"""Python wrappers around TensorFlow ops. This file is MACHINE GENERATED! Do not edit. """ import collections from tensorflow.python import pywrap_tfe as pywrap_tfe from tensorflow.python.eager import context as _context from tensorflow.python.eager import core as _core from tensorflow.python.eager import execute as _execute from tensorflow.python.framework import dtypes as _dtypes from tensorflow.security.fuzzing.py import annotation_types as _atypes from tensorflow.python.framework import op_def_registry as _op_def_registry from tensorflow.python.framework import ops as _ops from tensorflow.python.framework import op_def_library as _op_def_library from tensorflow.python.util.deprecation import deprecated_endpoints from tensorflow.python.util import dispatch as _dispatch from tensorflow.python.util.tf_export import tf_export from typing import TypeVar, List, Any from typing_extensions import Annotated @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export(v1=['train.sdca_fprint']) @deprecated_endpoints('train.sdca_fprint') def sdca_fprint(input: Annotated[Any, _atypes.String], name=None) -> Annotated[Any, _atypes.Int64]: r"""Computes fingerprints of the input strings. Args: input: A `Tensor` of type `string`. vector of strings to compute fingerprints on. name: A name for the operation (optional). Returns: A `Tensor` of type `int64`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "SdcaFprint", name, input) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_sdca_fprint( (input, name,), None) if _result is not NotImplemented: return _result return sdca_fprint_eager_fallback( input, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( sdca_fprint, (), dict(input=input, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_sdca_fprint( (input, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "SdcaFprint", input=input, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( sdca_fprint, (), dict(input=input, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "SdcaFprint", _inputs_flat, _attrs, _result) _result, = _result return _result SdcaFprint = tf_export("raw_ops.SdcaFprint")(_ops.to_raw_op(sdca_fprint)) _dispatcher_for_sdca_fprint = sdca_fprint._tf_type_based_dispatcher.Dispatch def sdca_fprint_eager_fallback(input: Annotated[Any, _atypes.String], name, ctx) -> Annotated[Any, _atypes.Int64]: input = _ops.convert_to_tensor(input, _dtypes.string) _inputs_flat = [input] _attrs = None _result = _execute.execute(b"SdcaFprint", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "SdcaFprint", _inputs_flat, _attrs, _result) _result, = _result return _result _SdcaOptimizerOutput = collections.namedtuple( "SdcaOptimizer", ["out_example_state_data", "out_delta_sparse_weights", "out_delta_dense_weights"]) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export(v1=['train.sdca_optimizer']) @deprecated_endpoints('train.sdca_optimizer') def sdca_optimizer(sparse_example_indices: Annotated[List[Any], _atypes.Int64], sparse_feature_indices: Annotated[List[Any], _atypes.Int64], sparse_feature_values: Annotated[List[Any], _atypes.Float32], dense_features: Annotated[List[Any], _atypes.Float32], example_weights: Annotated[Any, _atypes.Float32], example_labels: Annotated[Any, _atypes.Float32], sparse_indices: Annotated[List[Any], _atypes.Int64], sparse_weights: Annotated[List[Any], _atypes.Float32], dense_weights: Annotated[List[Any], _atypes.Float32], example_state_data: Annotated[Any, _atypes.Float32], loss_type: str, l1: float, l2: float, num_loss_partitions: int, num_inner_iterations: int, adaptative:bool=True, name=None): r"""Distributed version of Stochastic Dual Coordinate Ascent (SDCA) optimizer for linear models with L1 + L2 regularization. As global optimization objective is strongly-convex, the optimizer optimizes the dual objective at each step. The optimizer applies each update one example at a time. Examples are sampled uniformly, and the optimizer is learning rate free and enjoys linear convergence rate. [Proximal Stochastic Dual Coordinate Ascent](http://arxiv.org/pdf/1211.2717v1.pdf).
Shai Shalev-Shwartz, Tong Zhang. 2012 $$Loss Objective = \sum f_{i} (wx_{i}) + (l2 / 2) * |w|^2 + l1 * |w|$$ [Adding vs. Averaging in Distributed Primal-Dual Optimization](http://arxiv.org/abs/1502.03508).
Chenxin Ma, Virginia Smith, Martin Jaggi, Michael I. Jordan, Peter Richtarik, Martin Takac. 2015 [Stochastic Dual Coordinate Ascent with Adaptive Probabilities](https://arxiv.org/abs/1502.08053).
