeError( "Expected list for 'ksize' argument to " "'max_pool3d_grad' Op, not %r." % ksize) ksize = [_execute.make_int(_i, "ksize") for _i in ksize] if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'max_pool3d_grad' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if data_format is None: data_format = "NDHWC" data_format = _execute.make_str(data_format, "data_format") _attr_T, (grad,) = _execute.args_to_matching_eager([grad], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, ], _dtypes.float32) _attr_TInput, _inputs_TInput = _execute.args_to_matching_eager([orig_input, orig_output], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, ], _dtypes.float32) (orig_input, orig_output) = _inputs_TInput _inputs_flat = [orig_input, orig_output, grad] _attrs = ("ksize", ksize, "strides", strides, "padding", padding, "data_format", data_format, "T", _attr_T, "TInput", _attr_TInput) _result = _execute.execute(b"MaxPool3DGrad", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "MaxPool3DGrad", _inputs_flat, _attrs, _result) _result, = _result return _result TV_MaxPool3DGradGrad_T = TypeVar("TV_MaxPool3DGradGrad_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.UInt16, _atypes.UInt32, _atypes.UInt64, _atypes.UInt8) def max_pool3d_grad_grad(orig_input: Annotated[Any, TV_MaxPool3DGradGrad_T], orig_output: Annotated[Any, TV_MaxPool3DGradGrad_T], grad: Annotated[Any, TV_MaxPool3DGradGrad_T], ksize, strides, padding: str, data_format:str="NDHWC", name=None) -> Annotated[Any, TV_MaxPool3DGradGrad_T]: r"""Computes second-order gradients of the maxpooling function. Args: orig_input: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`. The original input tensor. orig_output: A `Tensor`. Must have the same type as `orig_input`. The original output tensor. grad: A `Tensor`. Must have the same type as `orig_input`. Output backprop of shape `[batch, depth, rows, cols, channels]`. ksize: A list of `ints` that has length `>= 5`. 1-D tensor of length 5. The size of the window for each dimension of the input tensor. Must have `ksize[0] = ksize[4] = 1`. strides: A list of `ints` that has length `>= 5`. 1-D tensor of length 5. The stride of the sliding window for each dimension of `input`. Must have `strides[0] = strides[4] = 1`. padding: A `string` from: `"SAME", "VALID"`. The type of padding algorithm to use. data_format: An optional `string` from: `"NDHWC", "NCDHW"`. Defaults to `"NDHWC"`. The data format of the input and output data. With the default format "NDHWC", the data is stored in the order of: [batch, in_depth, in_height, in_width, in_channels]. Alternatively, the format could be "NCDHW", the data storage order is: [batch, in_channels, in_depth, in_height, in_width]. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `orig_input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "MaxPool3DGradGrad", name, orig_input, orig_output, grad, "ksize", ksize, "strides", strides, "padding", padding, "data_format", data_format) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return max_pool3d_grad_grad_eager_fallback( orig_input, orig_output, grad, ksize=ksize, strides=strides, padding=padding, data_format=data_format, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(ksize, (list, tuple)): raise TypeError( "Expected list for 'ksize' argument to " "'max_pool3d_grad_grad' Op, not %r." % ksize) ksize = [_execute.make_int(_i, "ksize") for _i in ksize] if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'max_pool3d_grad_grad' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if data_format is None: data_format = "NDHWC" data_format = _execute.make_str(data_format, "data_format") _, _, _op, _outputs = _op_def_library._apply_op_helper( "MaxPool3DGradGrad", orig_input=orig_input, orig_output=orig_output, grad=grad, ksize=ksize, strides=strides, padding=padding, data_format=data_format, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("ksize", _op.get_attr("ksize"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "data_format", _op.get_attr("data_format"), "T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "MaxPool3DGradGrad", _inputs_flat, _attrs, _result) _result, = _result return _result MaxPool3DGradGrad = tf_export("raw_ops.MaxPool3DGradGrad")(_ops.to_raw_op(max_pool3d_grad_grad)) def max_pool3d_grad_grad_eager_fallback(orig_input: Annotated[Any, TV_MaxPool3DGradGrad_T], orig_output: Annotated[Any, TV_MaxPool3DGradGrad_T], grad: Annotated[Any, TV_MaxPool3DGradGrad_T], ksize, strides, padding: str, data_format: str, name, ctx) -> Annotated[Any, TV_MaxPool3DGradGrad_T]: if not isinstance(ksize, (list, tuple)): raise TypeError( "Expected list for 'ksize' argument to " "'max_pool3d_grad_grad' Op, not %r." % ksize) ksize = [_execute.make_int(_i, "ksize") for _i in ksize] if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'max_pool3d_grad_grad' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if data_format is None: data_format = "NDHWC" data_format = _execute.make_str(data_format, "data_format") _attr_T, _inputs_T = _execute.args_to_matching_eager([orig_input, orig_output, grad], ctx, [_dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.uint8, _dtypes.int16, _dtypes.int8, _dtypes.int64, _dtypes.bfloat16, _dtypes.uint16, _dtypes.half, _dtypes.uint32, _dtypes.uint64, ]) (orig_input, orig_output, grad) = _inputs_T _inputs_flat = [orig_input, orig_output, grad] _attrs = ("ksize", ksize, "strides", strides, "padding", padding, "data_format", data_format, "T", _attr_T) _result = _execute.execute(b"MaxPool3DGradGrad", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "MaxPool3DGradGrad", _inputs_flat, _attrs, _result) _result, = _result return _result TV_MaxPoolGrad_T = TypeVar("TV_MaxPoolGrad_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.UInt16, _atypes.UInt32, _atypes.UInt64, _atypes.UInt8) def max_pool_grad(orig_input: Annotated[Any, TV_MaxPoolGrad_T], orig_output: Annotated[Any, TV_MaxPoolGrad_T], grad: Annotated[Any, TV_MaxPoolGrad_T], ksize, strides, padding: str, explicit_paddings=[], data_format:str="NHWC", name=None) -> Annotated[Any, TV_MaxPoolGrad_T]: r"""Computes gradients of the maxpooling function. Args: orig_input: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`. The original input tensor. orig_output: A `Tensor`. Must have the same type as `orig_input`. The original output tensor. grad: A `Tensor`. Must have the same type as `orig_input`. 4-D. Gradients w.r.t. the output of `max_pool`. ksize: A list of `ints` that has length `>= 4`. The size of the window for each dimension of the input tensor. strides: A list of `ints` that has length `>= 4`. The stride of the sliding window for each dimension of the input tensor. padding: A `string` from: `"SAME", "VALID", "EXPLICIT"`. The type of padding algorithm to use. explicit_paddings: An optional list of `ints`. Defaults to `[]`. data_format: An optional `string` from: `"NHWC", "NCHW"`. Defaults to `"NHWC"`. Specify the data format of the input and output data. With the default format "NHWC", the data is stored in the order of: [batch, in_height, in_width, in_channels]. Alternatively, the format could be "NCHW", the data storage order of: [batch, in_channels, in_height, in_width]. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `orig_input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "MaxPoolGrad", name, orig_input, orig_output, grad, "ksize", ksize, "strides", strides, "padding", padding, "explicit_paddings", explicit_paddings, "data_format", data_format) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return max_pool_grad_eager_fallback( orig_input, orig_output, grad, ksize=ksize, strides=strides, padding=padding, explicit_paddings=explicit_paddings, data_format=data_format, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(ksize, (list, tuple)): raise TypeError( "Expected list for 'ksize' argument to " "'max_pool_grad' Op, not %r." % ksize) ksize = [_execute.make_int(_i, "ksize") for _i in ksize] if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'max_pool_grad' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if explicit_paddings is None: explicit_paddings = [] if not isinstance(explicit_paddings, (list, tuple)): raise TypeError( "Expected list for 'explicit_paddings' argument to " "'max_pool_grad' Op, not %r." % explicit_paddings) explicit_paddings = [_execute.make_int(_i, "explicit_paddings") for _i in explicit_paddings] if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") _, _, _op, _outputs = _op_def_library._apply_op_helper( "MaxPoolGrad", orig_input=orig_input, orig_output=orig_output, grad=grad, ksize=ksize, strides=strides, padding=padding, explicit_paddings=explicit_paddings, data_format=data_format, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("ksize", _op.get_attr("ksize"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "explicit_paddings", _op.get_attr("explicit_paddings"), "data_format", _op.get_attr("data_format"), "T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "MaxPoolGrad", _inputs_flat, _attrs, _result) _result, = _result return _result MaxPoolGrad = tf_export("raw_ops.MaxPoolGrad")(_ops.to_raw_op(max_pool_grad)) def max_pool_grad_eager_fallback(orig_input: Annotated[Any, TV_MaxPoolGrad_T], orig_output: Annotated[Any, TV_MaxPoolGrad_T], grad: Annotated[Any, TV_MaxPoolGrad_T], ksize, strides, padding: str, explicit_paddings, data_format: str, name, ctx) -> Annotated[Any, TV_MaxPoolGrad_T]: if not isinstance(ksize, (list, tuple)): raise TypeError( "Expected list for 'ksize' argument to " "'max_pool_grad' Op, not %r." % ksize) ksize = [_execute.make_int(_i, "ksize") for _i in ksize] if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'max_pool_grad' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if explicit_paddings is None: explicit_paddings = [] if not isinstance(explicit_paddings, (list, tuple)): raise TypeError( "Expected list for 'explicit_paddings' argument to " "'max_pool_grad' Op, not %r." % explicit_paddings) explicit_paddings = [_execute.make_int(_i, "explicit_paddings") for _i in explicit_paddings] if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") _attr_T, _inputs_T = _execute.args_to_matching_eager([orig_input, orig_output, grad], ctx, [_dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.uint8, _dtypes.int16, _dtypes.int8, _dtypes.int64, _dtypes.bfloat16, _dtypes.uint16, _dtypes.half, _dtypes.uint32, _dtypes.uint64, ], _dtypes.float32) (orig_input, orig_output, grad) = _inputs_T _inputs_flat = [orig_input, orig_output, grad] _attrs = ("ksize", ksize, "strides", strides, "padding", padding, "explicit_paddings", explicit_paddings, "data_format", data_format, "T", _attr_T) _result = _execute.execute(b"MaxPoolGrad", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "MaxPoolGrad", _inputs_flat, _attrs, _result) _result, = _result return _result TV_MaxPoolGradGrad_T = TypeVar("TV_MaxPoolGradGrad_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.UInt16, _atypes.UInt32, _atypes.UInt64, _atypes.UInt8) def max_pool_grad_grad(orig_input: Annotated[Any, TV_MaxPoolGradGrad_T], orig_output: Annotated[Any, TV_MaxPoolGradGrad_T], grad: Annotated[Any, TV_MaxPoolGradGrad_T], ksize, strides, padding: str, data_format:str="NHWC", name=None) -> Annotated[Any, TV_MaxPoolGradGrad_T]: r"""Computes second-order gradients of the maxpooling function. Args: orig_input: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`. The original input tensor. orig_output: A `Tensor`. Must have the same type as `orig_input`. The original output tensor. grad: A `Tensor`. Must have the same type as `orig_input`. 4-D. Gradients of gradients w.r.t. the input of `max_pool`. ksize: A list of `ints` that has length `>= 4`. The size of the window for each dimension of the input tensor. strides: A list of `ints` that has length `>= 4`. The stride of the sliding window for each dimension of the input tensor. padding: A `string` from: `"SAME", "VALID"`. The type of padding algorithm to use. data_format: An optional `string` from: `"NHWC", "NCHW"`. Defaults to `"NHWC"`. Specify the data format of the input and output data. With the default format "NHWC", the data is stored in the order of: [batch, in_height, in_width, in_channels]. Alternatively, the format could be "NCHW", the data storage order of: [batch, in_channels, in_height, in_width]. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `orig_input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "MaxPoolGradGrad", name, orig_input, orig_output, grad, "ksize", ksize, "strides", strides, "padding", padding, "data_format", data_format) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return max_pool_grad_grad_eager_fallback( orig_input, orig_output, grad, ksize=ksize, strides=strides, padding=padding, data_format=data_format, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(ksize, (list, tuple)): raise TypeError( "Expected list for 'ksize' argument to " "'max_pool_grad_grad' Op, not %r." % ksize) ksize = [_execute.make_int(_i, "ksize") for _i in ksize] if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'max_pool_grad_grad' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") _, _, _op, _outputs = _op_def_library._apply_op_helper( "MaxPoolGradGrad", orig_input=orig_input, orig_output=orig_output, grad=grad, ksize=ksize, strides=strides, padding=padding, data_format=data_format, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("ksize", _op.get_attr("ksize"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "data_format", _op.get_attr("data_format"), "T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "MaxPoolGradGrad", _inputs_flat, _attrs, _result) _result, = _result return _result MaxPoolGradGrad = tf_export("raw_ops.MaxPoolGradGrad")(_ops.to_raw_op(max_pool_grad_grad)) def max_pool_grad_grad_eager_fallback(orig_input: Annotated[Any, TV_MaxPoolGradGrad_T], orig_output: Annotated[Any, TV_MaxPoolGradGrad_T], grad: Annotated[Any, TV_MaxPoolGradGrad_T], ksize, strides, padding: str, data_format: str, name, ctx) -> Annotated[Any, TV_MaxPoolGradGrad_T]: if not isinstance(ksize, (list, tuple)): raise TypeError( "Expected list for 'ksize' argument to " "'max_pool_grad_grad' Op, not %r." % ksize) ksize = [_execute.make_int(_i, "ksize") for _i in ksize] if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'max_pool_grad_grad' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") _attr_T, _inputs_T = _execute.args_to_matching_eager([orig_input, orig_output, grad], ctx, [_dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.uint8, _dtypes.int16, _dtypes.int8, _dtypes.int64, _dtypes.bfloat16, _dtypes.uint16, _dtypes.half, _dtypes.uint32, _dtypes.uint64, ]) (orig_input, orig_output, grad) = _inputs_T _inputs_flat = [orig_input, orig_output, grad] _attrs = ("ksize", ksize, "strides", strides, "padding", padding, "data_format", data_format, "T", _attr_T) _result = _execute.execute(b"MaxPoolGradGrad", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "MaxPoolGradGrad", _inputs_flat, _attrs, _result) _result, = _result return _result TV_MaxPoolGradGradV2_T = TypeVar("TV_MaxPoolGradGradV2_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.UInt16, _atypes.UInt32, _atypes.UInt64, _atypes.UInt8) def max_pool_grad_grad_v2(orig_input: Annotated[Any, TV_MaxPoolGradGradV2_T], orig_output: Annotated[Any, TV_MaxPoolGradGradV2_T], grad: Annotated[Any, TV_MaxPoolGradGradV2_T], ksize: Annotated[Any, _atypes.Int32], strides: Annotated[Any, _atypes.Int32], padding: str, data_format:str="NHWC", name=None) -> Annotated[Any, TV_MaxPoolGradGradV2_T]: r"""Computes second-order gradients of the maxpooling function. Args: orig_input: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`. The original input tensor. orig_output: A `Tensor`. Must have the same type as `orig_input`. The original output tensor. grad: A `Tensor`. Must have the same type as `orig_input`. 4-D. Gradients of gradients w.r.t. the input of `max_pool`. ksize: A `Tensor` of type `int32`. The size of the window for each dimension of the input tensor. strides: A `Tensor` of type `int32`. The stride of the sliding window for each dimension of the input tensor. padding: A `string` from: `"SAME", "VALID"`. The type of padding algorithm to use. data_format: An optional `string` from: `"NHWC", "NCHW"`. Defaults to `"NHWC"`. Specify the data format of the input and output data. With the default format "NHWC", the data is stored in the order of: [batch, in_height, in_width, in_channels]. Alternatively, the format could be "NCHW", the data storage order of: [batch, in_channels, in_height, in_width]. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `orig_input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "MaxPoolGradGradV2", name, orig_input, orig_output, grad, ksize, strides, "padding", padding, "data_format", data_format) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return max_pool_grad_grad_v2_eager_fallback( orig_input, orig_output, grad, ksize, strides, padding=padding, data_format=data_format, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. padding = _execute.make_str(padding, "padding") if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") _, _, _op, _outputs = _op_def_library._apply_op_helper( "MaxPoolGradGradV2", orig_input=orig_input, orig_output=orig_output, grad=grad, ksize=ksize, strides=strides, padding=padding, data_format=data_format, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("padding", _op.get_attr("padding"), "data_format", _op.get_attr("data_format"), "T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "MaxPoolGradGradV2", _inputs_flat, _attrs, _result) _result, = _result return _result MaxPoolGradGradV2 = tf_export("raw_ops.MaxPoolGradGradV2")(_ops.to_raw_op(max_pool_grad_grad_v2)) def max_pool_grad_grad_v2_eager_fallback(orig_input: Annotated[Any, TV_MaxPoolGradGradV2_T], orig_output: Annotated[Any, TV_MaxPoolGradGradV2_T], grad: Annotated[Any, TV_MaxPoolGradGradV2_T], ksize: Annotated[Any, _atypes.Int32], strides: Annotated[Any, _atypes.Int32], padding: str, data_format: str, name, ctx) -> Annotated[Any, TV_MaxPoolGradGradV2_T]: padding = _execute.make_str(padding, "padding") if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") _attr_T, _inputs_T = _execute.args_to_matching_eager([orig_input, orig_output, grad], ctx, [_dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.uint8, _dtypes.int16, _dtypes.int8, _dtypes.int64, _dtypes.bfloat16, _dtypes.uint16, _dtypes.half, _dtypes.uint32, _dtypes.uint64, ]) (orig_input, orig_output, grad) = _inputs_T ksize = _ops.convert_to_tensor(ksize, _dtypes.int32) strides = _ops.convert_to_tensor(strides, _dtypes.int32) _inputs_flat = [orig_input, orig_output, grad, ksize, strides] _attrs = ("padding", padding, "data_format", data_format, "T", _attr_T) _result = _execute.execute(b"MaxPoolGradGradV2", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "MaxPoolGradGradV2", _inputs_flat, _attrs, _result) _result, = _result return _result TV_MaxPoolGradGradWithArgmax_Targmax = TypeVar("TV_MaxPoolGradGradWithArgmax_Targmax", _atypes.Int32, _atypes.Int64) TV_MaxPoolGradGradWithArgmax_T = TypeVar("TV_MaxPoolGradGradWithArgmax_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.UInt16, _atypes.UInt32, _atypes.UInt64, _atypes.UInt8) def max_pool_grad_grad_with_argmax(input: Annotated[Any, TV_MaxPoolGradGradWithArgmax_T], grad: Annotated[Any, TV_MaxPoolGradGradWithArgmax_T], argmax: Annotated[Any, TV_MaxPoolGradGradWithArgmax_Targmax], ksize, strides, padding: str, include_batch_in_index:bool=False, name=None) -> Annotated[Any, TV_MaxPoolGradGradWithArgmax_T]: r"""Computes second-order gradients of the maxpooling function. Args: input: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`. The original input. grad: A `Tensor`. Must have the same type as `input`. 4-D with shape `[batch, height, width, channels]`. Gradients w.r.t. the input of `max_pool`. argmax: A `Tensor`. Must be one of the following types: `int32`, `int64`. The indices of the maximum values chosen for each output of `max_pool`. ksize: A list of `ints` that has length `>= 4`. The size of the window for each dimension of the input tensor. strides: A list of `ints` that has length `>= 4`. The stride of the sliding window for each dimension of the input tensor. padding: A `string` from: `"SAME", "VALID"`. The type of padding algorithm to use. include_batch_in_index: An optional `bool`. Defaults to `False`. Whether to include batch dimension in flattened index of `argmax`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "MaxPoolGradGradWithArgmax", name, input, grad, argmax, "ksize", ksize, "strides", strides, "padding", padding, "include_batch_in_index", include_batch_in_index) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return max_pool_grad_grad_with_argmax_eager_fallback( input, grad, argmax, ksize=ksize, strides=strides, padding=padding, include_batch_in_index=include_batch_in_index, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(ksize, (list, tuple)): raise TypeError( "Expected list for 'ksize' argument to " "'max_pool_grad_grad_with_argmax' Op, not %r." % ksize) ksize = [_execute.make_int(_i, "ksize") for _i in ksize] if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'max_pool_grad_grad_with_argmax' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if include_batch_in_index is None: include_batch_in_index = False include_batch_in_index = _execute.make_bool(include_batch_in_index, "include_batch_in_index") _, _, _op, _outputs = _op_def_library._apply_op_helper( "MaxPoolGradGradWithArgmax", input=input, grad=grad, argmax=argmax, ksize=ksize, strides=strides, padding=padding, include_batch_in_index=include_batch_in_index, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("ksize", _op.get_attr("ksize"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "include_batch_in_index", _op._get_attr_bool("include_batch_in_index"), "Targmax", _op._get_attr_type("Targmax"), "T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "MaxPoolGradGradWithArgmax", _inputs_flat, _attrs, _result) _result, = _result return _result MaxPoolGradGradWithArgmax = tf_export("raw_ops.MaxPoolGradGradWithArgmax")(_ops.to_raw_op(max_pool_grad_grad_with_argmax)) def max_pool_grad_grad_with_argmax_eager_fallback(input: Annotated[Any, TV_MaxPoolGradGradWithArgmax_T], grad: Annotated[Any, TV_MaxPoolGradGradWithArgmax_T], argmax: Annotated[Any, TV_MaxPoolGradGradWithArgmax_Targmax], ksize, strides, padding: str, include_batch_in_index: bool, name, ctx) -> Annotated[Any, TV_MaxPoolGradGradWithArgmax_T]: if not isinstance(ksize, (list, tuple)): raise TypeError( "Expected list for 'ksize' argument to " "'max_pool_grad_grad_with_argmax' Op, not %r." % ksize) ksize = [_execute.make_int(_i, "ksize") for _i in ksize] if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'max_pool_grad_grad_with_argmax' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if include_batch_in_index is None: include_batch_in_index = False include_batch_in_index = _execute.make_bool(include_batch_in_index, "include_batch_in_index") _attr_Targmax, (argmax,) = _execute.args_to_matching_eager([argmax], ctx, [_dtypes.int32, _dtypes.int64, ]) _attr_T, _inputs_T = _execute.args_to_matching_eager([input, grad], ctx, [_dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.uint8, _dtypes.int16, _dtypes.int8, _dtypes.int64, _dtypes.bfloat16, _dtypes.uint16, _dtypes.half, _dtypes.uint32, _dtypes.uint64, ]) (input, grad) = _inputs_T _inputs_flat = [input, grad, argmax] _attrs = ("ksize", ksize, "strides", strides, "padding", padding, "include_batch_in_index", include_batch_in_index, "Targmax", _attr_Targmax, "T", _attr_T) _result = _execute.execute(b"MaxPoolGradGradWithArgmax", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "MaxPoolGradGradWithArgmax", _inputs_flat, _attrs, _result) _result, = _result return _result TV_MaxPoolGradV2_T = TypeVar("TV_MaxPoolGradV2_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.UInt16, _atypes.UInt32, _atypes.UInt64, _atypes.UInt8) def max_pool_grad_v2(orig_input: Annotated[Any, TV_MaxPoolGradV2_T], orig_output: Annotated[Any, TV_MaxPoolGradV2_T], grad: Annotated[Any, TV_MaxPoolGradV2_T], ksize: Annotated[Any, _atypes.Int32], strides: Annotated[Any, _atypes.Int32], padding: str, data_format:str="NHWC", name=None) -> Annotated[Any, TV_MaxPoolGradV2_T]: r"""Computes gradients of the maxpooling function. Args: orig_input: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`. The original input tensor. orig_output: A `Tensor`. Must have the same type as `orig_input`. The original output tensor. grad: A `Tensor`. Must have the same type as `orig_input`. 4-D. Gradients w.r.t. the output of `max_pool`. ksize: A `Tensor` of type `int32`. The size of the window for each dimension of the input tensor. strides: A `Tensor` of type `int32`. The stride of the sliding window for each dimension of the input tensor. padding: A `string` from: `"SAME", "VALID"`. The type of padding algorithm to use. data_format: An optional `string` from: `"NHWC", "NCHW"`. Defaults to `"NHWC"`. Specify the data format of the input and output data. With the default format "NHWC", the data is stored in the order of: [batch, in_height, in_width, in_channels]. Alternatively, the format could be "NCHW", the data storage order of: [batch, in_channels, in_height, in_width]. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `orig_input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "MaxPoolGradV2", name, orig_input, orig_output, grad, ksize, strides, "padding", padding, "data_format", data_format) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return max_pool_grad_v2_eager_fallback( orig_input, orig_output, grad, ksize, strides, padding=padding, data_format=data_format, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. padding = _execute.make_str(padding, "padding") if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") _, _, _op, _outputs = _op_def_library._apply_op_helper( "MaxPoolGradV2", orig_input=orig_input, orig_output=orig_output, grad=grad, ksize=ksize, strides=strides, padding=padding, data_format=data_format, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("padding", _op.get_attr("padding"), "data_format", _op.get_attr("data_format"), "T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "MaxPoolGradV2", _inputs_flat, _attrs, _result) _result, = _result return _result MaxPoolGradV2 = tf_export("raw_ops.MaxPoolGradV2")(_ops.to_raw_op(max_pool_grad_v2)) def max_pool_grad_v2_eager_fallback(orig_input: Annotated[Any, TV_MaxPoolGradV2_T], orig_output: Annotated[Any, TV_MaxPoolGradV2_T], grad: Annotated[Any, TV_MaxPoolGradV2_T], ksize: Annotated[Any, _atypes.Int32], strides: Annotated[Any, _atypes.Int32], padding: str, data_format: str, name, ctx) -> Annotated[Any, TV_MaxPoolGradV2_T]: padding = _execute.make_str(padding, "padding") if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") _attr_T, _inputs_T = _execute.args_to_matching_eager([orig_input, orig_output, grad], ctx, [_dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.uint8, _dtypes.int16, _dtypes.int8, _dtypes.int64, _dtypes.bfloat16, _dtypes.uint16, _dtypes.half, _dtypes.uint32, _dtypes.uint64, ], _dtypes.float32) (orig_input, orig_output, grad) = _inputs_T ksize = _ops.convert_to_tensor(ksize, _dtypes.int32) strides = _ops.convert_to_tensor(strides, _dtypes.int32) _inputs_flat = [orig_input, orig_output, grad, ksize, strides] _attrs = ("padding", padding, "data_format", data_format, "T", _attr_T) _result = _execute.execute(b"MaxPoolGradV2", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "MaxPoolGradV2", _inputs_flat, _attrs, _result) _result, = _result return _result TV_MaxPoolGradWithArgmax_Targmax = TypeVar("TV_MaxPoolGradWithArgmax_Targmax", _atypes.Int32, _atypes.Int64) TV_MaxPoolGradWithArgmax_T = TypeVar("TV_MaxPoolGradWithArgmax_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.UInt16, _atypes.UInt32, _atypes.UInt64, _atypes.UInt8) def max_pool_grad_with_argmax(input: Annotated[Any, TV_MaxPoolGradWithArgmax_T], grad: Annotated[Any, TV_MaxPoolGradWithArgmax_T], argmax: Annotated[Any, TV_MaxPoolGradWithArgmax_Targmax], ksize, strides, padding: str, include_batch_in_index:bool=False, name=None) -> Annotated[Any, TV_MaxPoolGradWithArgmax_T]: r"""Computes gradients of the maxpooling function. Args: input: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`. The original input. grad: A `Tensor`. Must have the same type as `input`. 4-D with shape `[batch, height, width, channels]`. Gradients w.r.t. the output of `max_pool`. argmax: A `Tensor`. Must be one of the following types: `int32`, `int64`. The indices of the maximum values chosen for each output of `max_pool`. ksize: A list of `ints` that has length `>= 4`. The size of the window for each dimension of the input tensor. strides: A list of `ints` that has length `>= 4`. The stride of the sliding window for each dimension of the input tensor. padding: A `string` from: `"SAME", "VALID"`. The type of padding algorithm to use. include_batch_in_index: An optional `bool`. Defaults to `False`. Whether to include batch dimension in flattened index of `argmax`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "MaxPoolGradWithArgmax", name, input, grad, argmax, "ksize", ksize, "strides", strides, "padding", padding, "include_batch_in_index", include_batch_in_index) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return max_pool_grad_with_argmax_eager_fallback( input, grad, argmax, ksize=ksize, strides=strides, padding=padding, include_batch_in_index=include_batch_in_index, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(ksize, (list, tuple)): raise TypeError( "Expected list for 'ksize' argument to " "'max_pool_grad_with_argmax' Op, not %r." % ksize) ksize = [_execute.make_int(_i, "ksize") for _i in ksize] if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'max_pool_grad_with_argmax' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if include_batch_in_index is None: include_batch_in_index = False include_batch_in_index = _execute.make_bool(include_batch_in_index, "include_batch_in_index") _, _, _op, _outputs = _op_def_library._apply_op_helper( "MaxPoolGradWithArgmax", input=input, grad=grad, argmax=argmax, ksize=ksize, strides=strides, padding=padding, include_batch_in_index=include_batch_in_index, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("ksize", _op.get_attr("ksize"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "include_batch_in_index", _op._get_attr_bool("include_batch_in_index"), "Targmax", _op._get_attr_type("Targmax"), "T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "MaxPoolGradWithArgmax", _inputs_flat, _attrs, _result) _result, = _result return _result MaxPoolGradWithArgmax = tf_export("raw_ops.MaxPoolGradWithArgmax")(_ops.to_raw_op(max_pool_grad_with_argmax)) def max_pool_grad_with_argmax_eager_fallback(input: Annotated[Any, TV_MaxPoolGradWithArgmax_T], grad: Annotated[Any, TV_MaxPoolGradWithArgmax_T], argmax: Annotated[Any, TV_MaxPoolGradWithArgmax_Targmax], ksize, strides, padding: str, include_batch_in_index: bool, name, ctx) -> Annotated[Any, TV_MaxPoolGradWithArgmax_T]: if not isinstance(ksize, (list, tuple)): raise TypeError( "Expected list for 'ksize' argument to " "'max_pool_grad_with_argmax' Op, not %r." % ksize) ksize = [_execute.make_int(_i, "ksize") for _i in ksize] if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'max_pool_grad_with_argmax' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if include_batch_in_index is None: include_batch_in_index = False include_batch_in_index = _execute.make_bool(include_batch_in_index, "include_batch_in_index") _attr_Targmax, (argmax,) = _execute.args_to_matching_eager([argmax], ctx, [_dtypes.int32, _dtypes.int64, ]) _attr_T, _inputs_T = _execute.args_to_matching_eager([input, grad], ctx, [_dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.uint8, _dtypes.int16, _dtypes.int8, _dtypes.int64, _dtypes.bfloat16, _dtypes.uint16, _dtypes.half, _dtypes.uint32, _dtypes.uint64, ]) (input, grad) = _inputs_T _inputs_flat = [input, grad, argmax] _attrs = ("ksize", ksize, "strides", strides, "padding", padding, "include_batch_in_index", include_batch_in_index, "Targmax", _attr_Targmax, "T", _attr_T) _result = _execute.execute(b"MaxPoolGradWithArgmax", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "MaxPoolGradWithArgmax", _inputs_flat, _attrs, _result) _result, = _result return _result TV_MaxPoolV2_T = TypeVar("TV_MaxPoolV2_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.QInt8, _atypes.UInt16, _atypes.UInt8) def max_pool_v2(input: Annotated[Any, TV_MaxPoolV2_T], ksize: Annotated[Any, _atypes.Int32], strides: Annotated[Any, _atypes.Int32], padding: str, data_format:str="NHWC", name=None) -> Annotated[Any, TV_MaxPoolV2_T]: r"""Performs max pooling on the input. Args: input: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`, `int32`, `int64`, `uint8`, `int16`, `int8`, `uint16`, `qint8`. 