"""Python wrappers around TensorFlow ops. This file is MACHINE GENERATED! Do not edit. """ import collections from tensorflow.python import pywrap_tfe as pywrap_tfe from tensorflow.python.eager import context as _context from tensorflow.python.eager import core as _core from tensorflow.python.eager import execute as _execute from tensorflow.python.framework import dtypes as _dtypes from tensorflow.security.fuzzing.py import annotation_types as _atypes from tensorflow.python.framework import op_def_registry as _op_def_registry from tensorflow.python.framework import ops as _ops from tensorflow.python.framework import op_def_library as _op_def_library from tensorflow.python.util.deprecation import deprecated_endpoints from tensorflow.python.util import dispatch as _dispatch from tensorflow.python.util.tf_export import tf_export from typing import TypeVar, List, Any from typing_extensions import Annotated def eager_py_func(input, token: str, Tout, is_async:bool=False, name=None): r"""Eagerly executes a python function to compute func(input)->output. The semantics of the input, output, and attributes are the same as those for PyFunc. Args: input: A list of `Tensor` objects. token: A `string`. Tout: A list of `tf.DTypes`. is_async: An optional `bool`. Defaults to `False`. name: A name for the operation (optional). Returns: A list of `Tensor` objects of type `Tout`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "EagerPyFunc", name, input, "token", token, "is_async", is_async, "Tout", Tout) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return eager_py_func_eager_fallback( input, token=token, is_async=is_async, Tout=Tout, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. token = _execute.make_str(token, "token") if not isinstance(Tout, (list, tuple)): raise TypeError( "Expected list for 'Tout' argument to " "'eager_py_func' Op, not %r." % Tout) Tout = [_execute.make_type(_t, "Tout") for _t in Tout] if is_async is None: is_async = False is_async = _execute.make_bool(is_async, "is_async") _, _, _op, _outputs = _op_def_library._apply_op_helper( "EagerPyFunc", input=input, token=token, Tout=Tout, is_async=is_async, name=name) _result = _outputs[:] if not _result: return _op if _execute.must_record_gradient(): _attrs = ("token", _op.get_attr("token"), "is_async", _op._get_attr_bool("is_async"), "Tin", _op.get_attr("Tin"), "Tout", _op.get_attr("Tout")) _inputs_flat = _op.inputs _execute.record_gradient( "EagerPyFunc", _inputs_flat, _attrs, _result) return _result EagerPyFunc = tf_export("raw_ops.EagerPyFunc")(_ops.to_raw_op(eager_py_func)) def eager_py_func_eager_fallback(input, token: str, Tout, is_async: bool, name, ctx): token = _execute.make_str(token, "token") if not isinstance(Tout, (list, tuple)): raise TypeError( "Expected list for 'Tout' argument to " "'eager_py_func' Op, not %r." % Tout) Tout = [_execute.make_type(_t, "Tout") for _t in Tout] if is_async is None: is_async = False is_async = _execute.make_bool(is_async, "is_async") _attr_Tin, input = _execute.convert_to_mixed_eager_tensors(input, ctx) _inputs_flat = list(input) _attrs = ("token", token, "is_async", is_async, "Tin", _attr_Tin, "Tout", Tout) _result = _execute.execute(b"EagerPyFunc", len(Tout), inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "EagerPyFunc", _inputs_flat, _attrs, _result) return _result def py_func(input, token: str, Tout, name=None): r"""Invokes a python function to compute func(input)->output. This operation is considered stateful. For a stateless version, see PyFuncStateless. Args: input: A list of `Tensor` objects. List of Tensors that will provide input to the Op. token: A `string`. A token representing a registered python function in this address space. Tout: A list of `tf.DTypes`. Data types of the outputs from the op. The length of the list specifies the number of outputs. name: A name for the operation (optional). Returns: A list of `Tensor` objects of type `Tout`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "PyFunc", name, input, "token", token, "Tout", Tout) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return py_func_eager_fallback( input, token=token, Tout=Tout, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. token = _execute.make_str(token, "token") if not isinstance(Tout, (list, tuple)): raise TypeError( "Expected list for 'Tout' argument to " "'py_func' Op, not %r." % Tout) Tout = [_execute.make_type(_t, "Tout") for _t in Tout] _, _, _op, _outputs = _op_def_library._apply_op_helper( "PyFunc", input=input, token=token, Tout=Tout, name=name) _result = _outputs[:] if not _result: return _op if _execute.must_record_gradient(): _attrs = ("token", _op.get_attr("token"), "Tin", _op.get_attr("Tin"), "Tout", _op.get_attr("Tout")) _inputs_flat = _op.inputs _execute.record_gradient( "PyFunc", _inputs_flat, _attrs, _result) return _result PyFunc = tf_export("raw_ops.PyFunc")(_ops.to_raw_op(py_func)) def py_func_eager_fallback(input, token: str, Tout, name, ctx): token = _execute.make_str(token, "token") if not isinstance(Tout, (list, tuple)): raise TypeError( "Expected list for 'Tout' argument to " "'py_func' Op, not %r." % Tout) Tout = [_execute.make_type(_t, "Tout") for _t in Tout] _attr_Tin, input = _execute.convert_to_mixed_eager_tensors(input, ctx) _inputs_flat = list(input) _attrs = ("token", token, "Tin", _attr_Tin, "Tout", Tout) _result = _execute.execute(b"PyFunc", len(Tout), inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "PyFunc", _inputs_flat, _attrs, _result) return _result def py_func_stateless(input, token: str, Tout, name=None): r"""A stateless version of PyFunc. Args: input: A list of `Tensor` objects. token: A `string`. Tout: A list of `tf.DTypes`. name: A name for the operation (optional). Returns: A list of `Tensor` objects of type `Tout`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "PyFuncStateless", name, input, "token", token, "Tout", Tout) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return py_func_stateless_eager_fallback( input, token=token, Tout=Tout, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. token = _execute.make_str(token, "token") if not isinstance(Tout, (list, tuple)): raise TypeError( "Expected list for 'Tout' argument to " "'py_func_stateless' Op, not %r." % Tout) Tout = [_execute.make_type(_t, "Tout") for _t in Tout] _, _, _op, _outputs = _op_def_library._apply_op_helper( "PyFuncStateless", input=input, token=token, Tout=Tout, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("token", _op.get_attr("token"), "Tin", _op.get_attr("Tin"), "Tout", _op.get_attr("Tout")) _inputs_flat = _op.inputs _execute.record_gradient( "PyFuncStateless", _inputs_flat, _attrs, _result) return _result PyFuncStateless = tf_export("raw_ops.PyFuncStateless")(_ops.to_raw_op(py_func_stateless)) def py_func_stateless_eager_fallback(input, token: str, Tout, name, ctx): token = _execute.make_str(token, "token") if not isinstance(Tout, (list, tuple)): raise TypeError( "Expected list for 'Tout' argument to " "'py_func_stateless' Op, not %r." % Tout) Tout = [_execute.make_type(_t, "Tout") for _t in Tout] _attr_Tin, input = _execute.convert_to_mixed_eager_tensors(input, ctx) _inputs_flat = list(input) _attrs = ("token", token, "Tin", _attr_Tin, "Tout", Tout) _result = _execute.execute(b"PyFuncStateless", len(Tout), inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "PyFuncStateless", _inputs_flat, _attrs, _result) return _result