Dominik Csiba, Zheng Qu, Peter Richtarik. 2015 Args: sparse_example_indices: A list of `Tensor` objects with type `int64`. a list of vectors which contain example indices. sparse_feature_indices: A list with the same length as `sparse_example_indices` of `Tensor` objects with type `int64`. a list of vectors which contain feature indices. sparse_feature_values: A list of `Tensor` objects with type `float32`. a list of vectors which contains feature value associated with each feature group. dense_features: A list of `Tensor` objects with type `float32`. a list of matrices which contains the dense feature values. example_weights: A `Tensor` of type `float32`. a vector which contains the weight associated with each example. example_labels: A `Tensor` of type `float32`. a vector which contains the label/target associated with each example. sparse_indices: A list with the same length as `sparse_example_indices` of `Tensor` objects with type `int64`. a list of vectors where each value is the indices which has corresponding weights in sparse_weights. This field maybe omitted for the dense approach. sparse_weights: A list with the same length as `sparse_example_indices` of `Tensor` objects with type `float32`. a list of vectors where each value is the weight associated with a sparse feature group. dense_weights: A list with the same length as `dense_features` of `Tensor` objects with type `float32`. a list of vectors where the values are the weights associated with a dense feature group. example_state_data: A `Tensor` of type `float32`. a list of vectors containing the example state data. loss_type: A `string` from: `"logistic_loss", "squared_loss", "hinge_loss", "smooth_hinge_loss", "poisson_loss"`. Type of the primal loss. Currently SdcaSolver supports logistic, squared and hinge losses. l1: A `float`. Symmetric l1 regularization strength. l2: A `float`. Symmetric l2 regularization strength. num_loss_partitions: An `int` that is `>= 1`. Number of partitions of the global loss function. num_inner_iterations: An `int` that is `>= 1`. Number of iterations per mini-batch. adaptative: An optional `bool`. Defaults to `True`. Whether to use Adaptive SDCA for the inner loop. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (out_example_state_data, out_delta_sparse_weights, out_delta_dense_weights). out_example_state_data: A `Tensor` of type `float32`. out_delta_sparse_weights: A list with the same length as `sparse_example_indices` of `Tensor` objects with type `float32`. out_delta_dense_weights: A list with the same length as `dense_features` of `Tensor` objects with type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "SdcaOptimizer", name, sparse_example_indices, sparse_feature_indices, sparse_feature_values, dense_features, example_weights, example_labels, sparse_indices, sparse_weights, dense_weights, example_state_data, "loss_type", loss_type, "adaptative", adaptative, "l1", l1, "l2", l2, "num_loss_partitions", num_loss_partitions, "num_inner_iterations", num_inner_iterations) _result = _SdcaOptimizerOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_sdca_optimizer( (sparse_example_indices, sparse_feature_indices, sparse_feature_values, dense_features, example_weights, example_labels, sparse_indices, sparse_weights, dense_weights, example_state_data, loss_type, l1, l2, num_loss_partitions, num_inner_iterations, adaptative, name,), None) if _result is not NotImplemented: return _result return sdca_optimizer_eager_fallback( sparse_example_indices, sparse_feature_indices, sparse_feature_values, dense_features, example_weights, example_labels, sparse_indices, sparse_weights, dense_weights, example_state_data, loss_type=loss_type, adaptative=adaptative, l1=l1, l2=l2, num_loss_partitions=num_loss_partitions, num_inner_iterations=num_inner_iterations, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( sdca_optimizer, (), dict(sparse_example_indices=sparse_example_indices, sparse_feature_indices=sparse_feature_indices, sparse_feature_values=sparse_feature_values, dense_features=dense_features, example_weights=example_weights, example_labels=example_labels, sparse_indices=sparse_indices, sparse_weights=sparse_weights, dense_weights=dense_weights, example_state_data=example_state_data, loss_type=loss_type, l1=l1, l2=l2, num_loss_partitions=num_loss_partitions, num_inner_iterations=num_inner_iterations, adaptative=adaptative, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_sdca_optimizer( (sparse_example_indices, sparse_feature_indices, sparse_feature_values, dense_features, example_weights, example_labels, sparse_indices, sparse_weights, dense_weights, example_state_data, loss_type, l1, l2, num_loss_partitions, num_inner_iterations, adaptative, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if