4-D input to pool over. ksize: A `Tensor` of type `int32`. The size of the window for each dimension of the input tensor. strides: A `Tensor` of type `int32`. The stride of the sliding window for each dimension of the input tensor. padding: A `string` from: `"SAME", "VALID"`. The type of padding algorithm to use. data_format: An optional `string` from: `"NHWC", "NCHW", "NCHW_VECT_C"`. Defaults to `"NHWC"`. Specify the data format of the input and output data. With the default format "NHWC", the data is stored in the order of: [batch, in_height, in_width, in_channels]. Alternatively, the format could be "NCHW", the data storage order of: [batch, in_channels, in_height, in_width]. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "MaxPoolV2", name, input, ksize, strides, "padding", padding, "data_format", data_format) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return max_pool_v2_eager_fallback( input, ksize, strides, padding=padding, data_format=data_format, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. padding = _execute.make_str(padding, "padding") if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") _, _, _op, _outputs = _op_def_library._apply_op_helper( "MaxPoolV2", input=input, ksize=ksize, strides=strides, padding=padding, data_format=data_format, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "padding", _op.get_attr("padding"), "data_format", _op.get_attr("data_format")) _inputs_flat = _op.inputs _execute.record_gradient( "MaxPoolV2", _inputs_flat, _attrs, _result) _result, = _result return _result MaxPoolV2 = tf_export("raw_ops.MaxPoolV2")(_ops.to_raw_op(max_pool_v2)) def max_pool_v2_eager_fallback(input: Annotated[Any, TV_MaxPoolV2_T], ksize: Annotated[Any, _atypes.Int32], strides: Annotated[Any, _atypes.Int32], padding: str, data_format: str, name, ctx) -> Annotated[Any, TV_MaxPoolV2_T]: padding = _execute.make_str(padding, "padding") if data_format is None: data_format = "NHWC" data_format = _execute.make_str(data_format, "data_format") _attr_T, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.int64, _dtypes.uint8, _dtypes.int16, _dtypes.int8, _dtypes.uint16, _dtypes.qint8, ], _dtypes.float32) ksize = _ops.convert_to_tensor(ksize, _dtypes.int32) strides = _ops.convert_to_tensor(strides, _dtypes.int32) _inputs_flat = [input, ksize, strides] _attrs = ("T", _attr_T, "padding", padding, "data_format", data_format) _result = _execute.execute(b"MaxPoolV2", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "MaxPoolV2", _inputs_flat, _attrs, _result) _result, = _result return _result _MaxPoolWithArgmaxOutput = collections.namedtuple( "MaxPoolWithArgmax", ["output", "argmax"]) TV_MaxPoolWithArgmax_Targmax = TypeVar("TV_MaxPoolWithArgmax_Targmax", _atypes.Int32, _atypes.Int64) TV_MaxPoolWithArgmax_T = TypeVar("TV_MaxPoolWithArgmax_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.UInt16, _atypes.UInt32, _atypes.UInt64, _atypes.UInt8) def max_pool_with_argmax(input: Annotated[Any, TV_MaxPoolWithArgmax_T], ksize, strides, padding: str, Targmax:TV_MaxPoolWithArgmax_Targmax=_dtypes.int64, include_batch_in_index:bool=False, name=None): r"""Performs max pooling on the input and outputs both max values and indices. The indices in `argmax` are flattened, so that a maximum value at position `[b, y, x, c]` becomes flattened index: `(y * width + x) * channels + c` if `include_batch_in_index` is False; `((b * height + y) * width + x) * channels + c` if `include_batch_in_index` is True. The indices returned are always in `[0, height) x [0, width)` before flattening, even if padding is involved and the mathematically correct answer is outside (either negative or too large). This is a bug, but fixing it is difficult to do in a safe backwards compatible way, especially due to flattening. Args: input: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`. 4-D with shape `[batch, height, width, channels]`. Input to pool over. ksize: A list of `ints` that has length `>= 4`. The size of the window for each dimension of the input tensor. strides: A list of `ints` that has length `>= 4`. The stride of the sliding window for each dimension of the input tensor. padding: A `string` from: `"SAME", "VALID"`. The type of padding algorithm to use. Targmax: An optional `tf.DType` from: `tf.int32, tf.int64`. Defaults to `tf.int64`. include_batch_in_index: An optional `bool`. Defaults to `False`. Whether to include batch dimension in flattened index of `argmax`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (output, argmax). output: A `Tensor`. Has the same type as `input`. argmax: A `Tensor` of type `Targmax`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "MaxPoolWithArgmax", name, input, "ksize", ksize, "strides", strides, "Targmax", Targmax, "padding", padding, "include_batch_in_index", include_batch_in_index) _result = _MaxPoolWithArgmaxOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return max_pool_with_argmax_eager_fallback( input, ksize=ksize, strides=strides, Targmax=Targmax, padding=padding, include_batch_in_index=include_batch_in_index, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(ksize, (list, tuple)): raise TypeError( "Expected list for 'ksize' argument to " "'max_pool_with_argmax' Op, not %r." % ksize) ksize = [_execute.make_int(_i, "ksize") for _i in ksize] if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'max_pool_with_argmax' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if Targmax is None: Targmax = _dtypes.int64 Targmax = _execute.make_type(Targmax, "Targmax") if include_batch_in_index is None: include_batch_in_index = False include_batch_in_index = _execute.make_bool(include_batch_in_index, "include_batch_in_index") _, _, _op, _outputs = _op_def_library._apply_op_helper( "MaxPoolWithArgmax", input=input, ksize=ksize, strides=strides, padding=padding, Targmax=Targmax, include_batch_in_index=include_batch_in_index, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("ksize", _op.get_attr("ksize"), "strides", _op.get_attr("strides"), "Targmax", _op._get_attr_type("Targmax"), "padding", _op.get_attr("padding"), "include_batch_in_index", _op._get_attr_bool("include_batch_in_index"), "T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "MaxPoolWithArgmax", _inputs_flat, _attrs, _result) _result = _MaxPoolWithArgmaxOutput._make(_result) return _result MaxPoolWithArgmax = tf_export("raw_ops.MaxPoolWithArgmax")(_ops.to_raw_op(max_pool_with_argmax)) def max_pool_with_argmax_eager_fallback(input: Annotated[Any, TV_MaxPoolWithArgmax_T], ksize, strides, padding: str, Targmax: TV_MaxPoolWithArgmax_Targmax, include_batch_in_index: bool, name, ctx): if not isinstance(ksize, (list, tuple)): raise TypeError( "Expected list for 'ksize' argument to " "'max_pool_with_argmax' Op, not %r." % ksize) ksize = [_execute.make_int(_i, "ksize") for _i in ksize] if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'max_pool_with_argmax' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if Targmax is None: Targmax = _dtypes.int64 Targmax = _execute.make_type(Targmax, "Targmax") if include_batch_in_index is None: include_batch_in_index = False include_batch_in_index = _execute.make_bool(include_batch_in_index, "include_batch_in_index") _attr_T, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.uint8, _dtypes.int16, _dtypes.int8, _dtypes.int64, _dtypes.bfloat16, _dtypes.uint16, _dtypes.half, _dtypes.uint32, _dtypes.uint64, ]) _inputs_flat = [input] _attrs = ("ksize", ksize, "strides", strides, "Targmax", Targmax, "padding", padding, "include_batch_in_index", include_batch_in_index, "T", _attr_T) _result = _execute.execute(b"MaxPoolWithArgmax", 2, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "MaxPoolWithArgmax", _inputs_flat, _attrs, _result) _result = _MaxPoolWithArgmaxOutput._make(_result) return _result TV_NthElement_T = TypeVar("TV_NthElement_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.UInt16, _atypes.UInt32, _atypes.UInt64, _atypes.UInt8) def nth_element(input: Annotated[Any, TV_NthElement_T], n: Annotated[Any, _atypes.Int32], reverse:bool=False, name=None) -> Annotated[Any, TV_NthElement_T]: r"""Finds values of the `n`-th order statistic for the last dimension. If the input is a vector (rank-1), finds the entries which is the nth-smallest value in the vector and outputs their values as scalar tensor. For matrices (resp. higher rank input), computes the entries which is the nth-smallest value in each row (resp. vector along the last dimension). Thus, values.shape = input.shape[:-1] Args: input: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`. 1-D or higher with last dimension at least `n+1`. n: A `Tensor` of type `int32`. 0-D. Position of sorted vector to select along the last dimension (along each row for matrices). Valid range of n is `[0, input.shape[:-1])` reverse: An optional `bool`. Defaults to `False`. When set to True, find the nth-largest value in the vector and vice versa. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "NthElement", name, input, n, "reverse", reverse) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return nth_element_eager_fallback( input, n, reverse=reverse, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if reverse is None: reverse = False reverse = _execute.make_bool(reverse, "reverse") _, _, _op, _outputs = _op_def_library._apply_op_helper( "NthElement", input=input, n=n, reverse=reverse, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("reverse", _op._get_attr_bool("reverse"), "T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "NthElement", _inputs_flat, _attrs, _result) _result, = _result return _result NthElement = tf_export("raw_ops.NthElement")(_ops.to_raw_op(nth_element)) def nth_element_eager_fallback(input: Annotated[Any, TV_NthElement_T], n: Annotated[Any, _atypes.Int32], reverse: bool, name, ctx) -> Annotated[Any, TV_NthElement_T]: if reverse is None: reverse = False reverse = _execute.make_bool(reverse, "reverse") _attr_T, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.uint8, _dtypes.int16, _dtypes.int8, _dtypes.int64, _dtypes.bfloat16, _dtypes.uint16, _dtypes.half, _dtypes.uint32, _dtypes.uint64, ]) n = _ops.convert_to_tensor(n, _dtypes.int32) _inputs_flat = [input, n] _attrs = ("reverse", reverse, "T", _attr_T) _result = _execute.execute(b"NthElement", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "NthElement", _inputs_flat, _attrs, _result) _result, = _result return _result _QuantizedAvgPoolOutput = collections.namedtuple( "QuantizedAvgPool", ["output", "min_output", "max_output"]) TV_QuantizedAvgPool_T = TypeVar("TV_QuantizedAvgPool_T", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) def quantized_avg_pool(input: Annotated[Any, TV_QuantizedAvgPool_T], min_input: Annotated[Any, _atypes.Float32], max_input: Annotated[Any, _atypes.Float32], ksize, strides, padding: str, name=None): r"""Produces the average pool of the input tensor for quantized types. Args: input: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. 4-D with shape `[batch, height, width, channels]`. min_input: A `Tensor` of type `float32`. The float value that the lowest quantized input value represents. max_input: A `Tensor` of type `float32`. The float value that the highest quantized input value represents. ksize: A list of `ints`. The size of the window for each dimension of the input tensor. The length must be 4 to match the number of dimensions of the input. strides: A list of `ints`. The stride of the sliding window for each dimension of the input tensor. The length must be 4 to match the number of dimensions of the input. padding: A `string` from: `"SAME", "VALID"`. The type of padding algorithm to use. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (output, min_output, max_output). output: A `Tensor`. Has the same type as `input`. min_output: A `Tensor` of type `float32`. max_output: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "QuantizedAvgPool", name, input, min_input, max_input, "ksize", ksize, "strides", strides, "padding", padding) _result = _QuantizedAvgPoolOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return quantized_avg_pool_eager_fallback( input, min_input, max_input, ksize=ksize, strides=strides, padding=padding, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(ksize, (list, tuple)): raise TypeError( "Expected list for 'ksize' argument to " "'quantized_avg_pool' Op, not %r." % ksize) ksize = [_execute.make_int(_i, "ksize") for _i in ksize] if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'quantized_avg_pool' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") _, _, _op, _outputs = _op_def_library._apply_op_helper( "QuantizedAvgPool", input=input, min_input=min_input, max_input=max_input, ksize=ksize, strides=strides, padding=padding, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "ksize", _op.get_attr("ksize"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding")) _inputs_flat = _op.inputs _execute.record_gradient( "QuantizedAvgPool", _inputs_flat, _attrs, _result) _result = _QuantizedAvgPoolOutput._make(_result) return _result QuantizedAvgPool = tf_export("raw_ops.QuantizedAvgPool")(_ops.to_raw_op(quantized_avg_pool)) def quantized_avg_pool_eager_fallback(input: Annotated[Any, TV_QuantizedAvgPool_T], min_input: Annotated[Any, _atypes.Float32], max_input: Annotated[Any, _atypes.Float32], ksize, strides, padding: str, name, ctx): if not isinstance(ksize, (list, tuple)): raise TypeError( "Expected list for 'ksize' argument to " "'quantized_avg_pool' Op, not %r." % ksize) ksize = [_execute.make_int(_i, "ksize") for _i in ksize] if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'quantized_avg_pool' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") _attr_T, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) min_input = _ops.convert_to_tensor(min_input, _dtypes.float32) max_input = _ops.convert_to_tensor(max_input, _dtypes.float32) _inputs_flat = [input, min_input, max_input] _attrs = ("T", _attr_T, "ksize", ksize, "strides", strides, "padding", padding) _result = _execute.execute(b"QuantizedAvgPool", 3, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "QuantizedAvgPool", _inputs_flat, _attrs, _result) _result = _QuantizedAvgPoolOutput._make(_result) return _result _QuantizedBatchNormWithGlobalNormalizationOutput = collections.namedtuple( "QuantizedBatchNormWithGlobalNormalization", ["result", "result_min", "result_max"]) TV_QuantizedBatchNormWithGlobalNormalization_Tinput = TypeVar("TV_QuantizedBatchNormWithGlobalNormalization_Tinput", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedBatchNormWithGlobalNormalization_out_type = TypeVar("TV_QuantizedBatchNormWithGlobalNormalization_out_type", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) def quantized_batch_norm_with_global_normalization(t: Annotated[Any, TV_QuantizedBatchNormWithGlobalNormalization_Tinput], t_min: Annotated[Any, _atypes.Float32], t_max: Annotated[Any, _atypes.Float32], m: Annotated[Any, TV_QuantizedBatchNormWithGlobalNormalization_Tinput], m_min: Annotated[Any, _atypes.Float32], m_max: Annotated[Any, _atypes.Float32], v: Annotated[Any, TV_QuantizedBatchNormWithGlobalNormalization_Tinput], v_min: Annotated[Any, _atypes.Float32], v_max: Annotated[Any, _atypes.Float32], beta: Annotated[Any, TV_QuantizedBatchNormWithGlobalNormalization_Tinput], beta_min: Annotated[Any, _atypes.Float32], beta_max: Annotated[Any, _atypes.Float32], gamma: Annotated[Any, TV_QuantizedBatchNormWithGlobalNormalization_Tinput], gamma_min: Annotated[Any, _atypes.Float32], gamma_max: Annotated[Any, _atypes.Float32], out_type: TV_QuantizedBatchNormWithGlobalNormalization_out_type, variance_epsilon: float, scale_after_normalization: bool, name=None): r"""Quantized Batch normalization. This op is deprecated and will be removed in the future. Prefer `tf.nn.batch_normalization`. Args: t: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. A 4D input Tensor. t_min: A `Tensor` of type `float32`. The value represented by the lowest quantized input. t_max: A `Tensor` of type `float32`. The value represented by the highest quantized input. m: A `Tensor`. Must have the same type as `t`. A 1D mean Tensor with size matching the last dimension of t. This is the first output from tf.nn.moments, or a saved moving average thereof. m_min: A `Tensor` of type `float32`. The value represented by the lowest quantized mean. m_max: A `Tensor` of type `float32`. The value represented by the highest quantized mean. v: A `Tensor`. Must have the same type as `t`. A 1D variance Tensor with size matching the last dimension of t. This is the second output from tf.nn.moments, or a saved moving average thereof. v_min: A `Tensor` of type `float32`. The value represented by the lowest quantized variance. v_max: A `Tensor` of type `float32`. The value represented by the highest quantized variance. beta: A `Tensor`. Must have the same type as `t`. A 1D beta Tensor with size matching the last dimension of t. An offset to be added to the normalized tensor. beta_min: A `Tensor` of type `float32`. The value represented by the lowest quantized offset. beta_max: A `Tensor` of type `float32`. The value represented by the highest quantized offset. gamma: A `Tensor`. Must have the same type as `t`. A 1D gamma Tensor with size matching the last dimension of t. If "scale_after_normalization" is true, this tensor will be multiplied with the normalized tensor. gamma_min: A `Tensor` of type `float32`. The value represented by the lowest quantized gamma. gamma_max: A `Tensor` of type `float32`. The value represented by the highest quantized gamma. out_type: A `tf.DType` from: `tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16`. variance_epsilon: A `float`. A small float number to avoid dividing by 0. scale_after_normalization: A `bool`. A bool indicating whether the resulted tensor needs to be multiplied with gamma. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (result, result_min, result_max). result: A `Tensor` of type `out_type`. result_min: A `Tensor` of type `float32`. result_max: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "QuantizedBatchNormWithGlobalNormalization", name, t, t_min, t_max, m, m_min, m_max, v, v_min, v_max, beta, beta_min, beta_max, gamma, gamma_min, gamma_max, "out_type", out_type, "variance_epsilon", variance_epsilon, "scale_after_normalization", scale_after_normalization) _result = _QuantizedBatchNormWithGlobalNormalizationOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return quantized_batch_norm_with_global_normalization_eager_fallback( t, t_min, t_max, m, m_min, m_max, v, v_min, v_max, beta, beta_min, beta_max, gamma, gamma_min, gamma_max, out_type=out_type, variance_epsilon=variance_epsilon, scale_after_normalization=scale_after_normalization, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. out_type = _execute.make_type(out_type, "out_type") variance_epsilon = _execute.make_float(variance_epsilon, "variance_epsilon") scale_after_normalization = _execute.make_bool(scale_after_normalization, "scale_after_normalization") _, _, _op, _outputs = _op_def_library._apply_op_helper( "QuantizedBatchNormWithGlobalNormalization", t=t, t_min=t_min, t_max=t_max, m=m, m_min=m_min, m_max=m_max, v=v, v_min=v_min, v_max=v_max, beta=beta, beta_min=beta_min, beta_max=beta_max, gamma=gamma, gamma_min=gamma_min, gamma_max=gamma_max, out_type=out_type, variance_epsilon=variance_epsilon, scale_after_normalization=scale_after_normalization, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Tinput", _op._get_attr_type("Tinput"), "out_type", _op._get_attr_type("out_type"), "variance_epsilon", _op.get_attr("variance_epsilon"), "scale_after_normalization", _op._get_attr_bool("scale_after_normalization")) _inputs_flat = _op.inputs _execute.record_gradient( "QuantizedBatchNormWithGlobalNormalization", _inputs_flat, _attrs, _result) _result = _QuantizedBatchNormWithGlobalNormalizationOutput._make(_result) return _result QuantizedBatchNormWithGlobalNormalization = tf_export("raw_ops.QuantizedBatchNormWithGlobalNormalization")(_ops.to_raw_op(quantized_batch_norm_with_global_normalization)) def quantized_batch_norm_with_global_normalization_eager_fallback(t: Annotated[Any, TV_QuantizedBatchNormWithGlobalNormalization_Tinput], t_min: Annotated[Any, _atypes.Float32], t_max: Annotated[Any, _atypes.Float32], m: Annotated[Any, TV_QuantizedBatchNormWithGlobalNormalization_Tinput], m_min: Annotated[Any, _atypes.Float32], m_max: Annotated[Any, _atypes.Float32], v: Annotated[Any, TV_QuantizedBatchNormWithGlobalNormalization_Tinput], v_min: Annotated[Any, _atypes.Float32], v_max: Annotated[Any, _atypes.Float32], beta: Annotated[Any, TV_QuantizedBatchNormWithGlobalNormalization_Tinput], beta_min: Annotated[Any, _atypes.Float32], beta_max: Annotated[Any, _atypes.Float32], gamma: Annotated[Any, TV_QuantizedBatchNormWithGlobalNormalization_Tinput], gamma_min: Annotated[Any, _atypes.Float32], gamma_max: Annotated[Any, _atypes.Float32], out_type: TV_QuantizedBatchNormWithGlobalNormalization_out_type, variance_epsilon: float, scale_after_normalization: bool, name, ctx): out_type = _execute.make_type(out_type, "out_type") variance_epsilon = _execute.make_float(variance_epsilon, "variance_epsilon") scale_after_normalization = _execute.make_bool(scale_after_normalization, "scale_after_normalization") _attr_Tinput, _inputs_Tinput = _execute.args_to_matching_eager([t, m, v, beta, gamma], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) (t, m, v, beta, gamma) = _inputs_Tinput t_min = _ops.convert_to_tensor(t_min, _dtypes.float32) t_max = _ops.convert_to_tensor(t_max, _dtypes.float32) m_min = _ops.convert_to_tensor(m_min, _dtypes.float32) m_max = _ops.convert_to_tensor(m_max, _dtypes.float32) v_min = _ops.convert_to_tensor(v_min, _dtypes.float32) v_max = _ops.convert_to_tensor(v_max, _dtypes.float32) beta_min = _ops.convert_to_tensor(beta_min, _dtypes.float32) beta_max = _ops.convert_to_tensor(beta_max, _dtypes.float32) gamma_min = _ops.convert_to_tensor(gamma_min, _dtypes.float32) gamma_max = _ops.convert_to_tensor(gamma_max, _dtypes.float32) _inputs_flat = [t, t_min, t_max, m, m_min, m_max, v, v_min, v_max, beta, beta_min, beta_max, gamma, gamma_min, gamma_max] _attrs = ("Tinput", _attr_Tinput, "out_type", out_type, "variance_epsilon", variance_epsilon, "scale_after_normalization", scale_after_normalization) _result = _execute.execute(b"QuantizedBatchNormWithGlobalNormalization", 3, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "QuantizedBatchNormWithGlobalNormalization", _inputs_flat, _attrs, _result) _result = _QuantizedBatchNormWithGlobalNormalizationOutput._make(_result) return _result _QuantizedBiasAddOutput = collections.namedtuple( "QuantizedBiasAdd", ["output", "min_out", "max_out"]) TV_QuantizedBiasAdd_T1 = TypeVar("TV_QuantizedBiasAdd_T1", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedBiasAdd_T2 = TypeVar("TV_QuantizedBiasAdd_T2", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedBiasAdd_out_type = TypeVar("TV_QuantizedBiasAdd_out_type", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) def quantized_bias_add(input: Annotated[Any, TV_QuantizedBiasAdd_T1], bias: Annotated[Any, TV_QuantizedBiasAdd_T2], min_input: Annotated[Any, _atypes.Float32], max_input: Annotated[Any, _atypes.Float32], min_bias: Annotated[Any, _atypes.Float32], max_bias: Annotated[Any, _atypes.Float32], out_type: TV_QuantizedBiasAdd_out_type, name=None): r"""Adds Tensor 'bias' to Tensor 'input' for Quantized types. Broadcasts the values of bias on dimensions 0..N-2 of 'input'. Args: input: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. bias: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. A 1D bias Tensor with size matching the last dimension of 'input'. min_input: A `Tensor` of type `float32`. The float value that the lowest quantized input value represents. max_input: A `Tensor` of type `float32`. The float value that the highest quantized input value represents. min_bias: A `Tensor` of type `float32`. The float value that the lowest quantized bias value represents. max_bias: A `Tensor` of type `float32`. The float value that the highest quantized bias value represents. out_type: A `tf.DType` from: `tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (output, min_out, max_out). output: A `Tensor` of type `out_type`. min_out: A `Tensor` of type `float32`. max_out: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "QuantizedBiasAdd", name, input, bias, min_input, max_input, min_bias, max_bias, "out_type", out_type) _result = _QuantizedBiasAddOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return quantized_bias_add_eager_fallback( input, bias, min_input, max_input, min_bias, max_bias, out_type=out_type, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. out_type = _execute.make_type(out_type, "out_type") _, _, _op, _outputs = _op_def_library._apply_op_helper( "QuantizedBiasAdd", input=input, bias=bias, min_input=min_input, max_input=max_input, min_bias=min_bias, max_bias=max_bias, out_type=out_type, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T1", _op._get_attr_type("T1"), "T2", _op._get_attr_type("T2"), "out_type", _op._get_attr_type("out_type")) _inputs_flat = _op.inputs _execute.record_gradient( "QuantizedBiasAdd", _inputs_flat, _attrs, _result) _result = _QuantizedBiasAddOutput._make(_result) return _result QuantizedBiasAdd = tf_export("raw_ops.QuantizedBiasAdd")(_ops.to_raw_op(quantized_bias_add)) def quantized_bias_add_eager_fallback(input: Annotated[Any, TV_QuantizedBiasAdd_T1], bias: Annotated[Any, TV_QuantizedBiasAdd_T2], min_input: Annotated[Any, _atypes.Float32], max_input: Annotated[Any, _atypes.Float32], min_bias: Annotated[Any, _atypes.Float32], max_bias: Annotated[Any, _atypes.Float32], out_type: TV_QuantizedBiasAdd_out_type, name, ctx): out_type = _execute.make_type(out_type, "out_type") _attr_T1, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) _attr_T2, (bias,) = _execute.args_to_matching_eager([bias], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) min_input = _ops.convert_to_tensor(min_input, _dtypes.float32) max_input = _ops.convert_to_tensor(max_input, _dtypes.float32) min_bias = _ops.convert_to_tensor(min_bias, _dtypes.float32) max_bias = _ops.convert_to_tensor(max_bias, _dtypes.float32) _inputs_flat = [input, bias, min_input, max_input, min_bias, max_bias] _attrs = ("T1", _attr_T1, "T2", _attr_T2, "out_type", out_type) _result = _execute.execute(b"QuantizedBiasAdd", 3, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "QuantizedBiasAdd", _inputs_flat, _attrs, _result) _result = _QuantizedBiasAddOutput._make(_result) return _result _QuantizedConv2DOutput = collections.namedtuple( "QuantizedConv2D", ["output", "min_output", "max_output"]) TV_QuantizedConv2D_Tinput = TypeVar("TV_QuantizedConv2D_Tinput", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedConv2D_Tfilter = TypeVar("TV_QuantizedConv2D_Tfilter", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedConv2D_out_type = TypeVar("TV_QuantizedConv2D_out_type", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) def quantized_conv2d(input: Annotated[Any, TV_QuantizedConv2D_Tinput], filter: Annotated[Any, TV_QuantizedConv2D_Tfilter], min_input: Annotated[Any, _atypes.Float32], max_input: Annotated[Any, _atypes.Float32], min_filter: Annotated[Any, _atypes.Float32], max_filter: Annotated[Any, _atypes.Float32], strides, padding: str, out_type:TV_QuantizedConv2D_out_type=_dtypes.qint32, dilations=[1, 1, 1, 1], name=None): r"""Computes a 2D convolution given quantized 4D input and filter tensors. The inputs are quantized tensors where the lowest value represents the real number of the associated minimum, and the highest represents the maximum. This means that you can only interpret the quantized output in the same way, by taking the returned minimum and maximum values into account. Args: input: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. filter: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. filter's input_depth dimension must match input's depth dimensions. min_input: A `Tensor` of type `float32`. The float value that the lowest quantized input value represents. max_input: A `Tensor` of type `float32`. The float value that the highest quantized input value represents. min_filter: A `Tensor` of type `float32`. The float value that the lowest quantized filter value represents. max_filter: A `Tensor` of type `float32`. The float value that the highest quantized filter value represents. strides: A list of `ints`. The stride of the sliding window for each dimension of the input tensor. padding: A `string` from: `"SAME", "VALID"`. The type of padding algorithm to use. out_type: An optional `tf.DType` from: `tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16`. Defaults to `tf.qint32`. dilations: An optional list of `ints`. Defaults to `[1, 1, 1, 1]`. 1-D tensor of length 4. The dilation factor for each dimension of `input`. If set to k > 1, there will be k-1 skipped cells between each filter element on that dimension. The dimension order is determined by the value of `data_format`, see above for details. Dilations in the batch and depth dimensions must be 1. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (output, min_output, max_output). output: A `Tensor` of type `out_type`. min_output: A `Tensor` of type `float32`. max_output: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "QuantizedConv2D", name, input, filter, min_input, max_input, min_filter, max_filter, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations) _result = _QuantizedConv2DOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return quantized_conv2d_eager_fallback( input, filter, min_input, max_input, min_filter, max_filter, out_type=out_type, strides=strides, padding=padding, dilations=dilations, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'quantized_conv2d' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if out_type is None: out_type = _dtypes.qint32 out_type = _execute.make_type(out_type, "out_type") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'quantized_conv2d' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] _, _, _op, _outputs = _op_def_library._apply_op_helper( "QuantizedConv2D", input=input, filter=filter, min_input=min_input, max_input=max_input, min_filter=min_filter, max_filter=max_filter, strides=strides, padding=padding, out_type=out_type, dilations=dilations, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Tinput", _op._get_attr_type("Tinput"), "Tfilter", _op._get_attr_type("Tfilter"), "out_type", _op._get_attr_type("out_type"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "dilations", _op.get_attr("dilations")) _inputs_flat = _op.inputs _execute.record_gradient( "QuantizedConv2D", _inputs_flat, _attrs, _result) _result = _QuantizedConv2DOutput._make(_result) return _result QuantizedConv2D = tf_export("raw_ops.QuantizedConv2D")(_ops.to_raw_op(quantized_conv2d)) def quantized_conv2d_eager_fallback(input: Annotated[Any, TV_QuantizedConv2D_Tinput], filter: Annotated[Any, TV_QuantizedConv2D_Tfilter], min_input: Annotated[Any, _atypes.Float32], max_input: Annotated[Any, _atypes.Float32], min_filter: Annotated[Any, _atypes.Float32], max_filter: Annotated[Any, _atypes.Float32], strides, padding: str, out_type: TV_QuantizedConv2D_out_type, dilations, name, ctx): if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'quantized_conv2d' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if out_type is None: out_type = _dtypes.qint32 out_type = _execute.make_type(out_type, "out_type") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'quantized_conv2d' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] _attr_Tinput, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) _attr_Tfilter, (filter,) = _execute.args_to_matching_eager([filter], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) min_input = _ops.convert_to_tensor(min_input, _dtypes.float32) max_input = _ops.convert_to_tensor(max_input, _dtypes.float32) min_filter = _ops.convert_to_tensor(min_filter, _dtypes.float32) max_filter = _ops.convert_to_tensor(max_filter, _dtypes.float32) _inputs_flat = [input, filter, min_input, max_input, min_filter, max_filter] _attrs = ("Tinput", _attr_Tinput, "Tfilter", _attr_Tfilter, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations) _result = _execute.execute(b"QuantizedConv2D", 3, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "QuantizedConv2D", _inputs_flat, _attrs, _result) _result = _QuantizedConv2DOutput._make(_result) return _result _QuantizedConv2DAndReluOutput = collections.namedtuple( "QuantizedConv2DAndRelu", ["output", "min_output", "max_output"]) TV_QuantizedConv2DAndRelu_Tinput = TypeVar("TV_QuantizedConv2DAndRelu_Tinput", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedConv2DAndRelu_Tfilter = TypeVar("TV_QuantizedConv2DAndRelu_Tfilter", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedConv2DAndRelu_out_type = TypeVar("TV_QuantizedConv2DAndRelu_out_type", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) def quantized_conv2d_and_relu(input: Annotated[Any, TV_QuantizedConv2DAndRelu_Tinput], filter: Annotated[Any, TV_QuantizedConv2DAndRelu_Tfilter], min_input: Annotated[Any, _atypes.Float32], max_input: Annotated[Any, _atypes.Float32], min_filter: Annotated[Any, _atypes.Float32], max_filter: Annotated[Any, _atypes.Float32], strides, padding: str, out_type:TV_QuantizedConv2DAndRelu_out_type=_dtypes.qint32, dilations=[1, 1, 1, 1], padding_list=[], name=None): r"""TODO: add doc. Args: input: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. filter: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. min_input: A `Tensor` of type `float32`. max_input: A `Tensor` of type `float32`. min_filter: A `Tensor` of type `float32`. max_filter: A `Tensor` of type `float32`. strides: A list of `ints`. padding: A `string` from: `"SAME", "VALID"`. out_type: An optional `tf.DType` from: `tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16`. Defaults to `tf.qint32`. dilations: An optional list of `ints`. Defaults to `[1, 1, 1, 1]`. padding_list: An optional list of `ints`. Defaults to `[]`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (output, min_output, max_output). output: A `Tensor` of type `out_type`. min_output: A `Tensor` of type `float32`. max_output: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "QuantizedConv2DAndRelu", name, input, filter, min_input, max_input, min_filter, max_filter, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations, "padding_list", padding_list) _result = _QuantizedConv2DAndReluOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return quantized_conv2d_and_relu_eager_fallback( input, filter, min_input, max_input, min_filter, max_filter, out_type=out_type, strides=strides, padding=padding, dilations=dilations, padding_list=padding_list, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'quantized_conv2d_and_relu' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if out_type is None: out_type = _dtypes.qint32 out_type = _execute.make_type(out_type, "out_type") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'quantized_conv2d_and_relu' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] if padding_list is None: padding_list = [] if not isinstance(padding_list, (list, tuple)): raise TypeError( "Expected list for 'padding_list' argument to " "'quantized_conv2d_and_relu' Op, not %r." % padding_list) padding_list = [_execute.make_int(_i, "padding_list") for _i in padding_list] _, _, _op, _outputs = _op_def_library._apply_op_helper( "QuantizedConv2DAndRelu", input=input, filter=filter, min_input=min_input, max_input=max_input, min_filter=min_filter, max_filter=max_filter, strides=strides, padding=padding, out_type=out_type, dilations=dilations, padding_list=padding_list, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Tinput", _op._get_attr_type("Tinput"), "Tfilter", _op._get_attr_type("Tfilter"), "out_type", _op._get_attr_type("out_type"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "dilations", _op.get_attr("dilations"), "padding_list", _op.get_attr("padding_list")) _inputs_flat = _op.inputs _execute.record_gradient( "QuantizedConv2DAndRelu", _inputs_flat, _attrs, _result) _result = _QuantizedConv2DAndReluOutput._make(_result) return _result QuantizedConv2DAndRelu = tf_export("raw_ops.QuantizedConv2DAndRelu")(_ops.to_raw_op(quantized_conv2d_and_relu)) def quantized_conv2d_and_relu_eager_fallback(input: Annotated[Any, TV_QuantizedConv2DAndRelu_Tinput], filter: Annotated[Any, TV_QuantizedConv2DAndRelu_Tfilter], min_input: Annotated[Any, _atypes.Float32], max_input: Annotated[Any, _atypes.Float32], min_filter: Annotated[Any, _atypes.Float32], max_filter: Annotated[Any, _atypes.Float32], strides, padding: str, out_type: TV_QuantizedConv2DAndRelu_out_type, dilations, padding_list, name, ctx): if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'quantized_conv2d_and_relu' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if out_type is None: out_type = _dtypes.qint32 out_type = _execute.make_type(out_type, "out_type") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'quantized_conv2d_and_relu' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] if padding_list is None: padding_list = [] if not isinstance(padding_list, (list, tuple)): raise TypeError( "Expected list for 'padding_list' argument to " "'quantized_conv2d_and_relu' Op, not %r." % padding_list) padding_list = [_execute.make_int(_i, "padding_list") for _i in padding_list] _attr_Tinput, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) _attr_Tfilter, (filter,) = _execute.args_to_matching_eager([filter], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) min_input = _ops.convert_to_tensor(min_input, _dtypes.float32) max_input = _ops.convert_to_tensor(max_input, _dtypes.float32) min_filter = _ops.convert_to_tensor(min_filter, _dtypes.float32) max_filter = _ops.convert_to_tensor(max_filter, _dtypes.float32) _inputs_flat = [input, filter, min_input, max_input, min_filter, max_filter] _attrs = ("Tinput", _attr_Tinput, "Tfilter", _attr_Tfilter, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations, "padding_list", padding_list) _result = _execute.execute(b"QuantizedConv2DAndRelu", 3, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "QuantizedConv2DAndRelu", _inputs_flat, _attrs, _result) _result = _QuantizedConv2DAndReluOutput._make(_result) return _result _QuantizedConv2DAndReluAndRequantizeOutput = collections.namedtuple( "QuantizedConv2DAndReluAndRequantize", ["output", "min_output", "max_output"]) TV_QuantizedConv2DAndReluAndRequantize_Tinput = TypeVar("TV_QuantizedConv2DAndReluAndRequantize_Tinput", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedConv2DAndReluAndRequantize_Tfilter = TypeVar("TV_QuantizedConv2DAndReluAndRequantize_Tfilter", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedConv2DAndReluAndRequantize_out_type = TypeVar("TV_QuantizedConv2DAndReluAndRequantize_out_type", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) def quantized_conv2d_and_relu_and_requantize(input: Annotated[Any, TV_QuantizedConv2DAndReluAndRequantize_Tinput], filter: Annotated[Any, TV_QuantizedConv2DAndReluAndRequantize_Tfilter], min_input: Annotated[Any, _atypes.Float32], max_input: Annotated[Any, _atypes.Float32], min_filter: Annotated[Any, _atypes.Float32], max_filter: Annotated[Any, _atypes.Float32], min_freezed_output: Annotated[Any, _atypes.Float32], max_freezed_output: Annotated[Any, _atypes.Float32], strides, padding: str, out_type:TV_QuantizedConv2DAndReluAndRequantize_out_type=_dtypes.quint8, dilations=[1, 1, 1, 1], padding_list=[], name=None): r"""TODO: add doc. Args: input: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. filter: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. min_input: A `Tensor` of type `float32`. max_input: A `Tensor` of type `float32`. min_filter: A `Tensor` of type `float32`. max_filter: A `Tensor` of type `float32`. min_freezed_output: A `Tensor` of type `float32`. max_freezed_output: A `Tensor` of type `float32`. strides: A list of `ints`. padding: A `string` from: `"SAME", "VALID"`. out_type: An optional `tf.DType` from: `tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16`. Defaults to `tf.quint8`. dilations: An optional list of `ints`. Defaults to `[1, 1, 1, 1]`. padding_list: An optional list of `ints`. Defaults to `[]`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (output, min_output, max_output). output: A `Tensor` of type `out_type`. min_output: A `Tensor` of type `float32`. max_output: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "QuantizedConv2DAndReluAndRequantize", name, input, filter, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations, "padding_list", padding_list) _result = _QuantizedConv2DAndReluAndRequantizeOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return quantized_conv2d_and_relu_and_requantize_eager_fallback( input, filter, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output, out_type=out_type, strides=strides, padding=padding, dilations=dilations, padding_list=padding_list, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'quantized_conv2d_and_relu_and_requantize' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if out_type is None: out_type = _dtypes.quint8 out_type = _execute.make_type(out_type, "out_type") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'quantized_conv2d_and_relu_and_requantize' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] if padding_list is None: padding_list = [] if not isinstance(padding_list, (list, tuple)): raise TypeError( "Expected list for 'padding_list' argument to " "'quantized_conv2d_and_relu_and_requantize' Op, not %r." % padding_list) padding_list = [_execute.make_int(_i, "padding_list") for _i in padding_list] _, _, _op, _outputs = _op_def_library._apply_op_helper( "QuantizedConv2DAndReluAndRequantize", input=input, filter=filter, min_input=min_input, max_input=max_input, min_filter=min_filter, max_filter=max_filter, min_freezed_output=min_freezed_output, max_freezed_output=max_freezed_output, strides=strides, padding=padding, out_type=out_type, dilations=dilations, padding_list=padding_list, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Tinput", _op._get_attr_type("Tinput"), "Tfilter", _op._get_attr_type("Tfilter"), "out_type", _op._get_attr_type("out_type"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "dilations", _op.get_attr("dilations"), "padding_list", _op.get_attr("padding_list")) _inputs_flat = _op.inputs _execute.record_gradient( "QuantizedConv2DAndReluAndRequantize", _inputs_flat, _attrs, _result) _result = _QuantizedConv2DAndReluAndRequantizeOutput._make(_result) return _result QuantizedConv2DAndReluAndRequantize = tf_export("raw_ops.QuantizedConv2DAndReluAndRequantize")(_ops.to_raw_op(quantized_conv2d_and_relu_and_requantize)) def quantized_conv2d_and_relu_and_requantize_eager_fallback(input: Annotated[Any, TV_QuantizedConv2DAndReluAndRequantize_Tinput], filter: Annotated[Any, TV_QuantizedConv2DAndReluAndRequantize_Tfilter], min_input: Annotated[Any, _atypes.Float32], max_input: Annotated[Any, _atypes.Float32], min_filter: Annotated[Any, _atypes.Float32], max_filter: Annotated[Any, _atypes.Float32], min_freezed_output: Annotated[Any, _atypes.Float32], max_freezed_output: Annotated[Any, _atypes.Float32], strides, padding: str, out_type: TV_QuantizedConv2DAndReluAndRequantize_out_type, dilations, padding_list, name, ctx): if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'quantized_conv2d_and_relu_and_requantize' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if out_type is None: out_type = _dtypes.quint8 out_type = _execute.make_type(out_type, "out_type") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'quantized_conv2d_and_relu_and_requantize' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] if padding_list is None: padding_list = [] if not isinstance(padding_list, (list, tuple)): raise TypeError( "Expected list for 'padding_list' argument to " "'quantized_conv2d_and_relu_and_requantize' Op, not %r." % padding_list) padding_list = [_execute.make_int(_i, "padding_list") for _i in padding_list] _attr_Tinput, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) _attr_Tfilter, (filter,) = _execute.args_to_matching_eager([filter], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) min_input = _ops.convert_to_tensor(min_input, _dtypes.float32) max_input = _ops.convert_to_tensor(max_input, _dtypes.float32) min_filter = _ops.convert_to_tensor(min_filter, _dtypes.float32) max_filter = _ops.convert_to_tensor(max_filter, _dtypes.float32) min_freezed_output = _ops.convert_to_tensor(min_freezed_output, _dtypes.float32) max_freezed_output = _ops.convert_to_tensor(max_freezed_output, _dtypes.float32) _inputs_flat = [input, filter, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output] _attrs = ("Tinput", _attr_Tinput, "Tfilter", _attr_Tfilter, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations, "padding_list", padding_list) _result = _execute.execute(b"QuantizedConv2DAndReluAndRequantize", 3, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "QuantizedConv2DAndReluAndRequantize", _inputs_flat, _attrs, _result) _result = _QuantizedConv2DAndReluAndRequantizeOutput._make(_result) return _result _QuantizedConv2DAndRequantizeOutput = collections.namedtuple( "QuantizedConv2DAndRequantize", ["output", "min_output", "max_output"]) TV_QuantizedConv2DAndRequantize_Tinput = TypeVar("TV_QuantizedConv2DAndRequantize_Tinput", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedConv2DAndRequantize_Tfilter = TypeVar("TV_QuantizedConv2DAndRequantize_Tfilter", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedConv2DAndRequantize_out_type = TypeVar("TV_QuantizedConv2DAndRequantize_out_type", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) def quantized_conv2d_and_requantize(input: Annotated[Any, TV_QuantizedConv2DAndRequantize_Tinput], filter: Annotated[Any, TV_QuantizedConv2DAndRequantize_Tfilter], min_input: Annotated[Any, _atypes.Float32], max_input: Annotated[Any, _atypes.Float32], min_filter: Annotated[Any, _atypes.Float32], max_filter: Annotated[Any, _atypes.Float32], min_freezed_output: Annotated[Any, _atypes.Float32], max_freezed_output: Annotated[Any, _atypes.Float32], strides, padding: str, out_type:TV_QuantizedConv2DAndRequantize_out_type=_dtypes.qint8, dilations=[1, 1, 1, 1], padding_list=[], name=None): r"""TODO: add doc. Args: input: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. filter: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. min_input: A `Tensor` of type `float32`. max_input: A `Tensor` of type `float32`. min_filter: A `Tensor` of type `float32`. max_filter: A `Tensor` of type `float32`. min_freezed_output: A `Tensor` of type `float32`. max_freezed_output: A `Tensor` of type `float32`. strides: A list of `ints`. padding: A `string` from: `"SAME", "VALID"`. out_type: An optional `tf.DType` from: `tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16`. Defaults to `tf.qint8`. dilations: An optional list of `ints`. Defaults to `[1, 1, 1, 1]`. padding_list: An optional list of `ints`. Defaults to `[]`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (output, min_output, max_output). output: A `Tensor` of type `out_type`. min_output: A `Tensor` of type `float32`. max_output: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "QuantizedConv2DAndRequantize", name, input, filter, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations, "padding_list", padding_list) _result = _QuantizedConv2DAndRequantizeOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return quantized_conv2d_and_requantize_eager_fallback( input, filter, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output, out_type=out_type, strides=strides, padding=padding, dilations=dilations, padding_list=padding_list, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'quantized_conv2d_and_requantize' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if out_type is None: out_type = _dtypes.qint8 out_type = _execute.make_type(out_type, "out_type") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'quantized_conv2d_and_requantize' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] if padding_list is None: padding_list = [] if not isinstance(padding_list, (list, tuple)): raise TypeError( "Expected list for 'padding_list' argument to " "'quantized_conv2d_and_requantize' Op, not %r." % padding_list) padding_list = [_execute.make_int(_i, "padding_list") for _i in padding_list] _, _, _op, _outputs = _op_def_library._apply_op_helper( "QuantizedConv2DAndRequantize", input=input, filter=filter, min_input=min_input, max_input=max_input, min_filter=min_filter, max_filter=max_filter, min_freezed_output=min_freezed_output, max_freezed_output=max_freezed_output, strides=strides, padding=padding, out_type=out_type, dilations=dilations, padding_list=padding_list, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Tinput", _op._get_attr_type("Tinput"), "Tfilter", _op._get_attr_type("Tfilter"), "out_type", _op._get_attr_type("out_type"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "dilations", _op.get_attr("dilations"), "padding_list", _op.get_attr("padding_list")) _inputs_flat = _op.inputs _execute.record_gradient( "QuantizedConv2DAndRequantize", _inputs_flat, _attrs, _result) _result = _QuantizedConv2DAndRequantizeOutput._make(_result) return _result QuantizedConv2DAndRequantize = tf_export("raw_ops.QuantizedConv2DAndRequantize")(_ops.to_raw_op(quantized_conv2d_and_requantize)) def quantized_conv2d_and_requantize_eager_fallback(input: Annotated[Any, TV_QuantizedConv2DAndRequantize_Tinput], filter: Annotated[Any, TV_QuantizedConv2DAndRequantize_Tfilter], min_input: Annotated[Any, _atypes.Float32], max_input: Annotated[Any, _atypes.Float32], min_filter: Annotated[Any, _atypes.Float32], max_filter: Annotated[Any, _atypes.Float32], min_freezed_output: Annotated[Any, _atypes.Float32], max_freezed_output: Annotated[Any, _atypes.Float32], strides, padding: str, out_type: TV_QuantizedConv2DAndRequantize_out_type, dilations, padding_list, name, ctx): if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'quantized_conv2d_and_requantize' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if out_type is None: out_type = _dtypes.qint8 out_type = _execute.make_type(out_type, "out_type") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'quantized_conv2d_and_requantize' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] if padding_list is None: padding_list = [] if not isinstance(padding_list, (list, tuple)): raise TypeError( "Expected list for 'padding_list' argument to " "'quantized_conv2d_and_requantize' Op, not %r." % padding_list) padding_list = [_execute.make_int(_i, "padding_list") for _i in padding_list] _attr_Tinput, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) _attr_Tfilter, (filter,) = _execute.args_to_matching_eager([filter], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) min_input = _ops.convert_to_tensor(min_input, _dtypes.float32) max_input = _ops.convert_to_tensor(max_input, _dtypes.float32) min_filter = _ops.convert_to_tensor(min_filter, _dtypes.float32) max_filter = _ops.convert_to_tensor(max_filter, _dtypes.float32) min_freezed_output = _ops.convert_to_tensor(min_freezed_output, _dtypes.float32) max_freezed_output = _ops.convert_to_tensor(max_freezed_output, _dtypes.float32) _inputs_flat = [input, filter, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output] _attrs = ("Tinput", _attr_Tinput, "Tfilter", _attr_Tfilter, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations, "padding_list", padding_list) _result = _execute.execute(b"QuantizedConv2DAndRequantize", 3, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "QuantizedConv2DAndRequantize", _inputs_flat, _attrs, _result) _result = _QuantizedConv2DAndRequantizeOutput._make(_result) return _result _QuantizedConv2DPerChannelOutput = collections.namedtuple( "QuantizedConv2DPerChannel", ["output", "min_output", "max_output"]) TV_QuantizedConv2DPerChannel_Tinput = TypeVar("TV_QuantizedConv2DPerChannel_Tinput", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedConv2DPerChannel_Tfilter = TypeVar("TV_QuantizedConv2DPerChannel_Tfilter", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedConv2DPerChannel_out_type = TypeVar("TV_QuantizedConv2DPerChannel_out_type", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) def quantized_conv2d_per_channel(input: Annotated[Any, TV_QuantizedConv2DPerChannel_Tinput], filter: Annotated[Any, TV_QuantizedConv2DPerChannel_Tfilter], min_input: Annotated[Any, _atypes.Float32], max_input: Annotated[Any, _atypes.Float32], min_filter: Annotated[Any, _atypes.Float32], max_filter: Annotated[Any, _atypes.Float32], strides, padding: str, out_type:TV_QuantizedConv2DPerChannel_out_type=_dtypes.qint32, dilations=[1, 1, 1, 1], name=None): r"""Computes QuantizedConv2D per channel. Args: input: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. The original input tensor. filter: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. The original filter tensor. min_input: A `Tensor` of type `float32`. The minimum value of the input tensor max_input: A `Tensor` of type `float32`. The maximum value of the input tensor. min_filter: A `Tensor` of type `float32`. The minimum value of the filter tensor. max_filter: A `Tensor` of type `float32`. The maximum value of the filter tensor. strides: A list of `ints`. list of stride values. padding: A `string` from: `"SAME", "VALID"`. out_type: An optional `tf.DType` from: `tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16`. Defaults to `tf.qint32`. The quantized type of output tensor that needs to be converted. dilations: An optional list of `ints`. Defaults to `[1, 1, 1, 1]`. list of dilation values. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (output, min_output, max_output). output: A `Tensor` of type `out_type`. min_output: A `Tensor` of type `float32`. max_output: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "QuantizedConv2DPerChannel", name, input, filter, min_input, max_input, min_filter, max_filter, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations) _result = _QuantizedConv2DPerChannelOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return quantized_conv2d_per_channel_eager_fallback( input, filter, min_input, max_input, min_filter, max_filter, out_type=out_type, strides=strides, padding=padding, dilations=dilations, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'quantized_conv2d_per_channel' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if out_type is None: out_type = _dtypes.qint32 out_type = _execute.make_type(out_type, "out_type") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'quantized_conv2d_per_channel' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] _, _, _op, _outputs = _op_def_library._apply_op_helper( "QuantizedConv2DPerChannel", input=input, filter=filter, min_input=min_input, max_input=max_input, min_filter=min_filter, max_filter=max_filter, strides=strides, padding=padding, out_type=out_type, dilations=dilations, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Tinput", _op._get_attr_type("Tinput"), "Tfilter", _op._get_attr_type("Tfilter"), "out_type", _op._get_attr_type("out_type"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "dilations", _op.get_attr("dilations")) _inputs_flat = _op.inputs _execute.record_gradient( "QuantizedConv2DPerChannel", _inputs_flat, _attrs, _result) _result = _QuantizedConv2DPerChannelOutput._make(_result) return _result QuantizedConv2DPerChannel = tf_export("raw_ops.QuantizedConv2DPerChannel")(_ops.to_raw_op(quantized_conv2d_per_channel)) def quantized_conv2d_per_channel_eager_fallback(input: Annotated[Any, TV_QuantizedConv2DPerChannel_Tinput], filter: Annotated[Any, TV_QuantizedConv2DPerChannel_Tfilter], min_input: Annotated[Any, _atypes.Float32], max_input: Annotated[Any, _atypes.Float32], min_filter: Annotated[Any, _atypes.Float32], max_filter: Annotated[Any, _atypes.Float32], strides, padding: str, out_type: TV_QuantizedConv2DPerChannel_out_type, dilations, name, ctx): if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'quantized_conv2d_per_channel' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if out_type is None: out_type = _dtypes.qint32 out_type = _execute.make_type(out_type, "out_type") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'quantized_conv2d_per_channel' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] _attr_Tinput, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) _attr_Tfilter, (filter,) = _execute.args_to_matching_eager([filter], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) min_input = _ops.convert_to_tensor(min_input, _dtypes.float32) max_input = _ops.convert_to_tensor(max_input, _dtypes.float32) min_filter = _ops.convert_to_tensor(min_filter, _dtypes.float32) max_filter = _ops.convert_to_tensor(max_filter, _dtypes.float32) _inputs_flat = [input, filter, min_input, max_input, min_filter, max_filter] _attrs = ("Tinput", _attr_Tinput, "Tfilter", _attr_Tfilter, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations) _result = _execute.execute(b"QuantizedConv2DPerChannel", 3, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "QuantizedConv2DPerChannel", _inputs_flat, _attrs, _result) _result = _QuantizedConv2DPerChannelOutput._make(_result) return _result _QuantizedConv2DWithBiasOutput = collections.namedtuple( "QuantizedConv2DWithBias", ["output", "min_output", "max_output"]) TV_QuantizedConv2DWithBias_Tinput = TypeVar("TV_QuantizedConv2DWithBias_Tinput", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedConv2DWithBias_Tfilter = TypeVar("TV_QuantizedConv2DWithBias_Tfilter", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedConv2DWithBias_out_type = TypeVar("TV_QuantizedConv2DWithBias_out_type", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) def quantized_conv2d_with_bias(input: Annotated[Any, TV_QuantizedConv2DWithBias_Tinput], filter: Annotated[Any, TV_QuantizedConv2DWithBias_Tfilter], bias: Annotated[Any, _atypes.Float32], min_input: Annotated[Any, _atypes.Float32], max_input: Annotated[Any, _atypes.Float32], min_filter: Annotated[Any, _atypes.Float32], max_filter: Annotated[Any, _atypes.Float32], strides, padding: str, out_type:TV_QuantizedConv2DWithBias_out_type=_dtypes.qint32, dilations=[1, 1, 1, 1], padding_list=[], name=None): r"""TODO: add doc. Args: input: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. filter: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. bias: A `Tensor` of type `float32`. min_input: A `Tensor` of type `float32`. max_input: A `Tensor` of type `float32`. min_filter: A `Tensor` of type `float32`. max_filter: A `Tensor` of type `float32`. strides: A list of `ints`. padding: A `string` from: `"SAME", "VALID"`. out_type: An optional `tf.DType` from: `tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16`. Defaults to `tf.qint32`. dilations: An optional list of `ints`. Defaults to `[1, 1, 1, 1]`. padding_list: An optional list of `ints`. Defaults to `[]`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (output, min_output, max_output). output: A `Tensor` of type `out_type`. min_output: A `Tensor` of type `float32`. max_output: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "QuantizedConv2DWithBias", name, input, filter, bias, min_input, max_input, min_filter, max_filter, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations, "padding_list", padding_list) _result = _QuantizedConv2DWithBiasOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return quantized_conv2d_with_bias_eager_fallback( input, filter, bias, min_input, max_input, min_filter, max_filter, out_type=out_type, strides=strides, padding=padding, dilations=dilations, padding_list=padding_list, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'quantized_conv2d_with_bias' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if out_type is None: out_type = _dtypes.qint32 out_type = _execute.make_type(out_type, "out_type") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'quantized_conv2d_with_bias' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] if padding_list is None: padding_list = [] if not isinstance(padding_list, (list, tuple)): raise TypeError( "Expected list for 'padding_list' argument to " "'quantized_conv2d_with_bias' Op, not %r." % padding_list) padding_list = [_execute.make_int(_i, "padding_list") for _i in padding_list] _, _, _op, _outputs = _op_def_library._apply_op_helper( "QuantizedConv2DWithBias", input=input, filter=filter, bias=bias, min_input=min_input, max_input=max_input, min_filter=min_filter, max_filter=max_filter, strides=strides, padding=padding, out_type=out_type, dilations=dilations, padding_list=padding_list, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Tinput", _op._get_attr_type("Tinput"), "Tfilter", _op._get_attr_type("Tfilter"), "out_type", _op._get_attr_type("out_type"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "dilations", _op.get_attr("dilations"), "padding_list", _op.get_attr("padding_list")) _inputs_flat = _op.inputs _execute.record_gradient( "QuantizedConv2DWithBias", _inputs_flat, _attrs, _result) _result = _QuantizedConv2DWithBiasOutput._make(_result) return _result QuantizedConv2DWithBias = tf_export("raw_ops.QuantizedConv2DWithBias")(_ops.to_raw_op(quantized_conv2d_with_bias)) def quantized_conv2d_with_bias_eager_fallback(input: Annotated[Any, TV_QuantizedConv2DWithBias_Tinput], filter: Annotated[Any, TV_QuantizedConv2DWithBias_Tfilter], bias: Annotated[Any, _atypes.Float32], min_input: Annotated[Any, _atypes.Float32], max_input: Annotated[Any, _atypes.Float32], min_filter: Annotated[Any, _atypes.Float32], max_filter: Annotated[Any, _atypes.Float32], strides, padding: str, out_type: TV_QuantizedConv2DWithBias_out_type, dilations, padding_list, name, ctx): if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'quantized_conv2d_with_bias' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if out_type is None: out_type = _dtypes.qint32 out_type = _execute.make_type(out_type, "out_type") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'quantized_conv2d_with_bias' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] if padding_list is None: padding_list = [] if not isinstance(padding_list, (list, tuple)): raise TypeError( "Expected list for 'padding_list' argument to " "'quantized_conv2d_with_bias' Op, not %r." % padding_list) padding_list = [_execute.make_int(_i, "padding_list") for _i in padding_list] _attr_Tinput, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) _attr_Tfilter, (filter,) = _execute.args_to_matching_eager([filter], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) bias = _ops.convert_to_tensor(bias, _dtypes.float32) min_input = _ops.convert_to_tensor(min_input, _dtypes.float32) max_input = _ops.convert_to_tensor(max_input, _dtypes.float32) min_filter = _ops.convert_to_tensor(min_filter, _dtypes.float32) max_filter = _ops.convert_to_tensor(max_filter, _dtypes.float32) _inputs_flat = [input, filter, bias, min_input, max_input, min_filter, max_filter] _attrs = ("Tinput", _attr_Tinput, "Tfilter", _attr_Tfilter, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations, "padding_list", padding_list) _result = _execute.execute(b"QuantizedConv2DWithBias", 3, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "QuantizedConv2DWithBias", _inputs_flat, _attrs, _result) _result = _QuantizedConv2DWithBiasOutput._make(_result) return _result _QuantizedConv2DWithBiasAndReluOutput = collections.namedtuple( "QuantizedConv2DWithBiasAndRelu", ["output", "min_output", "max_output"]) TV_QuantizedConv2DWithBiasAndRelu_Tinput = TypeVar("TV_QuantizedConv2DWithBiasAndRelu_Tinput", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedConv2DWithBiasAndRelu_Tfilter = TypeVar("TV_QuantizedConv2DWithBiasAndRelu_Tfilter", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedConv2DWithBiasAndRelu_out_type = TypeVar("TV_QuantizedConv2DWithBiasAndRelu_out_type", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) def quantized_conv2d_with_bias_and_relu(input: Annotated[Any, TV_QuantizedConv2DWithBiasAndRelu_Tinput], filter: Annotated[Any, TV_QuantizedConv2DWithBiasAndRelu_Tfilter], bias: Annotated[Any, _atypes.Float32], min_input: Annotated[Any, _atypes.Float32], max_input: Annotated[Any, _atypes.Float32], min_filter: Annotated[Any, _atypes.Float32], max_filter: Annotated[Any, _atypes.Float32], strides, padding: str, out_type:TV_QuantizedConv2DWithBiasAndRelu_out_type=_dtypes.qint32, dilations=[1, 1, 1, 1], padding_list=[], name=None): r"""TODO: add doc. Args: input: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. filter: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. bias: A `Tensor` of type `float32`. min_input: A `Tensor` of type `float32`. max_input: A `Tensor` of type `float32`. min_filter: A `Tensor` of type `float32`. max_filter: A `Tensor` of type `float32`. strides: A list of `ints`. padding: A `string` from: `"SAME", "VALID"`. out_type: An optional `tf.DType` from: `tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16`. Defaults to `tf.qint32`. dilations: An optional list of `ints`. Defaults to `[1, 1, 1, 1]`. padding_list: An optional list of `ints`. Defaults to `[]`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (output, min_output, max_output). output: A `Tensor` of type `out_type`. min_output: A `Tensor` of type `float32`. max_output: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "QuantizedConv2DWithBiasAndRelu", name, input, filter, bias, min_input, max_input, min_filter, max_filter, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations, "padding_list", padding_list) _result = _QuantizedConv2DWithBiasAndReluOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return quantized_conv2d_with_bias_and_relu_eager_fallback( input, filter, bias, min_input, max_input, min_filter, max_filter, out_type=out_type, strides=strides, padding=padding, dilations=dilations, padding_list=padding_list, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'quantized_conv2d_with_bias_and_relu' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if out_type is None: out_type = _dtypes.qint32 out_type = _execute.make_type(out_type, "out_type") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'quantized_conv2d_with_bias_and_relu' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] if padding_list is None: padding_list = [] if not isinstance(padding_list, (list, tuple)): raise TypeError( "Expected list for 'padding_list' argument to " "'quantized_conv2d_with_bias_and_relu' Op, not %r." % padding_list) padding_list = [_execute.make_int(_i, "padding_list") for _i in padding_list] _, _, _op, _outputs = _op_def_library._apply_op_helper( "QuantizedConv2DWithBiasAndRelu", input=input, filter=filter, bias=bias, min_input=min_input, max_input=max_input, min_filter=min_filter, max_filter=max_filter, strides=strides, padding=padding, out_type=out_type, dilations=dilations, padding_list=padding_list, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Tinput", _op._get_attr_type("Tinput"), "Tfilter", _op._get_attr_type("Tfilter"), "out_type", _op._get_attr_type("out_type"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "dilations", _op.get_attr("dilations"), "padding_list", _op.get_attr("padding_list")) _inputs_flat = _op.inputs _execute.record_gradient( "QuantizedConv2DWithBiasAndRelu", _inputs_flat, _attrs, _result) _result = _QuantizedConv2DWithBiasAndReluOutput._make(_result) return _result QuantizedConv2DWithBiasAndRelu = tf_export("raw_ops.QuantizedConv2DWithBiasAndRelu")(_ops.to_raw_op(quantized_conv2d_with_bias_and_relu)) def quantized_conv2d_with_bias_and_relu_eager_fallback(input: Annotated[Any, TV_QuantizedConv2DWithBiasAndRelu_Tinput], filter: Annotated[Any, TV_QuantizedConv2DWithBiasAndRelu_Tfilter], bias: Annotated[Any, _atypes.Float32], min_input: Annotated[Any, _atypes.Float32], max_input: Annotated[Any, _atypes.Float32], min_filter: Annotated[Any, _atypes.Float32], max_filter: Annotated[Any, _atypes.Float32], strides, padding: str, out_type: TV_QuantizedConv2DWithBiasAndRelu_out_type, dilations, padding_list, name, ctx): if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'quantized_conv2d_with_bias_and_relu' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if out_type is None: out_type = _dtypes.qint32 out_type = _execute.make_type(out_type, "out_type") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'quantized_conv2d_with_bias_and_relu' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] if padding_list is None: padding_list = [] if not isinstance(padding_list, (list, tuple)): raise TypeError( "Expected list for 'padding_list' argument to " "'quantized_conv2d_with_bias_and_relu' Op, not %r." % padding_list) padding_list = [_execute.make_int(_i, "padding_list") for _i in padding_list] _attr_Tinput, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) _attr_Tfilter, (filter,) = _execute.args_to_matching_eager([filter], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) bias = _ops.convert_to_tensor(bias, _dtypes.float32) min_input = _ops.convert_to_tensor(min_input, _dtypes.float32) max_input = _ops.convert_to_tensor(max_input, _dtypes.float32) min_filter = _ops.convert_to_tensor(min_filter, _dtypes.float32) max_filter = _ops.convert_to_tensor(max_filter, _dtypes.float32) _inputs_flat = [input, filter, bias, min_input, max_input, min_filter, max_filter] _attrs = ("Tinput", _attr_Tinput, "Tfilter", _attr_Tfilter, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations, "padding_list", padding_list) _result = _execute.execute(b"QuantizedConv2DWithBiasAndRelu", 3, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "QuantizedConv2DWithBiasAndRelu", _inputs_flat, _attrs, _result) _result = _QuantizedConv2DWithBiasAndReluOutput._make(_result) return _result _QuantizedConv2DWithBiasAndReluAndRequantizeOutput = collections.namedtuple( "QuantizedConv2DWithBiasAndReluAndRequantize", ["output", "min_output", "max_output"]) TV_QuantizedConv2DWithBiasAndReluAndRequantize_Tinput = TypeVar("TV_QuantizedConv2DWithBiasAndReluAndRequantize_Tinput", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedConv2DWithBiasAndReluAndRequantize_Tfilter = TypeVar("TV_QuantizedConv2DWithBiasAndReluAndRequantize_Tfilter", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedConv2DWithBiasAndReluAndRequantize_Tbias = TypeVar("TV_QuantizedConv2DWithBiasAndReluAndRequantize_Tbias", _atypes.Float32, _atypes.QInt32) TV_QuantizedConv2DWithBiasAndReluAndRequantize_out_type = TypeVar("TV_QuantizedConv2DWithBiasAndReluAndRequantize_out_type", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) def quantized_conv2d_with_bias_and_relu_and_requantize(input: Annotated[Any, TV_QuantizedConv2DWithBiasAndReluAndRequantize_Tinput], filter: Annotated[Any, TV_QuantizedConv2DWithBiasAndReluAndRequantize_Tfilter], bias: Annotated[Any, TV_QuantizedConv2DWithBiasAndReluAndRequantize_Tbias], min_input: Annotated[Any, _atypes.Float32], max_input: Annotated[Any, _atypes.Float32], min_filter: Annotated[Any, _atypes.Float32], max_filter: Annotated[Any, _atypes.Float32], min_freezed_output: Annotated[Any, _atypes.Float32], max_freezed_output: Annotated[Any, _atypes.Float32], strides, padding: str, out_type:TV_QuantizedConv2DWithBiasAndReluAndRequantize_out_type=_dtypes.quint8, dilations=[1, 1, 1, 1], padding_list=[], name=None): r"""TODO: add doc. Args: input: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. filter: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. bias: A `Tensor`. Must be one of the following types: `float32`, `qint32`. min_input: A `Tensor` of type `float32`. max_input: A `Tensor` of type `float32`. min_filter: A `Tensor` of type `float32`. max_filter: A `Tensor` of type `float32`. min_freezed_output: A `Tensor` of type `float32`. max_freezed_output: A `Tensor` of type `float32`. strides: A list of `ints`. padding: A `string` from: `"SAME", "VALID"`. out_type: An optional `tf.DType` from: `tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16`. Defaults to `tf.quint8`. dilations: An optional list of `ints`. Defaults to `[1, 1, 1, 1]`. padding_list: An optional list of `ints`. Defaults to `[]`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (output, min_output, max_output). output: A `Tensor` of type `out_type`. min_output: A `Tensor` of type `float32`. max_output: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "QuantizedConv2DWithBiasAndReluAndRequantize", name, input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations, "padding_list", padding_list) _result = _QuantizedConv2DWithBiasAndReluAndRequantizeOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return quantized_conv2d_with_bias_and_relu_and_requantize_eager_fallback( input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output, out_type=out_type, strides=strides, padding=padding, dilations=dilations, padding_list=padding_list, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'quantized_conv2d_with_bias_and_relu_and_requantize' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if out_type is None: out_type = _dtypes.quint8 out_type = _execute.make_type(out_type, "out_type") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'quantized_conv2d_with_bias_and_relu_and_requantize' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] if padding_list is None: padding_list = [] if not isinstance(padding_list, (list, tuple)): raise TypeError( "Expected list for 'padding_list' argument to " "'quantized_conv2d_with_bias_and_relu_and_requantize' Op, not %r." % padding_list) padding_list = [_execute.make_int(_i, "padding_list") for _i in padding_list] _, _, _op, _outputs = _op_def_library._apply_op_helper( "QuantizedConv2DWithBiasAndReluAndRequantize", input=input, filter=filter, bias=bias, min_input=min_input, max_input=max_input, min_filter=min_filter, max_filter=max_filter, min_freezed_output=min_freezed_output, max_freezed_output=max_freezed_output, strides=strides, padding=padding, out_type=out_type, dilations=dilations, padding_list=padding_list, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Tinput", _op._get_attr_type("Tinput"), "Tfilter", _op._get_attr_type("Tfilter"), "Tbias", _op._get_attr_type("Tbias"), "out_type", _op._get_attr_type("out_type"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "dilations", _op.get_attr("dilations"), "padding_list", _op.get_attr("padding_list")) _inputs_flat = _op.inputs _execute.record_gradient( "QuantizedConv2DWithBiasAndReluAndRequantize", _inputs_flat, _attrs, _result) _result = _QuantizedConv2DWithBiasAndReluAndRequantizeOutput._make(_result) return _result QuantizedConv2DWithBiasAndReluAndRequantize = tf_export("raw_ops.QuantizedConv2DWithBiasAndReluAndRequantize")(_ops.to_raw_op(quantized_conv2d_with_bias_and_relu_and_requantize)) def quantized_conv2d_with_bias_and_relu_and_requantize_eager_fallback(input: Annotated[Any, TV_QuantizedConv2DWithBiasAndReluAndRequantize_Tinput], filter: Annotated[Any, TV_QuantizedConv2DWithBiasAndReluAndRequantize_Tfilter], bias: Annotated[Any, TV_QuantizedConv2DWithBiasAndReluAndRequantize_Tbias], min_input: Annotated[Any, _atypes.Float32], max_input: Annotated[Any, _atypes.Float32], min_filter: Annotated[Any, _atypes.Float32], max_filter: Annotated[Any, _atypes.Float32], min_freezed_output: Annotated[Any, _atypes.Float32], max_freezed_output: Annotated[Any, _atypes.Float32], strides, padding: str, out_type: TV_QuantizedConv2DWithBiasAndReluAndRequantize_out_type, dilations, padding_list, name, ctx): if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'quantized_conv2d_with_bias_and_relu_and_requantize' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if out_type is None: out_type = _dtypes.quint8 out_type = _execute.make_type(out_type, "out_type") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'quantized_conv2d_with_bias_and_relu_and_requantize' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] if padding_list is None: padding_list = [] if not isinstance(padding_list, (list, tuple)): raise TypeError( "Expected list for 'padding_list' argument to " "'quantized_conv2d_with_bias_and_relu_and_requantize' Op, not %r." % padding_list) padding_list = [_execute.make_int(_i, "padding_list") for _i in padding_list] _attr_Tinput, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) _attr_Tfilter, (filter,) = _execute.args_to_matching_eager([filter], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) _attr_Tbias, (bias,) = _execute.args_to_matching_eager([bias], ctx, [_dtypes.float32, _dtypes.qint32, ]) min_input = _ops.convert_to_tensor(min_input, _dtypes.float32) max_input = _ops.convert_to_tensor(max_input, _dtypes.float32) min_filter = _ops.convert_to_tensor(min_filter, _dtypes.float32) max_filter = _ops.convert_to_tensor(max_filter, _dtypes.float32) min_freezed_output = _ops.convert_to_tensor(min_freezed_output, _dtypes.float32) max_freezed_output = _ops.convert_to_tensor(max_freezed_output, _dtypes.float32) _inputs_flat = [input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output] _attrs = ("Tinput", _attr_Tinput, "Tfilter", _attr_Tfilter, "Tbias", _attr_Tbias, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations, "padding_list", padding_list) _result = _execute.execute(b"QuantizedConv2DWithBiasAndReluAndRequantize", 3, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "QuantizedConv2DWithBiasAndReluAndRequantize", _inputs_flat, _attrs, _result) _result = _QuantizedConv2DWithBiasAndReluAndRequantizeOutput._make(_result) return _result _QuantizedConv2DWithBiasAndRequantizeOutput = collections.namedtuple( "QuantizedConv2DWithBiasAndRequantize", ["output", "min_output", "max_output"]) TV_QuantizedConv2DWithBiasAndRequantize_Tinput = TypeVar("TV_QuantizedConv2DWithBiasAndRequantize_Tinput", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedConv2DWithBiasAndRequantize_Tfilter = TypeVar("TV_QuantizedConv2DWithBiasAndRequantize_Tfilter", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedConv2DWithBiasAndRequantize_Tbias = TypeVar("TV_QuantizedConv2DWithBiasAndRequantize_Tbias", _atypes.Float32, _atypes.QInt32) TV_QuantizedConv2DWithBiasAndRequantize_out_type = TypeVar("TV_QuantizedConv2DWithBiasAndRequantize_out_type", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) def quantized_conv2d_with_bias_and_requantize(input: Annotated[Any, TV_QuantizedConv2DWithBiasAndRequantize_Tinput], filter: Annotated[Any, TV_QuantizedConv2DWithBiasAndRequantize_Tfilter], bias: Annotated[Any, TV_QuantizedConv2DWithBiasAndRequantize_Tbias], min_input: Annotated[Any, _atypes.Float32], max_input: Annotated[Any, _atypes.Float32], min_filter: Annotated[Any, _atypes.Float32], max_filter: Annotated[Any, _atypes.Float32], min_freezed_output: Annotated[Any, _atypes.Float32], max_freezed_output: Annotated[Any, _atypes.Float32], strides, padding: str, out_type:TV_QuantizedConv2DWithBiasAndRequantize_out_type=_dtypes.qint8, dilations=[1, 1, 1, 1], padding_list=[], name=None): r"""TODO: add doc. Args: input: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. filter: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. bias: A `Tensor`. Must be one of the following types: `float32`, `qint32`. min_input: A `Tensor` of type `float32`. max_input: A `Tensor` of type `float32`. min_filter: A `Tensor` of type `float32`. max_filter: A `Tensor` of type `float32`. min_freezed_output: A `Tensor` of type `float32`. max_freezed_output: A `Tensor` of type `float32`. strides: A list of `ints`. padding: A `string` from: `"SAME", "VALID"`. out_type: An optional `tf.DType` from: `tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16`. Defaults to `tf.qint8`. dilations: An optional list of `ints`. Defaults to `[1, 1, 1, 1]`. padding_list: An optional list of `ints`. Defaults to `[]`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (output, min_output, max_output). output: A `Tensor` of type `out_type`. min_output: A `Tensor` of type `float32`. max_output: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "QuantizedConv2DWithBiasAndRequantize", name, input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations, "padding_list", padding_list) _result = _QuantizedConv2DWithBiasAndRequantizeOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return quantized_conv2d_with_bias_and_requantize_eager_fallback( input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output, out_type=out_type, strides=strides, padding=padding, dilations=dilations, padding_list=padding_list, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'quantized_conv2d_with_bias_and_requantize' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if out_type is None: out_type = _dtypes.qint8 out_type = _execute.make_type(out_type, "out_type") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'quantized_conv2d_with_bias_and_requantize' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] if padding_list is None: padding_list = [] if not isinstance(padding_list, (list, tuple)): raise TypeError( "Expected list for 'padding_list' argument to " "'quantized_conv2d_with_bias_and_requantize' Op, not %r." % padding_list) padding_list = [_execute.make_int(_i, "padding_list") for _i in padding_list] _, _, _op, _outputs = _op_def_library._apply_op_helper( "QuantizedConv2DWithBiasAndRequantize", input=input, filter=filter, bias=bias, min_input=min_input, max_input=max_input, min_filter=min_filter, max_filter=max_filter, min_freezed_output=min_freezed_output, max_freezed_output=max_freezed_output, strides=strides, padding=padding, out_type=out_type, dilations=dilations, padding_list=padding_list, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Tinput", _op._get_attr_type("Tinput"), "Tfilter", _op._get_attr_type("Tfilter"), "Tbias", _op._get_attr_type("Tbias"), "out_type", _op._get_attr_type("out_type"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "dilations", _op.get_attr("dilations"), "padding_list", _op.get_attr("padding_list")) _inputs_flat = _op.inputs _execute.record_gradient( "QuantizedConv2DWithBiasAndRequantize", _inputs_flat, _attrs, _result) _result = _QuantizedConv2DWithBiasAndRequantizeOutput._make(_result) return _result QuantizedConv2DWithBiasAndRequantize = tf_export("raw_ops.QuantizedConv2DWithBiasAndRequantize")(_ops.to_raw_op(quantized_conv2d_with_bias_and_requantize)) def quantized_conv2d_with_bias_and_requantize_eager_fallback(input: Annotated[Any, TV_QuantizedConv2DWithBiasAndRequantize_Tinput], filter: Annotated[Any, TV_QuantizedConv2DWithBiasAndRequantize_Tfilter], bias: Annotated[Any, TV_QuantizedConv2DWithBiasAndRequantize_Tbias], min_input: Annotated[Any, _atypes.Float32], max_input: Annotated[Any, _atypes.Float32], min_filter: Annotated[Any, _atypes.Float32], max_filter: Annotated[Any, _atypes.Float32], min_freezed_output: Annotated[Any, _atypes.Float32], max_freezed_output: Annotated[Any, _atypes.Float32], strides, padding: str, out_type: TV_QuantizedConv2DWithBiasAndRequantize_out_type, dilations, padding_list, name, ctx): if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'quantized_conv2d_with_bias_and_requantize' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if out_type is None: out_type = _dtypes.qint8 out_type = _execute.make_type(out_type, "out_type") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'quantized_conv2d_with_bias_and_requantize' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] if padding_list is None: padding_list = [] if not isinstance(padding_list, (list, tuple)): raise TypeError( "Expected list for 'padding_list' argument to " "'quantized_conv2d_with_bias_and_requantize' Op, not %r." % padding_list) padding_list = [_execute.make_int(_i, "padding_list") for _i in padding_list] _attr_Tinput, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) _attr_Tfilter, (filter,) = _execute.args_to_matching_eager([filter], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) _attr_Tbias, (bias,) = _execute.args_to_matching_eager([bias], ctx, [_dtypes.float32, _dtypes.qint32, ]) min_input = _ops.convert_to_tensor(min_input, _dtypes.float32) max_input = _ops.convert_to_tensor(max_input, _dtypes.float32) min_filter = _ops.convert_to_tensor(min_filter, _dtypes.float32) max_filter = _ops.convert_to_tensor(max_filter, _dtypes.float32) min_freezed_output = _ops.convert_to_tensor(min_freezed_output, _dtypes.float32) max_freezed_output = _ops.convert_to_tensor(max_freezed_output, _dtypes.float32) _inputs_flat = [input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output] _attrs = ("Tinput", _attr_Tinput, "Tfilter", _attr_Tfilter, "Tbias", _attr_Tbias, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations, "padding_list", padding_list) _result = _execute.execute(b"QuantizedConv2DWithBiasAndRequantize", 3, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "QuantizedConv2DWithBiasAndRequantize", _inputs_flat, _attrs, _result) _result = _QuantizedConv2DWithBiasAndRequantizeOutput._make(_result) return _result _QuantizedConv2DWithBiasSignedSumAndReluAndRequantizeOutput = collections.namedtuple( "QuantizedConv2DWithBiasSignedSumAndReluAndRequantize", ["output", "min_output", "max_output"]) TV_QuantizedConv2DWithBiasSignedSumAndReluAndRequantize_Tinput = TypeVar("TV_QuantizedConv2DWithBiasSignedSumAndReluAndRequantize_Tinput", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedConv2DWithBiasSignedSumAndReluAndRequantize_Tfilter = TypeVar("TV_QuantizedConv2DWithBiasSignedSumAndReluAndRequantize_Tfilter", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedConv2DWithBiasSignedSumAndReluAndRequantize_Tbias = TypeVar("TV_QuantizedConv2DWithBiasSignedSumAndReluAndRequantize_Tbias", _atypes.Float32, _atypes.QInt32) TV_QuantizedConv2DWithBiasSignedSumAndReluAndRequantize_Tsummand = TypeVar("TV_QuantizedConv2DWithBiasSignedSumAndReluAndRequantize_Tsummand", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedConv2DWithBiasSignedSumAndReluAndRequantize_out_type = TypeVar("TV_QuantizedConv2DWithBiasSignedSumAndReluAndRequantize_out_type", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) def quantized_conv2d_with_bias_signed_sum_and_relu_and_requantize(input: Annotated[Any, TV_QuantizedConv2DWithBiasSignedSumAndReluAndRequantize_Tinput], filter: Annotated[Any, TV_QuantizedConv2DWithBiasSignedSumAndReluAndRequantize_Tfilter], bias: Annotated[Any, TV_QuantizedConv2DWithBiasSignedSumAndReluAndRequantize_Tbias], min_input: Annotated[Any, _atypes.Float32], max_input: Annotated[Any, _atypes.Float32], min_filter: Annotated[Any, _atypes.Float32], max_filter: Annotated[Any, _atypes.Float32], min_freezed_output: Annotated[Any, _atypes.Float32], max_freezed_output: Annotated[Any, _atypes.Float32], summand: Annotated[Any, TV_QuantizedConv2DWithBiasSignedSumAndReluAndRequantize_Tsummand], min_summand: Annotated[Any, _atypes.Float32], max_summand: Annotated[Any, _atypes.Float32], strides, padding: str, out_type:TV_QuantizedConv2DWithBiasSignedSumAndReluAndRequantize_out_type=_dtypes.quint8, dilations=[1, 1, 1, 1], padding_list=[], name=None): r"""TODO: add doc. Args: input: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. filter: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. bias: A `Tensor`. Must be one of the following types: `float32`, `qint32`. min_input: A `Tensor` of type `float32`. max_input: A `Tensor` of type `float32`. min_filter: A `Tensor` of type `float32`. max_filter: A `Tensor` of type `float32`. min_freezed_output: A `Tensor` of type `float32`. max_freezed_output: A `Tensor` of type `float32`. summand: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. min_summand: A `Tensor` of type `float32`. max_summand: A `Tensor` of type `float32`. strides: A list of `ints`. padding: A `string` from: `"SAME", "VALID"`. out_type: An optional `tf.DType` from: `tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16`. Defaults to `tf.quint8`. dilations: An optional list of `ints`. Defaults to `[1, 1, 1, 1]`. padding_list: An optional list of `ints`. Defaults to `[]`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (output, min_output, max_output). output: A `Tensor` of type `out_type`. min_output: A `Tensor` of type `float32`. max_output: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "QuantizedConv2DWithBiasSignedSumAndReluAndRequantize", name, input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output, summand, min_summand, max_summand, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations, "padding_list", padding_list) _result = _QuantizedConv2DWithBiasSignedSumAndReluAndRequantizeOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return quantized_conv2d_with_bias_signed_sum_and_relu_and_requantize_eager_fallback( input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output, summand, min_summand, max_summand, out_type=out_type, strides=strides, padding=padding, dilations=dilations, padding_list=padding_list, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'quantized_conv2d_with_bias_signed_sum_and_relu_and_requantize' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if out_type is None: out_type = _dtypes.quint8 out_type = _execute.make_type(out_type, "out_type") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'quantized_conv2d_with_bias_signed_sum_and_relu_and_requantize' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] if padding_list is None: padding_list = [] if not isinstance(padding_list, (list, tuple)): raise TypeError( "Expected list for 'padding_list' argument to " "'quantized_conv2d_with_bias_signed_sum_and_relu_and_requantize' Op, not %r." % padding_list) padding_list = [_execute.make_int(_i, "padding_list") for _i in padding_list] _, _, _op, _outputs = _op_def_library._apply_op_helper( "QuantizedConv2DWithBiasSignedSumAndReluAndRequantize", input=input, filter=filter, bias=bias, min_input=min_input, max_input=max_input, min_filter=min_filter, max_filter=max_filter, min_freezed_output=min_freezed_output, max_freezed_output=max_freezed_output, summand=summand, min_summand=min_summand, max_summand=max_summand, strides=strides, padding=padding, out_type=out_type, dilations=dilations, padding_list=padding_list, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Tinput", _op._get_attr_type("Tinput"), "Tfilter", _op._get_attr_type("Tfilter"), "Tbias", _op._get_attr_type("Tbias"), "Tsummand", _op._get_attr_type("Tsummand"), "out_type", _op._get_attr_type("out_type"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "dilations", _op.get_attr("dilations"), "padding_list", _op.get_attr("padding_list")) _inputs_flat = _op.inputs _execute.record_gradient( "QuantizedConv2DWithBiasSignedSumAndReluAndRequantize", _inputs_flat, _attrs, _result) _result = _QuantizedConv2DWithBiasSignedSumAndReluAndRequantizeOutput._make(_result) return _result QuantizedConv2DWithBiasSignedSumAndReluAndRequantize = tf_export("raw_ops.QuantizedConv2DWithBiasSignedSumAndReluAndRequantize")(_ops.to_raw_op(quantized_conv2d_with_bias_signed_sum_and_relu_and_requantize)) def quantized_conv2d_with_bias_signed_sum_and_relu_and_requantize_eager_fallback(input: Annotated[Any, TV_QuantizedConv2DWithBiasSignedSumAndReluAndRequantize_Tinput], filter: Annotated[Any, TV_QuantizedConv2DWithBiasSignedSumAndReluAndRequantize_Tfilter], bias: Annotated[Any, TV_QuantizedConv2DWithBiasSignedSumAndReluAndRequantize_Tbias], min_input: Annotated[Any, _atypes.Float32], max_input: Annotated[Any, _atypes.Float32], min_filter: Annotated[Any, _atypes.Float32], max_filter: Annotated[Any, _atypes.Float32], min_freezed_output: Annotated[Any, _atypes.Float32], max_freezed_output: Annotated[Any, _atypes.Float32], summand: Annotated[Any, TV_QuantizedConv2DWithBiasSignedSumAndReluAndRequantize_Tsummand], min_summand: Annotated[Any, _atypes.Float32], max_summand: Annotated[Any, _atypes.Float32], strides, padding: str, out_type: TV_QuantizedConv2DWithBiasSignedSumAndReluAndRequantize_out_type, dilations, padding_list, name, ctx): if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'quantized_conv2d_with_bias_signed_sum_and_relu_and_requantize' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if out_type is None: out_type = _dtypes.quint8 out_type = _execute.make_type(out_type, "out_type") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'quantized_conv2d_with_bias_signed_sum_and_relu_and_requantize' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] if padding_list is None: padding_list = [] if not isinstance(padding_list, (list, tuple)): raise