not isinstance(sparse_example_indices, (list, tuple)): raise TypeError( "Expected list for 'sparse_example_indices' argument to " "'sdca_optimizer' Op, not %r." % sparse_example_indices) _attr_num_sparse_features = len(sparse_example_indices) if not isinstance(sparse_feature_indices, (list, tuple)): raise TypeError( "Expected list for 'sparse_feature_indices' argument to " "'sdca_optimizer' Op, not %r." % sparse_feature_indices) if len(sparse_feature_indices) != _attr_num_sparse_features: raise ValueError( "List argument 'sparse_feature_indices' to 'sdca_optimizer' Op with length %d " "must match length %d of argument 'sparse_example_indices'." % (len(sparse_feature_indices), _attr_num_sparse_features)) if not isinstance(sparse_indices, (list, tuple)): raise TypeError( "Expected list for 'sparse_indices' argument to " "'sdca_optimizer' Op, not %r." % sparse_indices) if len(sparse_indices) != _attr_num_sparse_features: raise ValueError( "List argument 'sparse_indices' to 'sdca_optimizer' Op with length %d " "must match length %d of argument 'sparse_example_indices'." % (len(sparse_indices), _attr_num_sparse_features)) if not isinstance(sparse_weights, (list, tuple)): raise TypeError( "Expected list for 'sparse_weights' argument to " "'sdca_optimizer' Op, not %r." % sparse_weights) if len(sparse_weights) != _attr_num_sparse_features: raise ValueError( "List argument 'sparse_weights' to 'sdca_optimizer' Op with length %d " "must match length %d of argument 'sparse_example_indices'." % (len(sparse_weights), _attr_num_sparse_features)) if not isinstance(sparse_feature_values, (list, tuple)): raise TypeError( "Expected list for 'sparse_feature_values' argument to " "'sdca_optimizer' Op, not %r." % sparse_feature_values) _attr_num_sparse_features_with_values = len(sparse_feature_values) if not isinstance(dense_features, (list, tuple)): raise TypeError( "Expected list for 'dense_features' argument to " "'sdca_optimizer' Op, not %r." % dense_features) _attr_num_dense_features = len(dense_features) if not isinstance(dense_weights, (list, tuple)): raise TypeError( "Expected list for 'dense_weights' argument to " "'sdca_optimizer' Op, not %r." % dense_weights) if len(dense_weights) != _attr_num_dense_features: raise ValueError( "List argument 'dense_weights' to 'sdca_optimizer' Op with length %d " "must match length %d of argument 'dense_features'." % (len(dense_weights), _attr_num_dense_features)) loss_type = _execute.make_str(loss_type, "loss_type") l1 = _execute.make_float(l1, "l1") l2 = _execute.make_float(l2, "l2") num_loss_partitions = _execute.make_int(num_loss_partitions, "num_loss_partitions") num_inner_iterations = _execute.make_int(num_inner_iterations, "num_inner_iterations") if adaptative is None: adaptative = True adaptative = _execute.make_bool(adaptative, "adaptative") try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "SdcaOptimizer", sparse_example_indices=sparse_example_indices, sparse_feature_indices=sparse_feature_indices, sparse_feature_values=sparse_feature_values, dense_features=dense_features, example_weights=example_weights, example_labels=example_labels, sparse_indices=sparse_indices, sparse_weights=sparse_weights, dense_weights=dense_weights, example_state_data=example_state_data, loss_type=loss_type, l1=l1, l2=l2, num_loss_partitions=num_loss_partitions, num_inner_iterations=num_inner_iterations, adaptative=adaptative, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( sdca_optimizer, (), dict(sparse_example_indices=sparse_example_indices, sparse_feature_indices=sparse_feature_indices, sparse_feature_values=sparse_feature_values, dense_features=dense_features