TypeError( "Expected list for 'padding_list' argument to " "'quantized_conv2d_with_bias_signed_sum_and_relu_and_requantize' Op, not %r." % padding_list) padding_list = [_execute.make_int(_i, "padding_list") for _i in padding_list] _attr_Tinput, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) _attr_Tfilter, (filter,) = _execute.args_to_matching_eager([filter], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) _attr_Tbias, (bias,) = _execute.args_to_matching_eager([bias], ctx, [_dtypes.float32, _dtypes.qint32, ]) _attr_Tsummand, (summand,) = _execute.args_to_matching_eager([summand], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) min_input = _ops.convert_to_tensor(min_input, _dtypes.float32) max_input = _ops.convert_to_tensor(max_input, _dtypes.float32) min_filter = _ops.convert_to_tensor(min_filter, _dtypes.float32) max_filter = _ops.convert_to_tensor(max_filter, _dtypes.float32) min_freezed_output = _ops.convert_to_tensor(min_freezed_output, _dtypes.float32) max_freezed_output = _ops.convert_to_tensor(max_freezed_output, _dtypes.float32) min_summand = _ops.convert_to_tensor(min_summand, _dtypes.float32) max_summand = _ops.convert_to_tensor(max_summand, _dtypes.float32) _inputs_flat = [input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output, summand, min_summand, max_summand] _attrs = ("Tinput", _attr_Tinput, "Tfilter", _attr_Tfilter, "Tbias", _attr_Tbias, "Tsummand", _attr_Tsummand, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations, "padding_list", padding_list) _result = _execute.execute(b"QuantizedConv2DWithBiasSignedSumAndReluAndRequantize", 3, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "QuantizedConv2DWithBiasSignedSumAndReluAndRequantize", _inputs_flat, _attrs, _result) _result = _QuantizedConv2DWithBiasSignedSumAndReluAndRequantizeOutput._make(_result) return _result _QuantizedConv2DWithBiasSumAndReluOutput = collections.namedtuple( "QuantizedConv2DWithBiasSumAndRelu", ["output", "min_output", "max_output"]) TV_QuantizedConv2DWithBiasSumAndRelu_Tinput = TypeVar("TV_QuantizedConv2DWithBiasSumAndRelu_Tinput", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedConv2DWithBiasSumAndRelu_Tfilter = TypeVar("TV_QuantizedConv2DWithBiasSumAndRelu_Tfilter", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedConv2DWithBiasSumAndRelu_out_type = TypeVar("TV_QuantizedConv2DWithBiasSumAndRelu_out_type", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) def quantized_conv2d_with_bias_sum_and_relu(input: Annotated[Any, TV_QuantizedConv2DWithBiasSumAndRelu_Tinput], filter: Annotated[Any, TV_QuantizedConv2DWithBiasSumAndRelu_Tfilter], bias: Annotated[Any, _atypes.Float32], min_input: Annotated[Any, _atypes.Float32], max_input: Annotated[Any, _atypes.Float32], min_filter: Annotated[Any, _atypes.Float32], max_filter: Annotated[Any, _atypes.Float32], summand: Annotated[Any, _atypes.Float32], strides, padding: str, out_type:TV_QuantizedConv2DWithBiasSumAndRelu_out_type=_dtypes.qint32, dilations=[1, 1, 1, 1], padding_list=[], name=None): r"""TODO: add doc. Args: input: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. filter: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. bias: A `Tensor` of type `float32`. min_input: A `Tensor` of type `float32`. max_input: A `Tensor` of type `float32`. min_filter: A `Tensor` of type `float32`. max_filter: A `Tensor` of type `float32`. summand: A `Tensor` of type `float32`. strides: A list of `ints`. padding: A `string` from: `"SAME", "VALID"`. out_type: An optional `tf.DType` from: `tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16`. Defaults to `tf.qint32`. dilations: An optional list of `ints`. Defaults to `[1, 1, 1, 1]`. padding_list: An optional list of `ints`. Defaults to `[]`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (output, min_output, max_output). output: A `Tensor` of type `out_type`. min_output: A `Tensor` of type `float32`. max_output: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "QuantizedConv2DWithBiasSumAndRelu", name, input, filter, bias, min_input, max_input, min_filter, max_filter, summand, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations, "padding_list", padding_list) _result = _QuantizedConv2DWithBiasSumAndReluOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return quantized_conv2d_with_bias_sum_and_relu_eager_fallback( input, filter, bias, min_input, max_input, min_filter, max_filter, summand, out_type=out_type, strides=strides, padding=padding, dilations=dilations, padding_list=padding_list, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'quantized_conv2d_with_bias_sum_and_relu' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if out_type is None: out_type = _dtypes.qint32 out_type = _execute.make_type(out_type, "out_type") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'quantized_conv2d_with_bias_sum_and_relu' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] if padding_list is None: padding_list = [] if not isinstance(padding_list, (list, tuple)): raise TypeError( "Expected list for 'padding_list' argument to " "'quantized_conv2d_with_bias_sum_and_relu' Op, not %r." % padding_list) padding_list = [_execute.make_int(_i, "padding_list") for _i in padding_list] _, _, _op, _outputs = _op_def_library._apply_op_helper( "QuantizedConv2DWithBiasSumAndRelu", input=input, filter=filter, bias=bias, min_input=min_input, max_input=max_input, min_filter=min_filter, max_filter=max_filter, summand=summand, strides=strides, padding=padding, out_type=out_type, dilations=dilations, padding_list=padding_list, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Tinput", _op._get_attr_type("Tinput"), "Tfilter", _op._get_attr_type("Tfilter"), "out_type", _op._get_attr_type("out_type"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "dilations", _op.get_attr("dilations"), "padding_list", _op.get_attr("padding_list")) _inputs_flat = _op.inputs _execute.record_gradient( "QuantizedConv2DWithBiasSumAndRelu", _inputs_flat, _attrs, _result) _result = _QuantizedConv2DWithBiasSumAndReluOutput._make(_result) return _result QuantizedConv2DWithBiasSumAndRelu = tf_export("raw_ops.QuantizedConv2DWithBiasSumAndRelu")(_ops.to_raw_op(quantized_conv2d_with_bias_sum_and_relu)) def quantized_conv2d_with_bias_sum_and_relu_eager_fallback(input: Annotated[Any, TV_QuantizedConv2DWithBiasSumAndRelu_Tinput], filter: Annotated[Any, TV_QuantizedConv2DWithBiasSumAndRelu_Tfilter], bias: Annotated[Any, _atypes.Float32], min_input: Annotated[Any, _atypes.Float32], max_input: Annotated[Any, _atypes.Float32], min_filter: Annotated[Any, _atypes.Float32], max_filter: Annotated[Any, _atypes.Float32], summand: Annotated[Any, _atypes.Float32], strides, padding: str, out_type: TV_QuantizedConv2DWithBiasSumAndRelu_out_type, dilations, padding_list, name, ctx): if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'quantized_conv2d_with_bias_sum_and_relu' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if out_type is None: out_type = _dtypes.qint32 out_type = _execute.make_type(out_type, "out_type") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'quantized_conv2d_with_bias_sum_and_relu' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] if padding_list is None: padding_list = [] if not isinstance(padding_list, (list, tuple)): raise TypeError( "Expected list for 'padding_list' argument to " "'quantized_conv2d_with_bias_sum_and_relu' Op, not %r." % padding_list) padding_list = [_execute.make_int(_i, "padding_list") for _i in padding_list] _attr_Tinput, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) _attr_Tfilter, (filter,) = _execute.args_to_matching_eager([filter], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) bias = _ops.convert_to_tensor(bias, _dtypes.float32) min_input = _ops.convert_to_tensor(min_input, _dtypes.float32) max_input = _ops.convert_to_tensor(max_input, _dtypes.float32) min_filter = _ops.convert_to_tensor(min_filter, _dtypes.float32) max_filter = _ops.convert_to_tensor(max_filter, _dtypes.float32) summand = _ops.convert_to_tensor(summand, _dtypes.float32) _inputs_flat = [input, filter, bias, min_input, max_input, min_filter, max_filter, summand] _attrs = ("Tinput", _attr_Tinput, "Tfilter", _attr_Tfilter, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations, "padding_list", padding_list) _result = _execute.execute(b"QuantizedConv2DWithBiasSumAndRelu", 3, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "QuantizedConv2DWithBiasSumAndRelu", _inputs_flat, _attrs, _result) _result = _QuantizedConv2DWithBiasSumAndReluOutput._make(_result) return _result _QuantizedConv2DWithBiasSumAndReluAndRequantizeOutput = collections.namedtuple( "QuantizedConv2DWithBiasSumAndReluAndRequantize", ["output", "min_output", "max_output"]) TV_QuantizedConv2DWithBiasSumAndReluAndRequantize_Tinput = TypeVar("TV_QuantizedConv2DWithBiasSumAndReluAndRequantize_Tinput", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedConv2DWithBiasSumAndReluAndRequantize_Tfilter = TypeVar("TV_QuantizedConv2DWithBiasSumAndReluAndRequantize_Tfilter", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedConv2DWithBiasSumAndReluAndRequantize_Tbias = TypeVar("TV_QuantizedConv2DWithBiasSumAndReluAndRequantize_Tbias", _atypes.Float32, _atypes.QInt32) TV_QuantizedConv2DWithBiasSumAndReluAndRequantize_Tsummand = TypeVar("TV_QuantizedConv2DWithBiasSumAndReluAndRequantize_Tsummand", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedConv2DWithBiasSumAndReluAndRequantize_out_type = TypeVar("TV_QuantizedConv2DWithBiasSumAndReluAndRequantize_out_type", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) def quantized_conv2d_with_bias_sum_and_relu_and_requantize(input: Annotated[Any, TV_QuantizedConv2DWithBiasSumAndReluAndRequantize_Tinput], filter: Annotated[Any, TV_QuantizedConv2DWithBiasSumAndReluAndRequantize_Tfilter], bias: Annotated[Any, TV_QuantizedConv2DWithBiasSumAndReluAndRequantize_Tbias], min_input: Annotated[Any, _atypes.Float32], max_input: Annotated[Any, _atypes.Float32], min_filter: Annotated[Any, _atypes.Float32], max_filter: Annotated[Any, _atypes.Float32], min_freezed_output: Annotated[Any, _atypes.Float32], max_freezed_output: Annotated[Any, _atypes.Float32], summand: Annotated[Any, TV_QuantizedConv2DWithBiasSumAndReluAndRequantize_Tsummand], min_summand: Annotated[Any, _atypes.Float32], max_summand: Annotated[Any, _atypes.Float32], strides, padding: str, out_type:TV_QuantizedConv2DWithBiasSumAndReluAndRequantize_out_type=_dtypes.quint8, dilations=[1, 1, 1, 1], padding_list=[], name=None): r"""TODO: add doc. Args: input: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. filter: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. bias: A `Tensor`. Must be one of the following types: `float32`, `qint32`. min_input: A `Tensor` of type `float32`. max_input: A `Tensor` of type `float32`. min_filter: A `Tensor` of type `float32`. max_filter: A `Tensor` of type `float32`. min_freezed_output: A `Tensor` of type `float32`. max_freezed_output: A `Tensor` of type `float32`. summand: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. min_summand: A `Tensor` of type `float32`. max_summand: A `Tensor` of type `float32`. strides: A list of `ints`. padding: A `string` from: `"SAME", "VALID"`. out_type: An optional `tf.DType` from: `tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16`. Defaults to `tf.quint8`. dilations: An optional list of `ints`. Defaults to `[1, 1, 1, 1]`. padding_list: An optional list of `ints`. Defaults to `[]`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (output, min_output, max_output). output: A `Tensor` of type `out_type`. min_output: A `Tensor` of type `float32`. max_output: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "QuantizedConv2DWithBiasSumAndReluAndRequantize", name, input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output, summand, min_summand, max_summand, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations, "padding_list", padding_list) _result = _QuantizedConv2DWithBiasSumAndReluAndRequantizeOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return quantized_conv2d_with_bias_sum_and_relu_and_requantize_eager_fallback( input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output, summand, min_summand, max_summand, out_type=out_type, strides=strides, padding=padding, dilations=dilations, padding_list=padding_list, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'quantized_conv2d_with_bias_sum_and_relu_and_requantize' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if out_type is None: out_type = _dtypes.quint8 out_type = _execute.make_type(out_type, "out_type") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'quantized_conv2d_with_bias_sum_and_relu_and_requantize' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] if padding_list is None: padding_list = [] if not isinstance(padding_list, (list, tuple)): raise TypeError( "Expected list for 'padding_list' argument to " "'quantized_conv2d_with_bias_sum_and_relu_and_requantize' Op, not %r." % padding_list) padding_list = [_execute.make_int(_i, "padding_list") for _i in padding_list] _, _, _op, _outputs = _op_def_library._apply_op_helper( "QuantizedConv2DWithBiasSumAndReluAndRequantize", input=input, filter=filter, bias=bias, min_input=min_input, max_input=max_input, min_filter=min_filter, max_filter=max_filter, min_freezed_output=min_freezed_output, max_freezed_output=max_freezed_output, summand=summand, min_summand=min_summand, max_summand=max_summand, strides=strides, padding=padding, out_type=out_type, dilations=dilations, padding_list=padding_list, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Tinput", _op._get_attr_type("Tinput"), "Tfilter", _op._get_attr_type("Tfilter"), "Tbias", _op._get_attr_type("Tbias"), "Tsummand", _op._get_attr_type("Tsummand"), "out_type", _op._get_attr_type("out_type"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "dilations", _op.get_attr("dilations"), "padding_list", _op.get_attr("padding_list")) _inputs_flat = _op.inputs _execute.record_gradient( "QuantizedConv2DWithBiasSumAndReluAndRequantize", _inputs_flat, _attrs, _result) _result = _QuantizedConv2DWithBiasSumAndReluAndRequantizeOutput._make(_result) return _result QuantizedConv2DWithBiasSumAndReluAndRequantize = tf_export("raw_ops.QuantizedConv2DWithBiasSumAndReluAndRequantize")(_ops.to_raw_op(quantized_conv2d_with_bias_sum_and_relu_and_requantize)) def quantized_conv2d_with_bias_sum_and_relu_and_requantize_eager_fallback(input: Annotated[Any, TV_QuantizedConv2DWithBiasSumAndReluAndRequantize_Tinput], filter: Annotated[Any, TV_QuantizedConv2DWithBiasSumAndReluAndRequantize_Tfilter], bias: Annotated[Any, TV_QuantizedConv2DWithBiasSumAndReluAndRequantize_Tbias], min_input: Annotated[Any, _atypes.Float32], max_input: Annotated[Any, _atypes.Float32], min_filter: Annotated[Any, _atypes.Float32], max_filter: Annotated[Any, _atypes.Float32], min_freezed_output: Annotated[Any, _atypes.Float32], max_freezed_output: Annotated[Any, _atypes.Float32], summand: Annotated[Any, TV_QuantizedConv2DWithBiasSumAndReluAndRequantize_Tsummand], min_summand: Annotated[Any, _atypes.Float32], max_summand: Annotated[Any, _atypes.Float32], strides, padding: str, out_type: TV_QuantizedConv2DWithBiasSumAndReluAndRequantize_out_type, dilations, padding_list, name, ctx): if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'quantized_conv2d_with_bias_sum_and_relu_and_requantize' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if out_type is None: out_type = _dtypes.quint8 out_type = _execute.make_type(out_type, "out_type") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'quantized_conv2d_with_bias_sum_and_relu_and_requantize' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] if padding_list is None: padding_list = [] if not isinstance(padding_list, (list, tuple)): raise TypeError( "Expected list for 'padding_list' argument to " "'quantized_conv2d_with_bias_sum_and_relu_and_requantize' Op, not %r." % padding_list) padding_list = [_execute.make_int(_i, "padding_list") for _i in padding_list] _attr_Tinput, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) _attr_Tfilter, (filter,) = _execute.args_to_matching_eager([filter], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) _attr_Tbias, (bias,) = _execute.args_to_matching_eager([bias], ctx, [_dtypes.float32, _dtypes.qint32, ]) _attr_Tsummand, (summand,) = _execute.args_to_matching_eager([summand], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) min_input = _ops.convert_to_tensor(min_input, _dtypes.float32) max_input = _ops.convert_to_tensor(max_input, _dtypes.float32) min_filter = _ops.convert_to_tensor(min_filter, _dtypes.float32) max_filter = _ops.convert_to_tensor(max_filter, _dtypes.float32) min_freezed_output = _ops.convert_to_tensor(min_freezed_output, _dtypes.float32) max_freezed_output = _ops.convert_to_tensor(max_freezed_output, _dtypes.float32) min_summand = _ops.convert_to_tensor(min_summand, _dtypes.float32) max_summand = _ops.convert_to_tensor(max_summand, _dtypes.float32) _inputs_flat = [input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output, summand, min_summand, max_summand] _attrs = ("Tinput", _attr_Tinput, "Tfilter", _attr_Tfilter, "Tbias", _attr_Tbias, "Tsummand", _attr_Tsummand, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations, "padding_list", padding_list) _result = _execute.execute(b"QuantizedConv2DWithBiasSumAndReluAndRequantize", 3, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "QuantizedConv2DWithBiasSumAndReluAndRequantize", _inputs_flat, _attrs, _result) _result = _QuantizedConv2DWithBiasSumAndReluAndRequantizeOutput._make(_result) return _result _QuantizedDepthwiseConv2DOutput = collections.namedtuple( "QuantizedDepthwiseConv2D", ["output", "min_output", "max_output"]) TV_QuantizedDepthwiseConv2D_Tinput = TypeVar("TV_QuantizedDepthwiseConv2D_Tinput", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedDepthwiseConv2D_Tfilter = TypeVar("TV_QuantizedDepthwiseConv2D_Tfilter", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedDepthwiseConv2D_out_type = TypeVar("TV_QuantizedDepthwiseConv2D_out_type", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) def quantized_depthwise_conv2d(input: Annotated[Any, TV_QuantizedDepthwiseConv2D_Tinput], filter: Annotated[Any, TV_QuantizedDepthwiseConv2D_Tfilter], min_input: Annotated[Any, _atypes.Float32], max_input: Annotated[Any, _atypes.Float32], min_filter: Annotated[Any, _atypes.Float32], max_filter: Annotated[Any, _atypes.Float32], strides, padding: str, out_type:TV_QuantizedDepthwiseConv2D_out_type=_dtypes.qint32, dilations=[1, 1, 1, 1], name=None): r"""Computes quantized depthwise Conv2D. Args: input: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. The original input tensor. filter: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. The original filter tensor. min_input: A `Tensor` of type `float32`. The float value that the minimum quantized input value represents. max_input: A `Tensor` of type `float32`. The float value that the maximum quantized input value represents. min_filter: A `Tensor` of type `float32`. The float value that the minimum quantized filter value represents. max_filter: A `Tensor` of type `float32`. The float value that the maximum quantized filter value represents. strides: A list of `ints`. List of stride values. padding: A `string` from: `"SAME", "VALID"`. out_type: An optional `tf.DType` from: `tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16`. Defaults to `tf.qint32`. The type of the output. dilations: An optional list of `ints`. Defaults to `[1, 1, 1, 1]`. List of dilation values. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (output, min_output, max_output). output: A `Tensor` of type `out_type`. min_output: A `Tensor` of type `float32`. max_output: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "QuantizedDepthwiseConv2D", name, input, filter, min_input, max_input, min_filter, max_filter, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations) _result = _QuantizedDepthwiseConv2DOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return quantized_depthwise_conv2d_eager_fallback( input, filter, min_input, max_input, min_filter, max_filter, out_type=out_type, strides=strides, padding=padding, dilations=dilations, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'quantized_depthwise_conv2d' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if out_type is None: out_type = _dtypes.qint32 out_type = _execute.make_type(out_type, "out_type") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'quantized_depthwise_conv2d' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] _, _, _op, _outputs = _op_def_library._apply_op_helper( "QuantizedDepthwiseConv2D", input=input, filter=filter, min_input=min_input, max_input=max_input, min_filter=min_filter, max_filter=max_filter, strides=strides, padding=padding, out_type=out_type, dilations=dilations, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Tinput", _op._get_attr_type("Tinput"), "Tfilter", _op._get_attr_type("Tfilter"), "out_type", _op._get_attr_type("out_type"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "dilations", _op.get_attr("dilations")) _inputs_flat = _op.inputs _execute.record_gradient( "QuantizedDepthwiseConv2D", _inputs_flat, _attrs, _result) _result = _QuantizedDepthwiseConv2DOutput._make(_result) return _result QuantizedDepthwiseConv2D = tf_export("raw_ops.QuantizedDepthwiseConv2D")(_ops.to_raw_op(quantized_depthwise_conv2d)) def quantized_depthwise_conv2d_eager_fallback(input: Annotated[Any, TV_QuantizedDepthwiseConv2D_Tinput], filter: Annotated[Any, TV_QuantizedDepthwiseConv2D_Tfilter], min_input: Annotated[Any, _atypes.Float32], max_input: Annotated[Any, _atypes.Float32], min_filter: Annotated[Any, _atypes.Float32], max_filter: Annotated[Any, _atypes.Float32], strides, padding: str, out_type: TV_QuantizedDepthwiseConv2D_out_type, dilations, name, ctx): if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'quantized_depthwise_conv2d' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if out_type is None: out_type = _dtypes.qint32 out_type = _execute.make_type(out_type, "out_type") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'quantized_depthwise_conv2d' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] _attr_Tinput, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) _attr_Tfilter, (filter,) = _execute.args_to_matching_eager([filter], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) min_input = _ops.convert_to_tensor(min_input, _dtypes.float32) max_input = _ops.convert_to_tensor(max_input, _dtypes.float32) min_filter = _ops.convert_to_tensor(min_filter, _dtypes.float32) max_filter = _ops.convert_to_tensor(max_filter, _dtypes.float32) _inputs_flat = [input, filter, min_input, max_input, min_filter, max_filter] _attrs = ("Tinput", _attr_Tinput, "Tfilter", _attr_Tfilter, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations) _result = _execute.execute(b"QuantizedDepthwiseConv2D", 3, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "QuantizedDepthwiseConv2D", _inputs_flat, _attrs, _result) _result = _QuantizedDepthwiseConv2DOutput._make(_result) return _result _QuantizedDepthwiseConv2DWithBiasOutput = collections.namedtuple( "QuantizedDepthwiseConv2DWithBias", ["output", "min_output", "max_output"]) TV_QuantizedDepthwiseConv2DWithBias_Tinput = TypeVar("TV_QuantizedDepthwiseConv2DWithBias_Tinput", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedDepthwiseConv2DWithBias_Tfilter = TypeVar("TV_QuantizedDepthwiseConv2DWithBias_Tfilter", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedDepthwiseConv2DWithBias_out_type = TypeVar("TV_QuantizedDepthwiseConv2DWithBias_out_type", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) def quantized_depthwise_conv2d_with_bias(input: Annotated[Any, TV_QuantizedDepthwiseConv2DWithBias_Tinput], filter: Annotated[Any, TV_QuantizedDepthwiseConv2DWithBias_Tfilter], bias: Annotated[Any, _atypes.Float32], min_input: Annotated[Any, _atypes.Float32], max_input: Annotated[Any, _atypes.Float32], min_filter: Annotated[Any, _atypes.Float32], max_filter: Annotated[Any, _atypes.Float32], strides, padding: str, out_type:TV_QuantizedDepthwiseConv2DWithBias_out_type=_dtypes.qint32, dilations=[1, 1, 1, 1], name=None): r"""Computes quantized depthwise Conv2D with Bias. Args: input: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. The original input tensor. filter: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. The original filter tensor. bias: A `Tensor` of type `float32`. The original bias tensor. min_input: A `Tensor` of type `float32`. The float value that the minimum quantized input value represents. max_input: A `Tensor` of type `float32`. The float value that the maximum quantized input value represents. min_filter: A `Tensor` of type `float32`. The float value that the minimum quantized filter value represents. max_filter: A `Tensor` of type `float32`. The float value that the maximum quantized filter value represents. strides: A list of `ints`. List of stride values. padding: A `string` from: `"SAME", "VALID"`. out_type: An optional `tf.DType` from: `tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16`. Defaults to `tf.qint32`. The type of the output. dilations: An optional list of `ints`. Defaults to `[1, 1, 1, 1]`. List of dilation values. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (output, min_output, max_output). output: A `Tensor` of type `out_type`. min_output: A `Tensor` of type `float32`. max_output: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "QuantizedDepthwiseConv2DWithBias", name, input, filter, bias, min_input, max_input, min_filter, max_filter, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations) _result = _QuantizedDepthwiseConv2DWithBiasOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return quantized_depthwise_conv2d_with_bias_eager_fallback( input, filter, bias, min_input, max_input, min_filter, max_filter, out_type=out_type, strides=strides, padding=padding, dilations=dilations, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'quantized_depthwise_conv2d_with_bias' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if out_type is None: out_type = _dtypes.qint32 out_type = _execute.make_type(out_type, "out_type") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'quantized_depthwise_conv2d_with_bias' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] _, _, _op, _outputs = _op_def_library._apply_op_helper( "QuantizedDepthwiseConv2DWithBias", input=input, filter=filter, bias=bias, min_input=min_input, max_input=max_input, min_filter=min_filter, max_filter=max_filter, strides=strides, padding=padding, out_type=out_type, dilations=dilations, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Tinput", _op._get_attr_type("Tinput"), "Tfilter", _op._get_attr_type("Tfilter"), "out_type", _op._get_attr_type("out_type"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "dilations", _op.get_attr("dilations")) _inputs_flat = _op.inputs _execute.record_gradient( "QuantizedDepthwiseConv2DWithBias", _inputs_flat, _attrs, _result) _result = _QuantizedDepthwiseConv2DWithBiasOutput._make(_result) return _result QuantizedDepthwiseConv2DWithBias = tf_export("raw_ops.QuantizedDepthwiseConv2DWithBias")(_ops.to_raw_op(quantized_depthwise_conv2d_with_bias)) def quantized_depthwise_conv2d_with_bias_eager_fallback(input: Annotated[Any, TV_QuantizedDepthwiseConv2DWithBias_Tinput], filter: Annotated[Any, TV_QuantizedDepthwiseConv2DWithBias_Tfilter], bias: Annotated[Any, _atypes.Float32], min_input: Annotated[Any, _atypes.Float32], max_input: Annotated[Any, _atypes.Float32], min_filter: Annotated[Any, _atypes.Float32], max_filter: Annotated[Any, _atypes.Float32], strides, padding: str, out_type: TV_QuantizedDepthwiseConv2DWithBias_out_type, dilations, name, ctx): if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'quantized_depthwise_conv2d_with_bias' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if out_type is None: out_type = _dtypes.qint32 out_type = _execute.make_type(out_type, "out_type") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'quantized_depthwise_conv2d_with_bias' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] _attr_Tinput, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) _attr_Tfilter, (filter,) = _execute.args_to_matching_eager([filter], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) bias = _ops.convert_to_tensor(bias, _dtypes.float32) min_input = _ops.convert_to_tensor(min_input, _dtypes.float32) max_input = _ops.convert_to_tensor(max_input, _dtypes.float32) min_filter = _ops.convert_to_tensor(min_filter, _dtypes.float32) max_filter = _ops.convert_to_tensor(max_filter, _dtypes.float32) _inputs_flat = [input, filter, bias, min_input, max_input, min_filter, max_filter] _attrs = ("Tinput", _attr_Tinput, "Tfilter", _attr_Tfilter, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations) _result = _execute.execute(b"QuantizedDepthwiseConv2DWithBias", 3, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "QuantizedDepthwiseConv2DWithBias", _inputs_flat, _attrs, _result) _result = _QuantizedDepthwiseConv2DWithBiasOutput._make(_result) return _result _QuantizedDepthwiseConv2DWithBiasAndReluOutput = collections.namedtuple( "QuantizedDepthwiseConv2DWithBiasAndRelu", ["output", "min_output", "max_output"]) TV_QuantizedDepthwiseConv2DWithBiasAndRelu_Tinput = TypeVar("TV_QuantizedDepthwiseConv2DWithBiasAndRelu_Tinput", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedDepthwiseConv2DWithBiasAndRelu_Tfilter = TypeVar("TV_QuantizedDepthwiseConv2DWithBiasAndRelu_Tfilter", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedDepthwiseConv2DWithBiasAndRelu_out_type = TypeVar("TV_QuantizedDepthwiseConv2DWithBiasAndRelu_out_type", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) def quantized_depthwise_conv2d_with_bias_and_relu(input: Annotated[Any, TV_QuantizedDepthwiseConv2DWithBiasAndRelu_Tinput], filter: Annotated[Any, TV_QuantizedDepthwiseConv2DWithBiasAndRelu_Tfilter], bias: Annotated[Any, _atypes.Float32], min_input: Annotated[Any, _atypes.Float32], max_input: Annotated[Any, _atypes.Float32], min_filter: Annotated[Any, _atypes.Float32], max_filter: Annotated[Any, _atypes.Float32], strides, padding: str, out_type:TV_QuantizedDepthwiseConv2DWithBiasAndRelu_out_type=_dtypes.qint32, dilations=[1, 1, 1, 1], padding_list=[], name=None): r"""Computes quantized depthwise Conv2D with Bias and Relu. Args: input: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. The original input tensor. filter: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. The original filter tensor. bias: A `Tensor` of type `float32`. The original bias tensor. min_input: A `Tensor` of type `float32`. The float value that the minimum quantized input value represents. max_input: A `Tensor` of type `float32`. The float value that the maximum quantized input value represents. min_filter: A `Tensor` of type `float32`. The float value that the minimum quantized filter value represents. max_filter: A `Tensor` of type `float32`. The float value that the maximum quantized filter value represents. strides: A list of `ints`. List of stride values. padding: A `string` from: `"SAME", "VALID"`. out_type: An optional `tf.DType` from: `tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16`. Defaults to `tf.qint32`. The type of the output. dilations: An optional list of `ints`. Defaults to `[1, 1, 1, 1]`. List of dilation values. padding_list: An optional list of `ints`. Defaults to `[]`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (output, min_output, max_output). output: A `Tensor` of type `out_type`. min_output: A `Tensor` of type `float32`. max_output: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "QuantizedDepthwiseConv2DWithBiasAndRelu", name, input, filter, bias, min_input, max_input, min_filter, max_filter, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations, "padding_list", padding_list) _result = _QuantizedDepthwiseConv2DWithBiasAndReluOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return quantized_depthwise_conv2d_with_bias_and_relu_eager_fallback( input, filter, bias, min_input, max_input, min_filter, max_filter, out_type=out_type, strides=strides, padding=padding, dilations=dilations, padding_list=padding_list, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'quantized_depthwise_conv2d_with_bias_and_relu' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if out_type is None: out_type = _dtypes.qint32 out_type = _execute.make_type(out_type, "out_type") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'quantized_depthwise_conv2d_with_bias_and_relu' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] if padding_list is None: padding_list = [] if not isinstance(padding_list, (list, tuple)): raise TypeError( "Expected list for 'padding_list' argument to " "'quantized_depthwise_conv2d_with_bias_and_relu' Op, not %r." % padding_list) padding_list = [_execute.make_int(_i, "padding_list") for _i in padding_list] _, _, _op, _outputs = _op_def_library._apply_op_helper( "QuantizedDepthwiseConv2DWithBiasAndRelu", input=input, filter=filter, bias=bias, min_input=min_input, max_input=max_input, min_filter=min_filter, max_filter=max_filter, strides=strides, padding=padding, out_type=out_type, dilations=dilations, padding_list=padding_list, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Tinput", _op._get_attr_type("Tinput"), "Tfilter", _op._get_attr_type("Tfilter"), "out_type", _op._get_attr_type("out_type"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "dilations", _op.get_attr("dilations"), "padding_list", _op.get_attr("padding_list")) _inputs_flat = _op.inputs _execute.record_gradient( "QuantizedDepthwiseConv2DWithBiasAndRelu", _inputs_flat, _attrs, _result) _result = _QuantizedDepthwiseConv2DWithBiasAndReluOutput._make(_result) return _result QuantizedDepthwiseConv2DWithBiasAndRelu = tf_export("raw_ops.QuantizedDepthwiseConv2DWithBiasAndRelu")(_ops.to_raw_op(quantized_depthwise_conv2d_with_bias_and_relu)) def quantized_depthwise_conv2d_with_bias_and_relu_eager_fallback(input: Annotated[Any, TV_QuantizedDepthwiseConv2DWithBiasAndRelu_Tinput], filter: Annotated[Any, TV_QuantizedDepthwiseConv2DWithBiasAndRelu_Tfilter], bias: Annotated[Any, _atypes.Float32], min_input: Annotated[Any, _atypes.Float32], max_input: Annotated[Any, _atypes.Float32], min_filter: Annotated[Any, _atypes.Float32], max_filter: Annotated[Any, _atypes.Float32], strides, padding: str, out_type: TV_QuantizedDepthwiseConv2DWithBiasAndRelu_out_type, dilations, padding_list, name, ctx): if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'quantized_depthwise_conv2d_with_bias_and_relu' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if out_type is None: out_type = _dtypes.qint32 out_type = _execute.make_type(out_type, "out_type") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'quantized_depthwise_conv2d_with_bias_and_relu' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] if padding_list is None: padding_list = [] if not isinstance(padding_list, (list, tuple)): raise TypeError( "Expected list for 'padding_list' argument to " "'quantized_depthwise_conv2d_with_bias_and_relu' Op, not %r." % padding_list) padding_list = [_execute.make_int(_i, "padding_list") for _i in padding_list] _attr_Tinput, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) _attr_Tfilter, (filter,) = _execute.args_to_matching_eager([filter], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) bias = _ops.convert_to_tensor(bias, _dtypes.float32) min_input = _ops.convert_to_tensor(min_input, _dtypes.float32) max_input = _ops.convert_to_tensor(max_input, _dtypes.float32) min_filter = _ops.convert_to_tensor(min_filter, _dtypes.float32) max_filter = _ops.convert_to_tensor(max_filter, _dtypes.float32) _inputs_flat = [input, filter, bias, min_input, max_input, min_filter, max_filter] _attrs = ("Tinput", _attr_Tinput, "Tfilter", _attr_Tfilter, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations, "padding_list", padding_list) _result = _execute.execute(b"QuantizedDepthwiseConv2DWithBiasAndRelu", 3, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "QuantizedDepthwiseConv2DWithBiasAndRelu", _inputs_flat, _attrs, _result) _result = _QuantizedDepthwiseConv2DWithBiasAndReluOutput._make(_result) return _result _QuantizedDepthwiseConv2DWithBiasAndReluAndRequantizeOutput = collections.namedtuple( "QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize", ["output", "min_output", "max_output"]) TV_QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize_Tinput = TypeVar("TV_QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize_Tinput", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize_Tfilter = TypeVar("TV_QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize_Tfilter", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize_Tbias = TypeVar("TV_QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize_Tbias", _atypes.Float32, _atypes.QInt32) TV_QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize_out_type = TypeVar("TV_QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize_out_type", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) def quantized_depthwise_conv2d_with_bias_and_relu_and_requantize(input: Annotated[Any, TV_QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize_Tinput], filter: Annotated[Any, TV_QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize_Tfilter], bias: Annotated[Any, TV_QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize_Tbias], min_input: Annotated[Any, _atypes.Float32], max_input: Annotated[Any, _atypes.Float32], min_filter: Annotated[Any, _atypes.Float32], max_filter: Annotated[Any, _atypes.Float32], min_freezed_output: Annotated[Any, _atypes.Float32], max_freezed_output: Annotated[Any, _atypes.Float32], strides, padding: str, out_type:TV_QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize_out_type=_dtypes.quint8, dilations=[1, 1, 1, 1], padding_list=[], name=None): r"""Computes quantized depthwise Conv2D with Bias, Relu and Requantize. Args: input: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. The original input tensor. filter: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. The original filter tensor. bias: A `Tensor`. Must be one of the following types: `float32`, `qint32`. The original bias tensor. min_input: A `Tensor` of type `float32`. The float value that the minimum quantized input value represents. max_input: A `Tensor` of type `float32`. The float value that the maximum quantized input value represents. min_filter: A `Tensor` of type `float32`. The float value that the minimum quantized filter value represents. max_filter: A `Tensor` of type `float32`. The float value that the maximum quantized filter value represents. min_freezed_output: A `Tensor` of type `float32`. The minimum float value of the output tensor. max_freezed_output: A `Tensor` of type `float32`. The maximum float value of the output tensor. strides: A list of `ints`. List of stride values. padding: A `string` from: `"SAME", "VALID"`. out_type: An optional `tf.DType` from: `tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16`. Defaults to `tf.quint8`. The type of the output. dilations: An optional list of `ints`. Defaults to `[1, 1, 1, 1]`. List of dilation values. padding_list: An optional list of `ints`. Defaults to `[]`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (output, min_output, max_output). output: A `Tensor` of type `out_type`. min_output: A `Tensor` of type `float32`. max_output: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize", name, input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations, "padding_list", padding_list) _result = _QuantizedDepthwiseConv2DWithBiasAndReluAndRequantizeOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return quantized_depthwise_conv2d_with_bias_and_relu_and_requantize_eager_fallback( input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output, out_type=out_type, strides=strides, padding=padding, dilations=dilations, padding_list=padding_list, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'quantized_depthwise_conv2d_with_bias_and_relu_and_requantize' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if out_type is None: out_type = _dtypes.quint8 out_type = _execute.make_type(out_type, "out_type") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'quantized_depthwise_conv2d_with_bias_and_relu_and_requantize' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] if padding_list is None: padding_list = [] if not isinstance(padding_list, (list, tuple)): raise TypeError( "Expected list for 'padding_list' argument to " "'quantized_depthwise_conv2d_with_bias_and_relu_and_requantize' Op, not %r." % padding_list) padding_list = [_execute.make_int(_i, "padding_list") for _i in padding_list] _, _, _op, _outputs = _op_def_library._apply_op_helper( "QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize", input=input, filter=filter, bias=bias, min_input=min_input, max_input=max_input, min_filter=min_filter, max_filter=max_filter, min_freezed_output=min_freezed_output, max_freezed_output=max_freezed_output, strides=strides, padding=padding, out_type=out_type, dilations=dilations, padding_list=padding_list, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Tinput", _op._get_attr_type("Tinput"), "Tfilter", _op._get_attr_type("Tfilter"), "Tbias", _op._get_attr_type("Tbias"), "out_type", _op._get_attr_type("out_type"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "dilations", _op.get_attr("dilations"), "padding_list", _op.get_attr("padding_list")) _inputs_flat = _op.inputs _execute.record_gradient( "QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize", _inputs_flat, _attrs, _result) _result = _QuantizedDepthwiseConv2DWithBiasAndReluAndRequantizeOutput._make(_result) return _result QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize = tf_export("raw_ops.QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize")(_ops.to_raw_op(quantized_depthwise_conv2d_with_bias_and_relu_and_requantize)) def quantized_depthwise_conv2d_with_bias_and_relu_and_requantize_eager_fallback(input: Annotated[Any, TV_QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize_Tinput], filter: Annotated[Any, TV_QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize_Tfilter], bias: Annotated[Any, TV_QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize_Tbias], min_input: Annotated[Any, _atypes.Float32], max_input: Annotated[Any, _atypes.Float32], min_filter: Annotated[Any, _atypes.Float32], max_filter: Annotated[Any, _atypes.Float32], min_freezed_output: Annotated[Any, _atypes.Float32], max_freezed_output: Annotated[Any, _atypes.Float32], strides, padding: str, out_type: TV_QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize_out_type, dilations, padding_list, name, ctx): if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'quantized_depthwise_conv2d_with_bias_and_relu_and_requantize' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") if out_type is None: out_type = _dtypes.quint8 out_type = _execute.make_type(out_type, "out_type") if dilations is None: dilations = [1, 1, 1, 1] if not isinstance(dilations, (list, tuple)): raise TypeError( "Expected list for 'dilations' argument to " "'quantized_depthwise_conv2d_with_bias_and_relu_and_requantize' Op, not %r." % dilations) dilations = [_execute.make_int(_i, "dilations") for _i in dilations] if padding_list is None: padding_list = [] if not isinstance(padding_list, (list, tuple)): raise TypeError( "Expected list for 'padding_list' argument to " "'quantized_depthwise_conv2d_with_bias_and_relu_and_requantize' Op, not %r." % padding_list) padding_list = [_execute.make_int(_i, "padding_list") for _i in padding_list] _attr_Tinput, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) _attr_Tfilter, (filter,) = _execute.args_to_matching_eager([filter], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) _attr_Tbias, (bias,) = _execute.args_to_matching_eager([bias], ctx, [_dtypes.float32, _dtypes.qint32, ]) min_input = _ops.convert_to_tensor(min_input, _dtypes.float32) max_input = _ops.convert_to_tensor(max_input, _dtypes.float32) min_filter = _ops.convert_to_tensor(min_filter, _dtypes.float32) max_filter = _ops.convert_to_tensor(max_filter, _dtypes.float32) min_freezed_output = _ops.convert_to_tensor(min_freezed_output, _dtypes.float32) max_freezed_output = _ops.convert_to_tensor(max_freezed_output, _dtypes.float32) _inputs_flat = [input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output] _attrs = ("Tinput", _attr_Tinput, "Tfilter", _attr_Tfilter, "Tbias", _attr_Tbias, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations, "padding_list", padding_list) _result = _execute.execute(b"QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize", 3, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize", _inputs_flat, _attrs, _result) _result = _QuantizedDepthwiseConv2DWithBiasAndReluAndRequantizeOutput._make(_result) return _result _QuantizedMatMulWithBiasOutput = collections.namedtuple( "QuantizedMatMulWithBias", ["out", "min_out", "max_out"]) TV_QuantizedMatMulWithBias_T1 = TypeVar("TV_QuantizedMatMulWithBias_T1", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedMatMulWithBias_T2 = TypeVar("TV_QuantizedMatMulWithBias_T2", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedMatMulWithBias_Tbias = TypeVar("TV_QuantizedMatMulWithBias_Tbias", _atypes.Float32, _atypes.QInt32) TV_QuantizedMatMulWithBias_Toutput = TypeVar("TV_QuantizedMatMulWithBias_Toutput", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) def quantized_mat_mul_with_bias(a: Annotated[Any, TV_QuantizedMatMulWithBias_T1], b: Annotated[Any, TV_QuantizedMatMulWithBias_T2], bias: Annotated[Any, TV_QuantizedMatMulWithBias_Tbias], min_a: Annotated[Any, _atypes.Float32], max_a: Annotated[Any, _atypes.Float32], min_b: Annotated[Any, _atypes.Float32], max_b: Annotated[Any, _atypes.Float32], Toutput:TV_QuantizedMatMulWithBias_Toutput=_dtypes.qint32, transpose_a:bool=False, transpose_b:bool=False, input_quant_mode:str="MIN_FIRST", name=None): r"""Performs a quantized matrix multiplication of `a` by the matrix `b` with bias add. The inputs must be two-dimensional matrices and 1D bias vector. And the inner dimension of `a` (after being transposed if `transpose_a` is non-zero) must match the outer dimension of `b` (after being transposed if `transposed_b` is non-zero). Then do broadcast add operation with bias values on the matrix multiplication result. The bias size must match inner dimension of `b`. Args: a: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. A matrix to be multiplied. Must be a two-dimensional tensor of type `quint8`. b: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. A matrix to be multiplied and must be a two-dimensional tensor of type `qint8`. bias: A `Tensor`. Must be one of the following types: `float32`, `qint32`. A 1D bias tensor with size matching inner dimension of `b` (after being transposed if `transposed_b` is non-zero). min_a: A `Tensor` of type `float32`. The float value that the lowest quantized `a` value represents. max_a: A `Tensor` of type `float32`. The float value that the highest quantized `a` value represents. min_b: A `Tensor` of type `float32`. The float value that the lowest quantized `b` value represents. max_b: A `Tensor` of type `float32`. The float value that the highest quantized `b` value represents. Toutput: An optional `tf.DType` from: `tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16`. Defaults to `tf.qint32`. transpose_a: An optional `bool`. Defaults to `False`. If true, `a` is transposed before multiplication. transpose_b: An optional `bool`. Defaults to `False`. If true, `b` is transposed before multiplication. input_quant_mode: An optional `string` from: `"MIN_FIRST", "SCALED"`. Defaults to `"MIN_FIRST"`. Input data quantization mode. Either MIN_FIRST(default) or SCALED. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (out, min_out, max_out). out: A `Tensor` of type `Toutput`. min_out: A `Tensor` of type `float32`. max_out: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "QuantizedMatMulWithBias", name, a, b, bias, min_a, max_a, min_b, max_b, "Toutput", Toutput, "transpose_a", transpose_a, "transpose_b", transpose_b, "input_quant_mode", input_quant_mode) _result = _QuantizedMatMulWithBiasOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return quantized_mat_mul_with_bias_eager_fallback( a, b, bias, min_a, max_a, min_b, max_b, Toutput=Toutput, transpose_a=transpose_a, transpose_b=transpose_b, input_quant_mode=input_quant_mode, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if Toutput is None: Toutput = _dtypes.qint32 Toutput = _execute.make_type(Toutput, "Toutput") if transpose_a is None: transpose_a = False transpose_a = _execute.make_bool(transpose_a, "transpose_a") if transpose_b is None: transpose_b = False transpose_b = _execute.make_bool(transpose_b, "transpose_b") if input_quant_mode is None: input_quant_mode = "MIN_FIRST" input_quant_mode = _execute.make_str(input_quant_mode, "input_quant_mode") _, _, _op, _outputs = _op_def_library._apply_op_helper( "QuantizedMatMulWithBias", a=a, b=b, bias=bias, min_a=min_a, max_a=max_a, min_b=min_b, max_b=max_b, Toutput=Toutput, transpose_a=transpose_a, transpose_b=transpose_b, input_quant_mode=input_quant_mode, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T1", _op._get_attr_type("T1"), "T2", _op._get_attr_type("T2"), "Tbias", _op._get_attr_type("Tbias"), "Toutput", _op._get_attr_type("Toutput"), "transpose_a", _op._get_attr_bool("transpose_a"), "transpose_b", _op._get_attr_bool("transpose_b"), "input_quant_mode", _op.get_attr("input_quant_mode")) _inputs_flat = _op.inputs _execute.record_gradient( "QuantizedMatMulWithBias", _inputs_flat, _attrs, _result) _result = _QuantizedMatMulWithBiasOutput._make(_result) return _result QuantizedMatMulWithBias = tf_export("raw_ops.QuantizedMatMulWithBias")(_ops.to_raw_op(quantized_mat_mul_with_bias)) def quantized_mat_mul_with_bias_eager_fallback(a: Annotated[Any, TV_QuantizedMatMulWithBias_T1], b: Annotated[Any, TV_QuantizedMatMulWithBias_T2], bias: Annotated[Any, TV_QuantizedMatMulWithBias_Tbias], min_a: Annotated[Any, _atypes.Float32], max_a: Annotated[Any, _atypes.Float32], min_b: Annotated[Any, _atypes.Float32], max_b: Annotated[Any, _atypes.Float32], Toutput: TV_QuantizedMatMulWithBias_Toutput, transpose_a: bool, transpose_b: bool, input_quant_mode: str, name, ctx): if Toutput is None: Toutput = _dtypes.qint32 Toutput = _execute.make_type(Toutput, "Toutput") if transpose_a is None: transpose_a = False transpose_a = _execute.make_bool(transpose_a, "transpose_a") if transpose_b is None: transpose_b = False transpose_b = _execute.make_bool(transpose_b, "transpose_b") if input_quant_mode is None: input_quant_mode = "MIN_FIRST" input_quant_mode = _execute.make_str(input_quant_mode, "input_quant_mode") _attr_T1, (a,) = _execute.args_to_matching_eager([a], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) _attr_T2, (b,) = _execute.args_to_matching_eager([b], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) _attr_Tbias, (bias,) = _execute.args_to_matching_eager([bias], ctx, [_dtypes.float32, _dtypes.qint32, ]) min_a = _ops.convert_to_tensor(min_a, _dtypes.float32) max_a = _ops.convert_to_tensor(max_a, _dtypes.float32) min_b = _ops.convert_to_tensor(min_b, _dtypes.float32) max_b = _ops.convert_to_tensor(max_b, _dtypes.float32) _inputs_flat = [a, b, bias, min_a, max_a, min_b, max_b] _attrs = ("T1", _attr_T1, "T2", _attr_T2, "Tbias", _attr_Tbias, "Toutput", Toutput, "transpose_a", transpose_a, "transpose_b", transpose_b, "input_quant_mode", input_quant_mode) _result = _execute.execute(b"QuantizedMatMulWithBias", 3, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "QuantizedMatMulWithBias", _inputs_flat, _attrs, _result) _result = _QuantizedMatMulWithBiasOutput._make(_result) return _result TV_QuantizedMatMulWithBiasAndDequantize_T1 = TypeVar("TV_QuantizedMatMulWithBiasAndDequantize_T1", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedMatMulWithBiasAndDequantize_T2 = TypeVar("TV_QuantizedMatMulWithBiasAndDequantize_T2", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedMatMulWithBiasAndDequantize_Tbias = TypeVar("TV_QuantizedMatMulWithBiasAndDequantize_Tbias", _atypes.Float32, _atypes.QInt32) TV_QuantizedMatMulWithBiasAndDequantize_Toutput = TypeVar("TV_QuantizedMatMulWithBiasAndDequantize_Toutput", bound=_atypes.Float32) def quantized_mat_mul_with_bias_and_dequantize(a: Annotated[Any, TV_QuantizedMatMulWithBiasAndDequantize_T1], b: Annotated[Any, TV_QuantizedMatMulWithBiasAndDequantize_T2], bias: Annotated[Any, TV_QuantizedMatMulWithBiasAndDequantize_Tbias], min_a: Annotated[Any, _atypes.Float32], max_a: Annotated[Any, _atypes.Float32], min_b: Annotated[Any, _atypes.Float32], max_b: Annotated[Any, _atypes.Float32], min_freezed_output: Annotated[Any, _atypes.Float32], max_freezed_output: Annotated[Any, _atypes.Float32], Toutput: TV_QuantizedMatMulWithBiasAndDequantize_Toutput, transpose_a:bool=False, transpose_b:bool=False, input_quant_mode:str="MIN_FIRST", name=None) -> Annotated[Any, TV_QuantizedMatMulWithBiasAndDequantize_Toutput]: r"""TODO: add doc. Args: a: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. b: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. bias: A `Tensor`. Must be one of the following types: `float32`, `qint32`. min_a: A `Tensor` of type `float32`. max_a: A `Tensor` of type `float32`. min_b: A `Tensor` of type `float32`. max_b: A `Tensor` of type `float32`. min_freezed_output: A `Tensor` of type `float32`. max_freezed_output: A `Tensor` of type `float32`. Toutput: A `tf.DType` from: `tf.float32`. transpose_a: An optional `bool`. Defaults to `False`. transpose_b: An optional `bool`. Defaults to `False`. input_quant_mode: An optional `string` from: `"MIN_FIRST", "SCALED"`. Defaults to `"MIN_FIRST"`. name: A name for the operation (optional). Returns: A `Tensor` of type `Toutput`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "QuantizedMatMulWithBiasAndDequantize", name, a, b, bias, min_a, max_a, min_b, max_b, min_freezed_output, max_freezed_output, "Toutput", Toutput, "transpose_a", transpose_a, "transpose_b", transpose_b, "input_quant_mode", input_quant_mode) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return quantized_mat_mul_with_bias_and_dequantize_eager_fallback( a, b, bias, min_a, max_a, min_b, max_b, min_freezed_output, max_freezed_output, Toutput=Toutput, transpose_a=transpose_a, transpose_b=transpose_b, input_quant_mode=input_quant_mode, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. Toutput = _execute.make_type(Toutput, "Toutput") if transpose_a is None: transpose_a = False transpose_a = _execute.make_bool(transpose_a, "transpose_a") if transpose_b is None: transpose_b = False transpose_b = _execute.make_bool(transpose_b, "transpose_b") if input_quant_mode is None: input_quant_mode = "MIN_FIRST" input_quant_mode = _execute.make_str(input_quant_mode, "input_quant_mode") _, _, _op, _outputs = _op_def_library._apply_op_helper( "QuantizedMatMulWithBiasAndDequantize", a=a, b=b, bias=bias, min_a=min_a, max_a=max_a, min_b=min_b, max_b=max_b, min_freezed_output=min_freezed_output, max_freezed_output=max_freezed_output, Toutput=Toutput, transpose_a=transpose_a, transpose_b=transpose_b, input_quant_mode=input_quant_mode, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T1", _op._get_attr_type("T1"), "T2", _op._get_attr_type("T2"), "Tbias", _op._get_attr_type("Tbias"), "Toutput", _op._get_attr_type("Toutput"), "transpose_a", _op._get_attr_bool("transpose_a"), "transpose_b", _op._get_attr_bool("transpose_b"), "input_quant_mode", _op.get_attr("input_quant_mode")) _inputs_flat = _op.inputs _execute.record_gradient( "QuantizedMatMulWithBiasAndDequantize", _inputs_flat, _attrs, _result) _result, = _result return _result QuantizedMatMulWithBiasAndDequantize = tf_export("raw_ops.QuantizedMatMulWithBiasAndDequantize")(_ops.to_raw_op(quantized_mat_mul_with_bias_and_dequantize)) def quantized_mat_mul_with_bias_and_dequantize_eager_fallback(a: Annotated[Any, TV_QuantizedMatMulWithBiasAndDequantize_T1], b: Annotated[Any, TV_QuantizedMatMulWithBiasAndDequantize_T2], bias: Annotated[Any, TV_QuantizedMatMulWithBiasAndDequantize_Tbias], min_a: Annotated[Any, _atypes.Float32], max_a: Annotated[Any, _atypes.Float32], min_b: Annotated[Any, _atypes.Float32], max_b: Annotated[Any, _atypes.Float32], min_freezed_output: Annotated[Any, _atypes.Float32], max_freezed_output: Annotated[Any, _atypes.Float32], Toutput: TV_QuantizedMatMulWithBiasAndDequantize_Toutput, transpose_a: bool, transpose_b: bool, input_quant_mode: str, name, ctx) -> Annotated[Any, TV_QuantizedMatMulWithBiasAndDequantize_Toutput]: Toutput = _execute.make_type(Toutput, "Toutput") if transpose_a is None: transpose_a = False transpose_a = _execute.make_bool(transpose_a, "transpose_a") if transpose_b is None: transpose_b = False transpose_b = _execute.make_bool(transpose_b, "transpose_b") if input_quant_mode is None: input_quant_mode = "MIN_FIRST" input_quant_mode = _execute.make_str(input_quant_mode, "input_quant_mode") _attr_T1, (a,) = _execute.args_to_matching_eager([a], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) _attr_T2, (b,) = _execute.args_to_matching_eager([b], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) _attr_Tbias, (bias,) = _execute.args_to_matching_eager([bias], ctx, [_dtypes.float32, _dtypes.qint32, ]) min_a = _ops.convert_to_tensor(min_a, _dtypes.float32) max_a = _ops.convert_to_tensor(max_a, _dtypes.float32) min_b = _ops.convert_to_tensor(min_b, _dtypes.float32) max_b = _ops.convert_to_tensor(max_b, _dtypes.float32) min_freezed_output = _ops.convert_to_tensor(min_freezed_output, _dtypes.float32) max_freezed_output = _ops.convert_to_tensor(max_freezed_output, _dtypes.float32) _inputs_flat = [a, b, bias, min_a, max_a, min_b, max_b, min_freezed_output, max_freezed_output] _attrs = ("T1", _attr_T1, "T2", _attr_T2, "Tbias", _attr_Tbias, "Toutput", Toutput, "transpose_a", transpose_a, "transpose_b", transpose_b, "input_quant_mode", input_quant_mode) _result = _execute.execute(b"QuantizedMatMulWithBiasAndDequantize", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "QuantizedMatMulWithBiasAndDequantize", _inputs_flat, _attrs, _result) _result, = _result return _result _QuantizedMatMulWithBiasAndReluOutput = collections.namedtuple( "QuantizedMatMulWithBiasAndRelu", ["out", "min_out", "max_out"]) TV_QuantizedMatMulWithBiasAndRelu_T1 = TypeVar("TV_QuantizedMatMulWithBiasAndRelu_T1", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedMatMulWithBiasAndRelu_T2 = TypeVar("TV_QuantizedMatMulWithBiasAndRelu_T2", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedMatMulWithBiasAndRelu_Toutput = TypeVar("TV_QuantizedMatMulWithBiasAndRelu_Toutput", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) def quantized_mat_mul_with_bias_and_relu(a: Annotated[Any, TV_QuantizedMatMulWithBiasAndRelu_T1], b: Annotated[Any, TV_QuantizedMatMulWithBiasAndRelu_T2], bias: Annotated[Any, _atypes.Float32], min_a: Annotated[Any, _atypes.Float32], max_a: Annotated[Any, _atypes.Float32], min_b: Annotated[Any, _atypes.Float32], max_b: Annotated[Any, _atypes.Float32], Toutput:TV_QuantizedMatMulWithBiasAndRelu_Toutput=_dtypes.qint32, transpose_a:bool=False, transpose_b:bool=False, input_quant_mode:str="MIN_FIRST", name=None): r"""Perform a quantized matrix multiplication of `a` by the matrix `b` with bias add and relu fusion. The inputs must be two-dimensional matrices and 1D bias vector. And the inner dimension of `a` (after being transposed if `transpose_a` is non-zero) must match the outer dimension of `b` (after being transposed if `transposed_b` is non-zero). Then do broadcast add operation with bias values on the matrix multiplication result. The bias size must match inner dimension of `b`. Then do relu activation to get non-negative result. Args: a: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. A matrix to be multiplied. Must be a two-dimensional tensor of type `quint8`. b: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. A matrix to be multiplied and must be a two-dimensional tensor of type `qint8`. bias: A `Tensor` of type `float32`. A 1D bias tensor with size matching with inner dimension of `b` (after being transposed if `transposed_b` is non-zero). min_a: A `Tensor` of type `float32`. The float value that the lowest quantized `a` value represents. max_a: A `Tensor` of type `float32`. The float value that the highest quantized `a` value represents. min_b: A `Tensor` of type `float32`. The float value that the lowest quantized `b` value represents. max_b: A `Tensor` of type `float32`. The float value that the highest quantized `b` value represents. Toutput: An optional `tf.DType` from: `tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16`. Defaults to `tf.qint32`. transpose_a: An optional `bool`. Defaults to `False`. If true, `a` is transposed before multiplication. transpose_b: An optional `bool`. Defaults to `False`. If true, `b` is transposed before multiplication. input_quant_mode: An optional `string` from: `"MIN_FIRST", "SCALED"`. Defaults to `"MIN_FIRST"`. Input data quantization mode. Either MIN_FIRST(default) or SCALED. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (out, min_out, max_out). out: A `Tensor` of type `Toutput`. min_out: A `Tensor` of type `float32`. max_out: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "QuantizedMatMulWithBiasAndRelu", name, a, b, bias, min_a, max_a, min_b, max_b, "Toutput", Toutput, "transpose_a", transpose_a, "transpose_b", transpose_b, "input_quant_mode", input_quant_mode) _result = _QuantizedMatMulWithBiasAndReluOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return quantized_mat_mul_with_bias_and_relu_eager_fallback( a, b, bias, min_a, max_a, min_b, max_b, Toutput=Toutput, transpose_a=transpose_a, transpose_b=transpose_b, input_quant_mode=input_quant_mode, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if Toutput is None: Toutput = _dtypes.qint32 Toutput = _execute.make_type(Toutput, "Toutput") if transpose_a is None: transpose_a = False transpose_a = _execute.make_bool(transpose_a, "transpose_a") if transpose_b is None: transpose_b = False transpose_b = _execute.make_bool(transpose_b, "transpose_b") if input_quant_mode is None: input_quant_mode = "MIN_FIRST" input_quant_mode = _execute.make_str(input_quant_mode, "input_quant_mode") _, _, _op, _outputs = _op_def_library._apply_op_helper( "QuantizedMatMulWithBiasAndRelu", a=a, b=b, bias=bias, min_a=min_a, max_a=max_a, min_b=min_b, max_b=max_b, Toutput=Toutput, transpose_a=transpose_a, transpose_b=transpose_b, input_quant_mode=input_quant_mode, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T1", _op._get_attr_type("T1"), "T2", _op._get_attr_type("T2"), "Toutput", _op._get_attr_type("Toutput"), "transpose_a", _op._get_attr_bool("transpose_a"), "transpose_b", _op._get_attr_bool("transpose_b"), "input_quant_mode", _op.get_attr("input_quant_mode")) _inputs_flat = _op.inputs _execute.record_gradient( "QuantizedMatMulWithBiasAndRelu", _inputs_flat, _attrs, _result) _result = _QuantizedMatMulWithBiasAndReluOutput._make(_result) return _result QuantizedMatMulWithBiasAndRelu = tf_export("raw_ops.QuantizedMatMulWithBiasAndRelu")(_ops.to_raw_op(quantized_mat_mul_with_bias_and_relu)) def quantized_mat_mul_with_bias_and_relu_eager_fallback(a: Annotated[Any, TV_QuantizedMatMulWithBiasAndRelu_T1], b: Annotated[Any, TV_QuantizedMatMulWithBiasAndRelu_T2], bias: Annotated[Any, _atypes.Float32], min_a: Annotated[Any, _atypes.Float32], max_a: Annotated[Any, _atypes.Float32], min_b: Annotated[Any, _atypes.Float32], max_b: Annotated[Any, _atypes.Float32], Toutput: TV_QuantizedMatMulWithBiasAndRelu_Toutput, transpose_a: bool, transpose_b: bool, input_quant_mode: str, name, ctx): if Toutput is None: Toutput = _dtypes.qint32 Toutput = _execute.make_type(Toutput, "Toutput") if transpose_a is None: transpose_a = False transpose_a = _execute.make_bool(transpose_a, "transpose_a") if transpose_b is None: transpose_b = False transpose_b = _execute.make_bool(transpose_b, "transpose_b") if input_quant_mode is None: input_quant_mode = "MIN_FIRST" input_quant_mode = _execute.make_str(input_quant_mode, "input_quant_mode") _attr_T1, (a,) = _execute.args_to_matching_eager([a], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) _attr_T2, (b,) = _execute.args_to_matching_eager([b], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) bias = _ops.convert_to_tensor(bias, _dtypes.float32) min_a = _ops.convert_to_tensor(min_a, _dtypes.float32) max_a = _ops.convert_to_tensor(max_a, _dtypes.float32) min_b = _ops.convert_to_tensor(min_b, _dtypes.float32) max_b = _ops.convert_to_tensor(max_b, _dtypes.float32) _inputs_flat = [a, b, bias, min_a, max_a, min_b, max_b] _attrs = ("T1", _attr_T1, "T2", _attr_T2, "Toutput", Toutput, "transpose_a", transpose_a, "transpose_b", transpose_b, "input_quant_mode", input_quant_mode) _result = _execute.execute(b"QuantizedMatMulWithBiasAndRelu", 3, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "QuantizedMatMulWithBiasAndRelu", _inputs_flat, _attrs, _result) _result = _QuantizedMatMulWithBiasAndReluOutput._make(_result) return _result _QuantizedMatMulWithBiasAndReluAndRequantizeOutput = collections.namedtuple( "QuantizedMatMulWithBiasAndReluAndRequantize", ["out", "min_out", "max_out"]) TV_QuantizedMatMulWithBiasAndReluAndRequantize_T1 = TypeVar("TV_QuantizedMatMulWithBiasAndReluAndRequantize_T1", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedMatMulWithBiasAndReluAndRequantize_T2 = TypeVar("TV_QuantizedMatMulWithBiasAndReluAndRequantize_T2", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedMatMulWithBiasAndReluAndRequantize_Tbias = TypeVar("TV_QuantizedMatMulWithBiasAndReluAndRequantize_Tbias", _atypes.Float32, _atypes.QInt32) TV_QuantizedMatMulWithBiasAndReluAndRequantize_Toutput = TypeVar("TV_QuantizedMatMulWithBiasAndReluAndRequantize_Toutput", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) def quantized_mat_mul_with_bias_and_relu_and_requantize(a: Annotated[Any, TV_QuantizedMatMulWithBiasAndReluAndRequantize_T1], b: Annotated[Any, TV_QuantizedMatMulWithBiasAndReluAndRequantize_T2], bias: Annotated[Any, TV_QuantizedMatMulWithBiasAndReluAndRequantize_Tbias], min_a: Annotated[Any, _atypes.Float32], max_a: Annotated[Any, _atypes.Float32], min_b: Annotated[Any, _atypes.Float32], max_b: Annotated[Any, _atypes.Float32], min_freezed_output: Annotated[Any, _atypes.Float32], max_freezed_output: Annotated[Any, _atypes.Float32], Toutput:TV_QuantizedMatMulWithBiasAndReluAndRequantize_Toutput=_dtypes.quint8, transpose_a:bool=False, transpose_b:bool=False, input_quant_mode:str="MIN_FIRST", name=None): r"""Perform a quantized matrix multiplication of `a` by the matrix `b` with bias add and relu and requantize fusion. The inputs must be two-dimensional matrices and 1D bias vector. And the inner dimension of `a` (after being transposed if `transpose_a` is non-zero) must match the outer dimension of `b` (after being transposed if `transposed_b` is non-zero). Then do broadcast add operation with bias values on the matrix multiplication result. The bias size must match inner dimension of `b`. Then do relu activation to get non-negative result. Then do requantize operation to get final uint8 result. Args: a: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. A matrix to be multiplied. Must be a two-dimensional tensor of type `quint8`. b: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. A matrix to be multiplied and must be a two-dimensional tensor of type `qint8`. bias: A `Tensor`. Must be one of the following types: `float32`, `qint32`. A 1D bias tensor with size matching with inner dimension of `b` (after being transposed if `transposed_b` is non-zero). min_a: A `Tensor` of type `float32`. The float value that the lowest quantized `a` value represents. max_a: A `Tensor` of type `float32`. The float value that the highest quantized `a` value represents. min_b: A `Tensor` of type `float32`. The float value that the lowest quantized `b` value represents. max_b: A `Tensor` of type `float32`. The float value that the highest quantized `b` value represents. min_freezed_output: A `Tensor` of type `float32`. The float value that the highest quantized output value after requantize. max_freezed_output: A `Tensor` of type `float32`. Toutput: An optional `tf.DType` from: `tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16`. Defaults to `tf.quint8`. transpose_a: An optional `bool`. Defaults to `False`. If true, `a` is transposed before multiplication. transpose_b: An optional `bool`. Defaults to `False`. If true, `b` is transposed before multiplication. input_quant_mode: An optional `string` from: `"MIN_FIRST", "SCALED"`. Defaults to `"MIN_FIRST"`. Input data quantization mode. Either MIN_FIRST(default) or SCALED. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (out, min_out, max_out). out: A `Tensor` of type `Toutput`. min_out: A `Tensor` of type `float32`. max_out: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "QuantizedMatMulWithBiasAndReluAndRequantize", name, a, b, bias, min_a, max_a, min_b, max_b, min_freezed_output, max_freezed_output, "Toutput", Toutput, "transpose_a", transpose_a, "transpose_b", transpose_b, "input_quant_mode", input_quant_mode) _result = _QuantizedMatMulWithBiasAndReluAndRequantizeOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return quantized_mat_mul_with_bias_and_relu_and_requantize_eager_fallback( a, b, bias, min_a, max_a, min_b, max_b, min_freezed_output, max_freezed_output, Toutput=Toutput, transpose_a=transpose_a, transpose_b=transpose_b, input_quant_mode=input_quant_mode, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if Toutput is None: Toutput = _dtypes.quint8 Toutput = _execute.make_type(Toutput, "Toutput") if transpose_a is None: transpose_a = False transpose_a = _execute.make_bool(transpose_a, "transpose_a") if transpose_b is None: transpose_b = False transpose_b = _execute.make_bool(transpose_b, "transpose_b") if input_quant_mode is None: input_quant_mode = "MIN_FIRST" input_quant_mode = _execute.make_str(input_quant_mode, "input_quant_mode") _, _, _op, _outputs = _op_def_library._apply_op_helper( "QuantizedMatMulWithBiasAndReluAndRequantize", a=a, b=b, bias=bias, min_a=min_a, max_a=max_a, min_b=min_b, max_b=max_b, min_freezed_output=min_freezed_output, max_freezed_output=max_freezed_output, Toutput=Toutput, transpose_a=transpose_a, transpose_b=transpose_b, input_quant_mode=input_quant_mode, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T1", _op._get_attr_type("T1"), "T2", _op._get_attr_type("T2"), "Tbias", _op._get_attr_type("Tbias"), "Toutput", _op._get_attr_type("Toutput"), "transpose_a", _op._get_attr_bool("transpose_a"), "transpose_b", _op._get_attr_bool("transpose_b"), "input_quant_mode", _op.get_attr("input_quant_mode")) _inputs_flat = _op.inputs _execute.record_gradient( "QuantizedMatMulWithBiasAndReluAndRequantize", _inputs_flat, _attrs, _result) _result = _QuantizedMatMulWithBiasAndReluAndRequantizeOutput._make(_result) return _result QuantizedMatMulWithBiasAndReluAndRequantize = tf_export("raw_ops.QuantizedMatMulWithBiasAndReluAndRequantize")(_ops.to_raw_op(quantized_mat_mul_with_bias_and_relu_and_requantize)) def quantized_mat_mul_with_bias_and_relu_and_requantize_eager_fallback(a: Annotated[Any, TV_QuantizedMatMulWithBiasAndReluAndRequantize_T1], b: Annotated[Any, TV_QuantizedMatMulWithBiasAndReluAndRequantize_T2], bias: Annotated[Any, TV_QuantizedMatMulWithBiasAndReluAndRequantize_Tbias], min_a: Annotated[Any, _atypes.Float32], max_a: Annotated[Any, _atypes.Float32], min_b: Annotated[Any, _atypes.Float32], max_b: Annotated[Any, _atypes.Float32], min_freezed_output: Annotated[Any, _atypes.Float32], max_freezed_output: Annotated[Any, _atypes.Float32], Toutput: TV_QuantizedMatMulWithBiasAndReluAndRequantize_Toutput, transpose_a: bool, transpose_b: bool, input_quant_mode: str, name, ctx): if Toutput is None: Toutput = _dtypes.quint8 Toutput = _execute.make_type(Toutput, "Toutput") if transpose_a is None: transpose_a = False transpose_a = _execute.make_bool(transpose_a, "transpose_a") if transpose_b is None: transpose_b = False transpose_b = _execute.make_bool(transpose_b, "transpose_b") if input_quant_mode is None: input_quant_mode = "MIN_FIRST" input_quant_mode = _execute.make_str(input_quant_mode, "input_quant_mode") _attr_T1, (a,) = _execute.args_to_matching_eager([a], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) _attr_T2, (b,) = _execute.args_to_matching_eager([b], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) _attr_Tbias, (bias,) = _execute.args_to_matching_eager([bias], ctx, [_dtypes.float32, _dtypes.qint32, ]) min_a = _ops.convert_to_tensor(min_a, _dtypes.float32) max_a = _ops.convert_to_tensor(max_a, _dtypes.float32) min_b = _ops.convert_to_tensor(min_b, _dtypes.float32) max_b = _ops.convert_to_tensor(max_b, _dtypes.float32) min_freezed_output = _ops.convert_to_tensor(min_freezed_output, _dtypes.float32) max_freezed_output = _ops.convert_to_tensor(max_freezed_output, _dtypes.float32) _inputs_flat = [a, b, bias, min_a, max_a, min_b, max_b, min_freezed_output, max_freezed_output] _attrs = ("T1", _attr_T1, "T2", _attr_T2, "Tbias", _attr_Tbias, "Toutput", Toutput, "transpose_a", transpose_a, "transpose_b", transpose_b, "input_quant_mode", input_quant_mode) _result = _execute.execute(b"QuantizedMatMulWithBiasAndReluAndRequantize", 3, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "QuantizedMatMulWithBiasAndReluAndRequantize", _inputs_flat, _attrs, _result) _result = _QuantizedMatMulWithBiasAndReluAndRequantizeOutput._make(_result) return _result _QuantizedMatMulWithBiasAndRequantizeOutput = collections.namedtuple( "QuantizedMatMulWithBiasAndRequantize", ["out", "min_out", "max_out"]) TV_QuantizedMatMulWithBiasAndRequantize_T1 = TypeVar("TV_QuantizedMatMulWithBiasAndRequantize_T1", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedMatMulWithBiasAndRequantize_T2 = TypeVar("TV_QuantizedMatMulWithBiasAndRequantize_T2", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedMatMulWithBiasAndRequantize_Tbias = TypeVar("TV_QuantizedMatMulWithBiasAndRequantize_Tbias", _atypes.Float32, _atypes.QInt32) TV_QuantizedMatMulWithBiasAndRequantize_Toutput = TypeVar("TV_QuantizedMatMulWithBiasAndRequantize_Toutput", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) def quantized_mat_mul_with_bias_and_requantize(a: Annotated[Any, TV_QuantizedMatMulWithBiasAndRequantize_T1], b: Annotated[Any, TV_QuantizedMatMulWithBiasAndRequantize_T2], bias: Annotated[Any, TV_QuantizedMatMulWithBiasAndRequantize_Tbias], min_a: Annotated[Any, _atypes.Float32], max_a: Annotated[Any, _atypes.Float32], min_b: Annotated[Any, _atypes.Float32], max_b: Annotated[Any, _atypes.Float32], min_freezed_output: Annotated[Any, _atypes.Float32], max_freezed_output: Annotated[Any, _atypes.Float32], Toutput:TV_QuantizedMatMulWithBiasAndRequantize_Toutput=_dtypes.quint8, transpose_a:bool=False, transpose_b:bool=False, input_quant_mode:str="MIN_FIRST", name=None): r"""TODO: add doc. Args: a: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. b: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. bias: A `Tensor`. Must be one of the following types: `float32`, `qint32`. min_a: A `Tensor` of type `float32`. max_a: A `Tensor` of type `float32`. min_b: A `Tensor` of type `float32`. max_b: A `Tensor` of type `float32`. min_freezed_output: A `Tensor` of type `float32`. max_freezed_output: A `Tensor` of type `float32`. Toutput: An optional `tf.DType` from: `tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16`. Defaults to `tf.quint8`. transpose_a: An optional `bool`. Defaults to `False`. transpose_b: An optional `bool`. Defaults to `False`. input_quant_mode: An optional `string` from: `"MIN_FIRST", "SCALED"`. Defaults to `"MIN_FIRST"`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (out, min_out, max_out). out: A `Tensor` of type `Toutput`. min_out: A `Tensor` of type `float32`. max_out: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "QuantizedMatMulWithBiasAndRequantize", name, a, b, bias, min_a, max_a, min_b, max_b, min_freezed_output, max_freezed_output, "Toutput", Toutput, "transpose_a", transpose_a, "transpose_b", transpose_b, "input_quant_mode", input_quant_mode) _result = _QuantizedMatMulWithBiasAndRequantizeOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return quantized_mat_mul_with_bias_and_requantize_eager_fallback( a, b, bias, min_a, max_a, min_b, max_b, min_freezed_output, max_freezed_output, Toutput=Toutput, transpose_a=transpose_a, transpose_b=transpose_b, input_quant_mode=input_quant_mode, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if Toutput is None: Toutput = _dtypes.quint8 Toutput = _execute.make_type(Toutput, "Toutput") if transpose_a is None: transpose_a = False transpose_a = _execute.make_bool(transpose_a, "transpose_a") if transpose_b is None: transpose_b = False transpose_b = _execute.make_bool(transpose_b, "transpose_b") if input_quant_mode is None: input_quant_mode = "MIN_FIRST" input_quant_mode = _execute.make_str(input_quant_mode, "input_quant_mode") _, _, _op, _outputs = _op_def_library._apply_op_helper( "QuantizedMatMulWithBiasAndRequantize", a=a, b=b, bias=bias, min_a=min_a, max_a=max_a, min_b=min_b, max_b=max_b, min_freezed_output=min_freezed_output, max_freezed_output=max_freezed_output, Toutput=Toutput, transpose_a=transpose_a, transpose_b=transpose_b, input_quant_mode=input_quant_mode, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T1", _op._get_attr_type("T1"), "T2", _op._get_attr_type("T2"), "Tbias", _op._get_attr_type("Tbias"), "Toutput", _op._get_attr_type("Toutput"), "transpose_a", _op._get_attr_bool("transpose_a"), "transpose_b", _op._get_attr_bool("transpose_b"), "input_quant_mode", _op.get_attr("input_quant_mode")) _inputs_flat = _op.inputs _execute.record_gradient( "QuantizedMatMulWithBiasAndRequantize", _inputs_flat, _attrs, _result) _result = _QuantizedMatMulWithBiasAndRequantizeOutput._make(_result) return _result QuantizedMatMulWithBiasAndRequantize = tf_export("raw_ops.QuantizedMatMulWithBiasAndRequantize")(_ops.to_raw_op(quantized_mat_mul_with_bias_and_requantize)) def quantized_mat_mul_with_bias_and_requantize_eager_fallback(a: Annotated[Any, TV_QuantizedMatMulWithBiasAndRequantize_T1], b: Annotated[Any, TV_QuantizedMatMulWithBiasAndRequantize_T2], bias: Annotated[Any, TV_QuantizedMatMulWithBiasAndRequantize_Tbias], min_a: Annotated[Any, _atypes.Float32], max_a: Annotated[Any, _atypes.Float32], min_b: Annotated[Any, _atypes.Float32], max_b: Annotated[Any, _atypes.Float32], min_freezed_output: Annotated[Any, _atypes.Float32], max_freezed_output: Annotated[Any, _atypes.Float32], Toutput: TV_QuantizedMatMulWithBiasAndRequantize_Toutput, transpose_a: bool, transpose_b: bool, input_quant_mode: str, name, ctx): if Toutput is None: Toutput = _dtypes.quint8 Toutput = _execute.make_type(Toutput, "Toutput") if transpose_a is None: transpose_a = False transpose_a = _execute.make_bool(transpose_a, "transpose_a") if transpose_b is None: transpose_b = False transpose_b = _execute.make_bool(transpose_b, "transpose_b") if input_quant_mode is None: input_quant_mode = "MIN_FIRST" input_quant_mode = _execute.make_str(input_quant_mode, "input_quant_mode") _attr_T1, (a,) = _execute.args_to_matching_eager([a], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) _attr_T2, (b,) = _execute.args_to_matching_eager([b], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) _attr_Tbias, (bias,) = _execute.args_to_matching_eager([bias], ctx, [_dtypes.float32, _dtypes.qint32, ]) min_a = _ops.convert_to_tensor(min_a, _dtypes.float32) max_a = _ops.convert_to_tensor(max_a, _dtypes.float32) min_b = _ops.convert_to_tensor(min_b, _dtypes.float32) max_b = _ops.convert_to_tensor(max_b, _dtypes.float32) min_freezed_output = _ops.convert_to_tensor(min_freezed_output, _dtypes.float32) max_freezed_output = _ops.convert_to_tensor(max_freezed_output, _dtypes.float32) _inputs_flat = [a, b, bias, min_a, max_a, min_b, max_b, min_freezed_output, max_freezed_output] _attrs = ("T1", _attr_T1, "T2", _attr_T2, "Tbias", _attr_Tbias, "Toutput", Toutput, "transpose_a", transpose_a, "transpose_b", transpose_b, "input_quant_mode", input_quant_mode) _result = _execute.execute(b"QuantizedMatMulWithBiasAndRequantize", 3, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "QuantizedMatMulWithBiasAndRequantize", _inputs_flat, _attrs, _result) _result = _QuantizedMatMulWithBiasAndRequantizeOutput._make(_result) return _result _QuantizedMaxPoolOutput = collections.namedtuple( "QuantizedMaxPool", ["output", "min_output", "max_output"]) TV_QuantizedMaxPool_T = TypeVar("TV_QuantizedMaxPool_T", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) def quantized_max_pool(input: Annotated[Any, TV_QuantizedMaxPool_T], min_input: Annotated[Any, _atypes.Float32], max_input: Annotated[Any, _atypes.Float32], ksize, strides, padding: str, name=None): r"""Produces the max pool of the input tensor for quantized types. Args: input: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. The 4D (batch x rows x cols x depth) Tensor to MaxReduce over. min_input: A `Tensor` of type `float32`. The float value that the lowest quantized input value represents. max_input: A `Tensor` of type `float32`. The float value that the highest quantized input value represents. ksize: A list of `ints`. The size of the window for each dimension of the input tensor. The length must be 4 to match the number of dimensions of the input. strides: A list of `ints`. The stride of the sliding window for each dimension of the input tensor. The length must be 4 to match the number of dimensions of the input. padding: A `string` from: `"SAME", "VALID"`. The type of padding algorithm to use. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (output, min_output, max_output). output: A `Tensor`. Has the same type as `input`. min_output: A `Tensor` of type `float32`. max_output: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "QuantizedMaxPool", name, input, min_input, max_input, "ksize", ksize, "strides", strides, "padding", padding) _result = _QuantizedMaxPoolOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return quantized_max_pool_eager_fallback( input, min_input, max_input, ksize=ksize, strides=strides, padding=padding, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(ksize, (list, tuple)): raise TypeError( "Expected list for 'ksize' argument to " "'quantized_max_pool' Op, not %r." % ksize) ksize = [_execute.make_int(_i, "ksize") for _i in ksize] if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'quantized_max_pool' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") _, _, _op, _outputs = _op_def_library._apply_op_helper( "QuantizedMaxPool", input=input, min_input=min_input, max_input=max_input, ksize=ksize, strides=strides, padding=padding, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "ksize", _op.get_attr("ksize"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding")) _inputs_flat = _op.inputs _execute.record_gradient( "QuantizedMaxPool", _inputs_flat, _attrs, _result) _result = _QuantizedMaxPoolOutput._make(_result) return _result QuantizedMaxPool = tf_export("raw_ops.QuantizedMaxPool")(_ops.to_raw_op(quantized_max_pool)) def quantized_max_pool_eager_fallback(input: Annotated[Any, TV_QuantizedMaxPool_T], min_input: Annotated[Any, _atypes.Float32], max_input: Annotated[Any, _atypes.Float32], ksize, strides, padding: str, name, ctx): if not isinstance(ksize, (list, tuple)): raise TypeError( "Expected list for 'ksize' argument to " "'quantized_max_pool' Op, not %r." % ksize) ksize = [_execute.make_int(_i, "ksize") for _i in ksize] if not isinstance(strides, (list, tuple)): raise TypeError( "Expected list for 'strides' argument to " "'quantized_max_pool' Op, not %r." % strides) strides = [_execute.make_int(_i, "strides") for _i in strides] padding = _execute.make_str(padding, "padding") _attr_T, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) min_input = _ops.convert_to_tensor(min_input, _dtypes.float32) max_input = _ops.convert_to_tensor(max_input, _dtypes.float32) _inputs_flat = [input, min_input, max_input] _attrs = ("T", _attr_T, "ksize", ksize, "strides", strides, "padding", padding) _result = _execute.execute(b"QuantizedMaxPool", 3, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "QuantizedMaxPool", _inputs_flat, _attrs, _result) _result = _QuantizedMaxPoolOutput._make(_result) return _result _QuantizedReluOutput = collections.namedtuple( "QuantizedRelu", ["activations", "min_activations", "max_activations"]) TV_QuantizedRelu_Tinput = TypeVar("TV_QuantizedRelu_Tinput", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedRelu_out_type = TypeVar("TV_QuantizedRelu_out_type", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) def quantized_relu(features: Annotated[Any, TV_QuantizedRelu_Tinput], min_features: Annotated[Any, _atypes.Float32], max_features: Annotated[Any, _atypes.Float32], out_type:TV_QuantizedRelu_out_type=_dtypes.quint8, name=None): r"""Computes Quantized Rectified Linear: `max(features, 0)` Args: features: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. min_features: A `Tensor` of type `float32`. The float value that the lowest quantized value represents. max_features: A `Tensor` of type `float32`. The float value that the highest quantized value represents. out_type: An optional `tf.DType` from: `tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16`. Defaults to `tf.quint8`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (activations, min_activations, max_activations). activations: A `Tensor` of type `out_type`. min_activations: A `Tensor` of type `float32`. max_activations: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "QuantizedRelu", name, features, min_features, max_features, "out_type", out_type) _result = _QuantizedReluOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return quantized_relu_eager_fallback( features, min_features, max_features, out_type=out_type, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if out_type is None: out_type = _dtypes.quint8 out_type = _execute.make_type(out_type, "out_type") _, _, _op, _outputs = _op_def_library._apply_op_helper( "QuantizedRelu", features=features, min_features=min_features, max_features=max_features, out_type=out_type, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Tinput", _op._get_attr_type("Tinput"), "out_type", _op._get_attr_type("out_type")) _inputs_flat = _op.inputs _execute.record_gradient( "QuantizedRelu", _inputs_flat, _attrs, _result) _result = _QuantizedReluOutput._make(_result) return _result QuantizedRelu = tf_export("raw_ops.QuantizedRelu")(_ops.to_raw_op(quantized_relu)) def quantized_relu_eager_fallback(features: Annotated[Any, TV_QuantizedRelu_Tinput], min_features: Annotated[Any, _atypes.Float32], max_features: Annotated[Any, _atypes.Float32], out_type: TV_QuantizedRelu_out_type, name, ctx): if out_type is None: out_type = _dtypes.quint8 out_type = _execute.make_type(out_type, "out_type") _attr_Tinput, (features,) = _execute.args_to_matching_eager([features], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) min_features = _ops.convert_to_tensor(min_features, _dtypes.float32) max_features = _ops.convert_to_tensor(max_features, _dtypes.float32) _inputs_flat = [features, min_features, max_features] _attrs = ("Tinput", _attr_Tinput, "out_type", out_type) _result = _execute.execute(b"QuantizedRelu", 3, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "QuantizedRelu", _inputs_flat, _attrs, _result) _result = _QuantizedReluOutput._make(_result) return _result _QuantizedRelu6Output = collections.namedtuple( "QuantizedRelu6", ["activations", "min_activations", "max_activations"]) TV_QuantizedRelu6_Tinput = TypeVar("TV_QuantizedRelu6_Tinput", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedRelu6_out_type = TypeVar("TV_QuantizedRelu6_out_type", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) def quantized_relu6(features: Annotated[Any, TV_QuantizedRelu6_Tinput], min_features: Annotated[Any, _atypes.Float32], max_features: Annotated[Any, _atypes.Float32], out_type:TV_QuantizedRelu6_out_type=_dtypes.quint8, name=None): r"""Computes Quantized Rectified Linear 6: `min(max(features, 0), 6)` Args: features: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. min_features: A `Tensor` of type `float32`. The float value that the lowest quantized value represents. max_features: A `Tensor` of type `float32`. The float value that the highest quantized value represents. out_type: An optional `tf.DType` from: `tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16`. Defaults to `tf.quint8`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (activations, min_activations, max_activations). activations: A `Tensor` of type `out_type`. min_activations: A `Tensor` of type `float32`. max_activations: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "QuantizedRelu6", name, features, min_features, max_features, "out_type", out_type) _result = _QuantizedRelu6Output._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return quantized_relu6_eager_fallback( features, min_features, max_features, out_type=out_type, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if out_type is None: out_type = _dtypes.quint8 out_type = _execute.make_type(out_type, "out_type") _, _, _op, _outputs = _op_def_library._apply_op_helper( "QuantizedRelu6", features=features, min_features=min_features, max_features=max_features, out_type=out_type, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Tinput", _op._get_attr_type("Tinput"), "out_type", _op._get_attr_type("out_type")) _inputs_flat = _op.inputs _execute.record_gradient( "QuantizedRelu6", _inputs_flat, _attrs, _result) _result = _QuantizedRelu6Output._make(_result) return _result QuantizedRelu6 = tf_export("raw_ops.QuantizedRelu6")(_ops.to_raw_op(quantized_relu6)) def quantized_relu6_eager_fallback(features: Annotated[Any, TV_QuantizedRelu6_Tinput], min_features: Annotated[Any, _atypes.Float32], max_features: Annotated[Any, _atypes.Float32], out_type: TV_QuantizedRelu6_out_type, name, ctx): if out_type is None: out_type = _dtypes.quint8 out_type = _execute.make_type(out_type, "out_type") _attr_Tinput, (features,) = _execute.args_to_matching_eager([features], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) min_features = _ops.convert_to_tensor(min_features, _dtypes.float32) max_features = _ops.convert_to_tensor(max_features, _dtypes.float32) _inputs_flat = [features, min_features, max_features] _attrs = ("Tinput", _attr_Tinput, "out_type", out_type) _result = _execute.execute(b"QuantizedRelu6", 3, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "QuantizedRelu6", _inputs_flat, _attrs, _result) _result = _QuantizedRelu6Output._make(_result) return _result _QuantizedReluXOutput = collections.namedtuple( "QuantizedReluX", ["activations", "min_activations", "max_activations"]) TV_QuantizedReluX_Tinput = TypeVar("TV_QuantizedReluX_Tinput", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) TV_QuantizedReluX_out_type = TypeVar("TV_QuantizedReluX_out_type", _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8) def quantized_relu_x(features: Annotated[Any, TV_QuantizedReluX_Tinput], max_value: Annotated[Any, _atypes.Float32], min_features: Annotated[Any, _atypes.Float32], max_features: Annotated[Any, _atypes.Float32], out_type:TV_QuantizedReluX_out_type=_dtypes.quint8, name=None): r"""Computes Quantized Rectified Linear X: `min(max(features, 0), max_value)` Args: features: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. max_value: A `Tensor` of type `float32`. min_features: A `Tensor` of type `float32`. The float value that the lowest quantized value represents. max_features: A `Tensor` of type `float32`. The float value that the highest quantized value represents. out_type: An optional `tf.DType` from: `tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16`. Defaults to `tf.quint8`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (activations, min_activations, max_activations). activations: A `Tensor` of type `out_type`. min_activations: A `Tensor` of type `float32`. max_activations: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "QuantizedReluX", name, features, max_value, min_features, max_features, "out_type", out_type) _result = _QuantizedReluXOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return quantized_relu_x_eager_fallback( features, max_value, min_features, max_features, out_type=out_type, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if out_type is None: out_type = _dtypes.quint8 out_type = _execute.make_type(out_type, "out_type") _, _, _op, _outputs = _op_def_library._apply_op_helper( "QuantizedReluX", features=features, max_value=max_value, min_features=min_features, max_features=max_features, out_type=out_type, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Tinput", _op._get_attr_type("Tinput"), "out_type", _op._get_attr_type("out_type")) _inputs_flat = _op.inputs _execute.record_gradient( "QuantizedReluX", _inputs_flat, _attrs, _result) _result = _QuantizedReluXOutput._make(_result) return _result QuantizedReluX = tf_export("raw_ops.QuantizedReluX")(_ops.to_raw_op(quantized_relu_x)) def quantized_relu_x_eager_fallback(features: Annotated[Any, TV_QuantizedReluX_Tinput], max_value: Annotated[Any, _atypes.Float32], min_features: Annotated[Any, _atypes.Float32], max_features: Annotated[Any, _atypes.Float32], out_type: TV_QuantizedReluX_out_type, name, ctx): if out_type is None: out_type = _dtypes.quint8 out_type = _execute.make_type(out_type, "out_type") _attr_Tinput, (features,) = _execute.args_to_matching_eager([features], ctx, [_dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.qint16, _dtypes.quint16, ]) max_value = _ops.convert_to_tensor(max_value, _dtypes.float32) min_features = _ops.convert_to_tensor(min_features, _dtypes.float32) max_features = _ops.convert_to_tensor(max_features, _dtypes.float32) _inputs_flat = [features, max_value, min_features, max_features] _attrs = ("Tinput", _attr_Tinput, "out_type", out_type) _result = _execute.execute(b"QuantizedReluX", 3, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "QuantizedReluX", _inputs_flat, _attrs, _result) _result = _QuantizedReluXOutput._make(_result) return _result TV_Relu_T = TypeVar("TV_Relu_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.QInt8, _atypes.UInt16, _atypes.UInt32, _atypes.UInt64, _atypes.UInt8) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('nn.relu') def relu(features: Annotated[Any, TV_Relu_T], name=None) -> Annotated[Any, TV_Relu_T]: r"""Computes rectified linear: `max(features, 0)`. See: https://en.wikipedia.org/wiki/Rectifier_(neural_networks) Example usage: >>> tf.nn.relu([-2., 0., 3.]).numpy() array([0., 0., 3.], dtype=float32) Args: features: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`, `qint8`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `features`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "Relu", name, features) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_relu( (features, name,), None) if _result is not NotImplemented: return _result return relu_eager_fallback( features, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( relu, (), dict(features=features, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_relu( (features, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "Relu", features=features, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( relu, (), dict(features=features, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "Relu", _inputs_flat, _attrs, _result) _result, = _result return _result Relu = tf_export("raw_ops.Relu")(_ops.to_raw_op(relu)) _dispatcher_for_relu = relu._tf_type_based_dispatcher.Dispatch def relu_eager_fallback(features: Annotated[Any, TV_Relu_T], name, ctx) -> Annotated[Any, TV_Relu_T]: _attr_T, (features,) = _execute.args_to_matching_eager([features], ctx, [_dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.uint8, _dtypes.int16, _dtypes.int8, _dtypes.int64, _dtypes.bfloat16, _dtypes.uint16, _dtypes.half, _dtypes.uint32, _dtypes.uint64, _dtypes.qint8, ]) _inputs_flat = [features] _attrs = ("T", _attr_T) _result = _execute.execute(b"Relu", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "Relu", _inputs_flat, _attrs, _result) _result, = _result return _result TV_Relu6_T = TypeVar("TV_Relu6_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.UInt16, _atypes.UInt32, _atypes.UInt64, _atypes.UInt8) def relu6(features: Annotated[Any, TV_Relu6_T], name=None) -> Annotated[Any, TV_Relu6_T]: r"""Computes rectified linear 6: `min(max(features, 0), 6)`. Args: features: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `features`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "Relu6", name, features) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return relu6_eager_fallback( features, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "Relu6", features=features, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "Relu6", _inputs_flat, _attrs, _result) _result, = _result return _result Relu6 = tf_export("raw_ops.Relu6")(_ops.to_raw_op(relu6)) def relu6_eager_fallback(features: Annotated[Any, TV_Relu6_T], name, ctx) -> Annotated[Any, TV_Relu6_T]: _attr_T, (features,) = _execute.args_to_matching_eager([features], ctx, [_dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.uint8, _dtypes.int16, _dtypes.int8, _dtypes.int64, _dtypes.bfloat16, _dtypes.uint16, _dtypes.half, _dtypes.uint32, _dtypes.uint64, ]) _inputs_flat = [features] _attrs = ("T", _attr_T) _result = _execute.execute(b"Relu6", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "Relu6", _inputs_flat, _attrs, _result) _result, = _result return _result TV_Relu6Grad_T = TypeVar("TV_Relu6Grad_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.UInt16, _atypes.UInt32, _atypes.UInt64, _atypes.UInt8) def relu6_grad(gradients: Annotated[Any, TV_Relu6Grad_T], features: Annotated[Any, TV_Relu6Grad_T], name=None) -> Annotated[Any, TV_Relu6Grad_T]: r"""Computes rectified linear 6 gradients for a Relu6 operation. Args: gradients: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`. The backpropagated gradients to the corresponding Relu6 operation. features: A `Tensor`. Must have the same type as `gradients`. The features passed as input to the corresponding Relu6 operation, or its output; using either one produces the same result. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `gradients`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "Relu6Grad", name, gradients, features) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return relu6_grad_eager_fallback( gradients, features, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "Relu6Grad", gradients=gradients, features=features, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "Relu6Grad", _inputs_flat, _attrs, _result) _result, = _result return _result Relu6Grad = tf_export("raw_ops.Relu6Grad")(_ops.to_raw_op(relu6_grad)) def relu6_grad_eager_fallback(gradients: Annotated[Any, TV_Relu6Grad_T], features: Annotated[Any, TV_Relu6Grad_T], name, ctx) -> Annotated[Any, TV_Relu6Grad_T]: _attr_T, _inputs_T = _execute.args_to_matching_eager([gradients, features], ctx, [_dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.uint8, _dtypes.int16, _dtypes.int8, _dtypes.int64, _dtypes.bfloat16, _dtypes.uint16, _dtypes.half, _dtypes.uint32, _dtypes.uint64, ]) (gradients, features) = _inputs_T _inputs_flat = [gradients, features] _attrs = ("T", _attr_T) _result = _execute.execute(b"Relu6Grad", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "Relu6Grad", _inputs_flat, _attrs, _result) _result, = _result return _result TV_ReluGrad_T = TypeVar("TV_ReluGrad_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.UInt16, _atypes.UInt32, _atypes.UInt64, _atypes.UInt8) def relu_grad(gradients: Annotated[Any, TV_ReluGrad_T], features: Annotated[Any, TV_ReluGrad_T], name=None) -> Annotated[Any, TV_ReluGrad_T]: r"""Computes rectified linear gradients for a Relu operation. Args: gradients: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`. The backpropagated gradients to the corresponding Relu operation. features: A `Tensor`. Must have the same type as `gradients`. The features passed as input to the corresponding Relu operation, OR the outputs of that operation (both work equivalently). name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `gradients`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "ReluGrad", name, gradients, features) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return relu_grad_eager_fallback( gradients, features, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "ReluGrad", gradients=gradients, features=features, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "ReluGrad", _inputs_flat, _attrs, _result) _result, = _result return _result ReluGrad = tf_export("raw_ops.ReluGrad")(_ops.to_raw_op(relu_grad)) def relu_grad_eager_fallback(gradients: Annotated[Any, TV_ReluGrad_T], features: Annotated[Any, TV_ReluGrad_T], name, ctx) -> Annotated[Any, TV_ReluGrad_T]: _attr_T, _inputs_T = _execute.args_to_matching_eager([gradients, features], ctx, [_dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.uint8, _dtypes.int16, _dtypes.int8, _dtypes.int64, _dtypes.bfloat16, _dtypes.uint16, _dtypes.half, _dtypes.uint32, _dtypes.uint64, ]) (gradients, features) = _inputs_T _inputs_flat = [gradients, features] _attrs = ("T", _attr_T) _result = _execute.execute(b"ReluGrad", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "ReluGrad", _inputs_flat, _attrs, _result) _result, = _result return _result TV_Selu_T = TypeVar("TV_Selu_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('nn.selu') def selu(features: Annotated[Any, TV_Selu_T], name=None) -> Annotated[Any, TV_Selu_T]: r"""Computes scaled exponential linear: `scale * alpha * (exp(features) - 1)` if < 0, `scale * features` otherwise. To be used together with `initializer = tf.variance_scaling_initializer(factor=1.0, mode='FAN_IN')`. For correct dropout, use `tf.contrib.nn.alpha_dropout`. See [Self-Normalizing Neural Networks](https://arxiv.org/abs/1706.02515) Args: features: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `features`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "Selu", name, features) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_selu( (features, name,), None) if _result is not NotImplemented: return _result return selu_eager_fallback( features, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( selu, (), dict(features=features, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_selu( (features, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "Selu", features=features, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( selu, (), dict(features=features, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "Selu", _inputs_flat, _attrs, _result) _result, = _result return _result Selu = tf_export("raw_ops.Selu")(_ops.to_raw_op(selu)) _dispatcher_for_selu = selu._tf_type_based_dispatcher.Dispatch def selu_eager_fallback(features: Annotated[Any, TV_Selu_T], name, ctx) -> Annotated[Any, TV_Selu_T]: _attr_T, (features,) = _execute.args_to_matching_eager([features], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, _dtypes.float64, ]) _inputs_flat = [features] _attrs = ("T", _attr_T) _result = _execute.execute(b"Selu", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "Selu", _inputs_flat, _attrs, _result) _result, = _result return _result TV_SeluGrad_T = TypeVar("TV_SeluGrad_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half) def selu_grad(gradients: Annotated[Any, TV_SeluGrad_T], outputs: Annotated[Any, TV_SeluGrad_T], name=None) -> Annotated[Any, TV_SeluGrad_T]: r"""Computes gradients for the scaled exponential linear (Selu) operation. Args: gradients: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`. The backpropagated gradients to the corresponding Selu operation. outputs: A `Tensor`. Must have the same type as `gradients`. The outputs of the corresponding Selu operation. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `gradients`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "SeluGrad", name, gradients, outputs) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return selu_grad_eager_fallback( gradients, outputs, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "SeluGrad", gradients=gradients, outputs=outputs, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "SeluGrad", _inputs_flat, _attrs, _result) _result, = _result return _result SeluGrad = tf_export("raw_ops.SeluGrad")(_ops.to_raw_op(selu_grad)) def selu_grad_eager_fallback(gradients: Annotated[Any, TV_SeluGrad_T], outputs: Annotated[Any, TV_SeluGrad_T], name, ctx) -> Annotated[Any, TV_SeluGrad_T]: _attr_T, _inputs_T = _execute.args_to_matching_eager([gradients, outputs], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, _dtypes.float64, ]) (gradients, outputs) = _inputs_T _inputs_flat = [gradients, outputs] _attrs = ("T", _attr_T) _result = _execute.execute(b"SeluGrad", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "SeluGrad", _inputs_flat, _attrs, _result) _result, = _result return _result TV_Softmax_T = TypeVar("TV_Softmax_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half) def softmax(logits: Annotated[Any, TV_Softmax_T], name=None) -> Annotated[Any, TV_Softmax_T]: r"""Computes softmax activations. For each batch `i` and class `j` we have $$softmax[i, j] = exp(logits[i, j]) / sum_j(exp(logits[i, j]))$$ Args: logits: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`. 2-D with shape `[batch_size, num_classes]`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `logits`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "Softmax", name, logits) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return softmax_eager_fallback( logits, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "Softmax", logits=logits, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "Softmax", _inputs_flat, _attrs, _result) _result, = _result return _result Softmax = tf_export("raw_ops.Softmax")(_ops.to_raw_op(softmax)) def softmax_eager_fallback(logits: Annotated[Any, TV_Softmax_T], name, ctx) -> Annotated[Any, TV_Softmax_T]: _attr_T, (logits,) = _execute.args_to_matching_eager([logits], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, _dtypes.float64, ]) _inputs_flat = [logits] _attrs = ("T", _attr_T) _result = _execute.execute(b"Softmax", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "Softmax", _inputs_flat, _attrs, _result) _result, = _result return _result _SoftmaxCrossEntropyWithLogitsOutput = collections.namedtuple( "SoftmaxCrossEntropyWithLogits", ["loss", "backprop"]) TV_SoftmaxCrossEntropyWithLogits_T = TypeVar("TV_SoftmaxCrossEntropyWithLogits_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half) def softmax_cross_entropy_with_logits(features: Annotated[Any, TV_SoftmaxCrossEntropyWithLogits_T], labels: Annotated[Any, TV_SoftmaxCrossEntropyWithLogits_T], name=None): r"""Computes softmax cross entropy cost and gradients to backpropagate. Inputs are the logits, not probabilities. Args: features: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`. batch_size x num_classes matrix labels: A `Tensor`. Must have the same type as `features`. batch_size x num_classes matrix The caller must ensure that each batch of labels represents a valid probability distribution. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (loss, backprop). loss: A `Tensor`. Has the same type as `features`. backprop: A `Tensor`. Has the same type as `features`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "SoftmaxCrossEntropyWithLogits", name, features, labels) _result = _SoftmaxCrossEntropyWithLogitsOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return softmax_cross_entropy_with_logits_eager_fallback( features, labels, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "SoftmaxCrossEntropyWithLogits", features=features, labels=labels, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "SoftmaxCrossEntropyWithLogits", _inputs_flat, _attrs, _result) _result = _SoftmaxCrossEntropyWithLogitsOutput._make(_result) return _result SoftmaxCrossEntropyWithLogits = tf_export("raw_ops.SoftmaxCrossEntropyWithLogits")(_ops.to_raw_op(softmax_cross_entropy_with_logits)) def softmax_cross_entropy_with_logits_eager_fallback(features: Annotated[Any, TV_SoftmaxCrossEntropyWithLogits_T], labels: Annotated[Any, TV_SoftmaxCrossEntropyWithLogits_T], name, ctx): _attr_T, _inputs_T = _execute.args_to_matching_eager([features, labels], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, _dtypes.float64, ]) (features, labels) = _inputs_T _inputs_flat = [features, labels] _attrs = ("T", _attr_T) _result = _execute.execute(b"SoftmaxCrossEntropyWithLogits", 2, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "SoftmaxCrossEntropyWithLogits", _inputs_flat, _attrs, _result) _result = _SoftmaxCrossEntropyWithLogitsOutput._make(_result) return _result TV_Softplus_T = TypeVar("TV_Softplus_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half) def softplus(features: Annotated[Any, TV_Softplus_T], name=None) -> Annotated[Any, TV_Softplus_T]: r"""TODO: add doc. Args: features: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `features`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "Softplus", name, features) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return softplus_eager_fallback( features, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "Softplus", features=features, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "Softplus", _inputs_flat, _attrs, _result) _result, = _result return _result Softplus = tf_export("raw_ops.Softplus")(_ops.to_raw_op(softplus)) def softplus_eager_fallback(features: Annotated[Any, TV_Softplus_T], name, ctx) -> Annotated[Any, TV_Softplus_T]: _attr_T, (features,) = _execute.args_to_matching_eager([features], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, _dtypes.float64, ]) _inputs_flat = [features] _attrs = ("T", _attr_T) _result = _execute.execute(b"Softplus", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "Softplus", _inputs_flat, _attrs, _result) _result, = _result return _result TV_SoftplusGrad_T = TypeVar("TV_SoftplusGrad_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half) def softplus_grad(gradients: Annotated[Any, TV_SoftplusGrad_T], features: Annotated[Any, TV_SoftplusGrad_T], name=None) -> Annotated[Any, TV_SoftplusGrad_T]: r"""Computes softplus gradients for a softplus operation. Args: gradients: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`. The backpropagated gradients to the corresponding softplus operation. features: A `Tensor`. Must have the same type as `gradients`. The features passed as input to the corresponding softplus operation. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `gradients`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "SoftplusGrad", name, gradients, features) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return softplus_grad_eager_fallback( gradients, features, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "SoftplusGrad", gradients=gradients, features=features, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "SoftplusGrad", _inputs_flat, _attrs, _result) _result, = _result return _result SoftplusGrad = tf_export("raw_ops.SoftplusGrad")(_ops.to_raw_op(softplus_grad)) def softplus_grad_eager_fallback(gradients: Annotated[Any, TV_SoftplusGrad_T], features: Annotated[Any, TV_SoftplusGrad_T], name, ctx) -> Annotated[Any, TV_SoftplusGrad_T]: _attr_T, _inputs_T = _execute.args_to_matching_eager([gradients, features], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, _dtypes.float64, ]) (gradients, features) = _inputs_T _inputs_flat = [gradients, features] _attrs = ("T", _attr_T) _result = _execute.execute(b"SoftplusGrad", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "SoftplusGrad", _inputs_flat, _attrs, _result) _result, = _result return _result TV_Softsign_T = TypeVar("TV_Softsign_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('nn.softsign', 'math.softsign') def softsign(features: Annotated[Any, TV_Softsign_T], name=None) -> Annotated[Any, TV_Softsign_T]: r"""Computes softsign: `features / (abs(features) + 1)`. Args: features: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `features`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "Softsign", name, features) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_softsign( (features, name,), None) if _result is not NotImplemented: return _result return softsign_eager_fallback( features, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( softsign, (), dict(features=features, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_softsign( (features, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "Softsign", features=features, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( softsign, (), dict(features=features, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "Softsign", _inputs_flat, _attrs, _result) _result, = _result return _result Softsign = tf_export("raw_ops.Softsign")(_ops.to_raw_op(softsign)) _dispatcher_for_softsign = softsign._tf_type_based_dispatcher.Dispatch def softsign_eager_fallback(features: Annotated[Any, TV_Softsign_T], name, ctx) -> Annotated[Any, TV_Softsign_T]: _attr_T, (features,) = _execute.args_to_matching_eager([features], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, _dtypes.float64, ]) _inputs_flat = [features] _attrs = ("T", _attr_T) _result = _execute.execute(b"Softsign", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "Softsign", _inputs_flat, _attrs, _result) _result, = _result return _result TV_SoftsignGrad_T = TypeVar("TV_SoftsignGrad_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half) def softsign_grad(gradients: Annotated[Any, TV_SoftsignGrad_T], features: Annotated[Any, TV_SoftsignGrad_T], name=None) -> Annotated[Any, TV_SoftsignGrad_T]: r"""Computes softsign gradients for a softsign operation. Args: gradients: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`. The backpropagated gradients to the corresponding softsign operation. features: A `Tensor`. Must have the same type as `gradients`. The features passed as input to the corresponding softsign operation. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `gradients`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "SoftsignGrad", name, gradients, features) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return softsign_grad_eager_fallback( gradients, features, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "SoftsignGrad", gradients=gradients, features=features, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "SoftsignGrad", _inputs_flat, _attrs, _result) _result, = _result return _result SoftsignGrad = tf_export("raw_ops.SoftsignGrad")(_ops.to_raw_op(softsign_grad)) def softsign_grad_eager_fallback(gradients: Annotated[Any, TV_SoftsignGrad_T], features: Annotated[Any, TV_SoftsignGrad_T], name, ctx) -> Annotated[Any, TV_SoftsignGrad_T]: _attr_T, _inputs_T = _execute.args_to_matching_eager([gradients, features], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, _dtypes.float64, ]) (gradients, features) = _inputs_T _inputs_flat = [gradients, features] _attrs = ("T", _attr_T) _result = _execute.execute(b"SoftsignGrad", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "SoftsignGrad", _inputs_flat, _attrs, _result) _result, = _result return _result _SparseSoftmaxCrossEntropyWithLogitsOutput = collections.namedtuple( "SparseSoftmaxCrossEntropyWithLogits", ["loss", "backprop"]) TV_SparseSoftmaxCrossEntropyWithLogits_T = TypeVar("TV_SparseSoftmaxCrossEntropyWithLogits_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half) TV_SparseSoftmaxCrossEntropyWithLogits_Tlabels = TypeVar("TV_SparseSoftmaxCrossEntropyWithLogits_Tlabels", _atypes.Int32, _atypes.Int64) def sparse_softmax_cross_entropy_with_logits(features: Annotated[Any, TV_SparseSoftmaxCrossEntropyWithLogits_T], labels: Annotated[Any, TV_SparseSoftmaxCrossEntropyWithLogits_Tlabels], name=None): r"""Computes softmax cross entropy cost and gradients to backpropagate. Unlike `SoftmaxCrossEntropyWithLogits`, this operation does not accept a matrix of label probabilities, but rather a single label per row of features. This label is considered to have probability 1.0 for the given row. Inputs are the logits, not probabilities. Args: features: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`. batch_size x num_classes matrix labels: A `Tensor`. Must be one of the following types: `int32`, `int64`. batch_size vector with values in [0, num_classes). This is the label for the given minibatch entry. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (loss, backprop). loss: A `Tensor`. Has the same type as `features`. backprop: A `Tensor`. Has the same type as `features`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "SparseSoftmaxCrossEntropyWithLogits", name, features, labels) _result = _SparseSoftmaxCrossEntropyWithLogitsOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return sparse_softmax_cross_entropy_with_logits_eager_fallback( features, labels, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "SparseSoftmaxCrossEntropyWithLogits", features=features, labels=labels, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "Tlabels", _op._get_attr_type("Tlabels")) _inputs_flat = _op.inputs _execute.record_gradient( "SparseSoftmaxCrossEntropyWithLogits", _inputs_flat, _attrs, _result) _result = _SparseSoftmaxCrossEntropyWithLogitsOutput._make(_result) return _result SparseSoftmaxCrossEntropyWithLogits = tf_export("raw_ops.SparseSoftmaxCrossEntropyWithLogits")(_ops.to_raw_op(sparse_softmax_cross_entropy_with_logits)) def sparse_softmax_cross_entropy_with_logits_eager_fallback(features: Annotated[Any, TV_SparseSoftmaxCrossEntropyWithLogits_T], labels: Annotated[Any, TV_SparseSoftmaxCrossEntropyWithLogits_Tlabels], name, ctx): _attr_T, (features,) = _execute.args_to_matching_eager([features], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, _dtypes.float64, ]) _attr_Tlabels, (labels,) = _execute.args_to_matching_eager([labels], ctx, [_dtypes.int32, _dtypes.int64, ], _dtypes.int64) _inputs_flat = [features, labels] _attrs = ("T", _attr_T, "Tlabels", _attr_Tlabels) _result = _execute.execute(b"SparseSoftmaxCrossEntropyWithLogits", 2, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "SparseSoftmaxCrossEntropyWithLogits", _inputs_flat, _attrs, _result) _result = _SparseSoftmaxCrossEntropyWithLogitsOutput._make(_result) return _result _TopKOutput = collections.namedtuple( "TopK", ["values", "indices"]) TV_TopK_T = TypeVar("TV_TopK_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.UInt16, _atypes.UInt32, _atypes.UInt64, _atypes.UInt8) def top_k(input: Annotated[Any, TV_TopK_T], k: int, sorted:bool=True, name=None): r"""Finds values and indices of the `k` largest elements for the last dimension. If the input is a vector (rank-1), finds the `k` largest entries in the vector and outputs their values and indices as vectors. Thus `values[j]` is the `j`-th largest entry in `input`, and its index is `indices[j]`. For matrices (resp. higher rank input), computes the top `k` entries in each row (resp. vector along the last dimension). Thus, values.shape = indices.shape = input.shape[:-1] + [k] If two elements are equal, the lower-index element appears first. If `k` varies dynamically, use `TopKV2` below. Args: input: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`. 1-D or higher with last dimension at least `k`. k: An `int` that is `>= 0`. Number of top elements to look for along the last dimension (along each row for matrices). sorted: An optional `bool`. Defaults to `True`. If true the resulting `k` elements will be sorted by the values in descending order. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (values, indices). values: A `Tensor`. Has the same type as `input`. indices: A `Tensor` of type `int32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "TopK", name, input, "k", k, "sorted", sorted) _result = _TopKOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return top_k_eager_fallback( input, k=k, sorted=sorted, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. k = _execute.make_int(k, "k") if sorted is None: sorted = True sorted = _execute.make_bool(sorted, "sorted") _, _, _op, _outputs = _op_def_library._apply_op_helper( "TopK", input=input, k=k, sorted=sorted, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("k", _op._get_attr_int("k"), "sorted", _op._get_attr_bool("sorted"), "T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "TopK", _inputs_flat, _attrs, _result) _result = _TopKOutput._make(_result) return _result TopK = tf_export("raw_ops.TopK")(_ops.to_raw_op(top_k)) def top_k_eager_fallback(input: Annotated[Any, TV_TopK_T], k: int, sorted: bool, name, ctx): k = _execute.make_int(k, "k") if sorted is None: sorted = True sorted = _execute.make_bool(sorted, "sorted") _attr_T, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.uint8, _dtypes.int16, _dtypes.int8, _dtypes.int64, _dtypes.bfloat16, _dtypes.uint16, _dtypes.half, _dtypes.uint32, _dtypes.uint64, ]) _inputs_flat = [input] _attrs = ("k", k, "sorted", sorted, "T", _attr_T) _result = _execute.execute(b"TopK", 2, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "TopK", _inputs_flat, _attrs, _result) _result = _TopKOutput._make(_result) return _result _TopKV2Output = collections.namedtuple( "TopKV2", ["values", "indices"]) TV_TopKV2_T = TypeVar("TV_TopKV2_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.UInt16, _atypes.UInt32, _atypes.UInt64, _atypes.UInt8) TV_TopKV2_Tk = TypeVar("TV_TopKV2_Tk", _atypes.Int16, _atypes.Int32, _atypes.Int64) TV_TopKV2_index_type = TypeVar("TV_TopKV2_index_type", _atypes.Int16, _atypes.Int32, _atypes.Int64) def top_kv2(input: Annotated[Any, TV_TopKV2_T], k: Annotated[Any, TV_TopKV2_Tk], sorted:bool=True, index_type:TV_TopKV2_index_type=_dtypes.int32, name=None): r"""Finds values and indices of the `k` largest elements for the last dimension. If the input is a vector (rank-1), finds the `k` largest entries in the vector and outputs their values and indices as vectors. Thus `values[j]` is the `j`-th largest entry in `input`, and its index is `indices[j]`. For matrices (resp. higher rank input), computes the top `k` entries in each row (resp. vector along the last dimension). Thus, values.shape = indices.shape = input.shape[:-1] + [k] If two elements are equal, the lower-index element appears first. Args: input: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`. 1-D or higher with last dimension at least `k`. k: A `Tensor`. Must be one of the following types: `int16`, `int32`, `int64`. 0-D. Number of top elements to look for along the last dimension (along each row for matrices). sorted: An optional `bool`. Defaults to `True`. If true the resulting `k` elements will be sorted by the values in descending order. index_type: An optional `tf.DType` from: `tf.int16, tf.int32, tf.int64`. Defaults to `tf.int32`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (values, indices). values: A `Tensor`. Has the same type as `input`. indices: A `Tensor` of type `index_type`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "TopKV2", name, input, k, "sorted", sorted, "index_type", index_type) _result = _TopKV2Output._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return top_kv2_eager_fallback( input, k, sorted=sorted, index_type=index_type, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if sorted is None: sorted = True sorted = _execute.make_bool(sorted, "sorted") if index_type is None: index_type = _dtypes.int32 index_type = _execute.make_type(index_type, "index_type") _, _, _op, _outputs = _op_def_library._apply_op_helper( "TopKV2", input=input, k=k, sorted=sorted, index_type=index_type, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("sorted", _op._get_attr_bool("sorted"), "T", _op._get_attr_type("T"), "Tk", _op._get_attr_type("Tk"), "index_type", _op._get_attr_type("index_type")) _inputs_flat = _op.inputs _execute.record_gradient( "TopKV2", _inputs_flat, _attrs, _result) _result = _TopKV2Output._make(_result) return _result TopKV2 = tf_export("raw_ops.TopKV2")(_ops.to_raw_op(top_kv2)) def top_kv2_eager_fallback(input: Annotated[Any, TV_TopKV2_T], k: Annotated[Any, TV_TopKV2_Tk], sorted: bool, index_type: TV_TopKV2_index_type, name, ctx): if sorted is None: sorted = True sorted = _execute.make_bool(sorted, "sorted") if index_type is None: index_type = _dtypes.int32 index_type = _execute.make_type(index_type, "index_type") _attr_T, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.uint8, _dtypes.int16, _dtypes.int8, _dtypes.int64, _dtypes.bfloat16, _dtypes.uint16, _dtypes.half, _dtypes.uint32, _dtypes.uint64, ]) _attr_Tk, (k,) = _execute.args_to_matching_eager([k], ctx, [_dtypes.int16, _dtypes.int32, _dtypes.int64, ], _dtypes.int32) _inputs_flat = [input, k] _attrs = ("sorted", sorted, "T", _attr_T, "Tk", _attr_Tk, "index_type", index_type) _result = _execute.execute(b"TopKV2", 2, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "TopKV2", _inputs_flat, _attrs, _result) _result = _TopKV2Output._make(_result) return _result