, example_weights=example_weights, example_labels=example_labels, sparse_indices=sparse_indices, sparse_weights=sparse_weights, dense_weights=dense_weights, example_state_data=example_state_data, loss_type=loss_type, l1=l1, l2=l2, num_loss_partitions=num_loss_partitions, num_inner_iterations=num_inner_iterations, adaptative=adaptative, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("loss_type", _op.get_attr("loss_type"), "adaptative", _op._get_attr_bool("adaptative"), "num_sparse_features", _op._get_attr_int("num_sparse_features"), "num_sparse_features_with_values", _op._get_attr_int("num_sparse_features_with_values"), "num_dense_features", _op._get_attr_int("num_dense_features"), "l1", _op.get_attr("l1"), "l2", _op.get_attr("l2"), "num_loss_partitions", _op._get_attr_int("num_loss_partitions"), "num_inner_iterations", _op._get_attr_int("num_inner_iterations")) _inputs_flat = _op.inputs _execute.record_gradient( "SdcaOptimizer", _inputs_flat, _attrs, _result) _result = _result[:1] + [_result[1:1 + _attr_num_sparse_features]] + _result[1 + _attr_num_sparse_features:] _result = _result[:2] + [_result[2:]] _result = _SdcaOptimizerOutput._make(_result) return _result SdcaOptimizer = tf_export("raw_ops.SdcaOptimizer")(_ops.to_raw_op(sdca_optimizer)) _dispatcher_for_sdca_optimizer = sdca_optimizer._tf_type_based_dispatcher.Dispatch def sdca_optimizer_eager_fallback(sparse_example_indices: Annotated[List[Any], _atypes.Int64], sparse_feature_indices: Annotated[List[Any], _atypes.Int64], sparse_feature_values: Annotated[List[Any], _atypes.Float32], dense_features: Annotated[List[Any], _atypes.Float32], example_weights: Annotated[Any, _atypes.Float32], example_labels: Annotated[Any, _atypes.Float32], sparse_indices: Annotated[List[Any], _atypes.Int64], sparse_weights: Annotated[List[Any], _atypes.Float32], dense_weights: Annotated[List[Any], _atypes.Float32], example_state_data: Annotated[Any, _atypes.Float32], loss_type: str, l1: float, l2: float, num_loss_partitions: int, num_inner_iterations: int, adaptative: bool, name, ctx): if not isinstance(sparse_example_indices, (list, tuple)): raise TypeError( "Expected list for 'sparse_example_indices' argument to " "'sdca_optimizer' Op, not %r." % sparse_example_indices) _attr_num_sparse_features = len(sparse_example_indices) if not isinstance(sparse_feature_indices, (list, tuple)): raise TypeError( "Expected list for 'sparse_feature_indices' argument to " "'sdca_optimizer' Op, not %r." % sparse_feature_indices) if len(sparse_feature_indices) != _attr_num_sparse_features: raise ValueError( "List argument 'sparse_feature_indices' to 'sdca_optimizer' Op with length %d " "must match length %d of argument 'sparse_example_indices'." % (len(sparse_feature_indices), _attr_num_sparse_features)) if not isinstance(sparse_indices, (list, tuple)): raise TypeError( "Expected list for 'sparse_indices' argument to " "'sdca_optimizer' Op, not %r." % sparse_indices) if len(sparse_indices) != _attr_num_sparse_features: raise ValueError( "List argument 'sparse_indices' to 'sdca_optimizer' Op with length %d " "must match length %d of argument 'sparse_example_indices'." % (len(sparse_indices), _attr_num_sparse_features)) if not isinstance(sparse_weights, (list, tuple)): raise TypeError( "Expected list for 'sparse_weights' argument to " "'sdca_optimizer' Op, not %r." % sparse_weights) if len(sparse_weights) != _attr_num_sparse_features: raise ValueError( "List argument 'sparse_weights' to 'sdca_optimizer' Op with length %d " "must match length %d of argument 'sparse_example_indices'." % (len(sparse_weights), _attr_num_sparse_features)) if not isinstance(sparse_feature_values, (list, tuple)): raise TypeError( "Expected list for 'sparse_feature_values' argument to " "'sdca_optimizer' Op, not %r." % sparse_feature_values) _attr_num_sparse_features_with_values = len(sparse_feature_values) if not isinstance(dense_features, (list, tuple)): raise TypeError( "Expected list for 'dense_features' argument to " "'sdca_optimizer' Op, not %r." % dense_features) _attr_num_dense_features = len(dense_features) if not isinstance(dense_weights, (list, tuple)): raise TypeError( "Expected list for 'dense_weights' argument to " "'sdca_optimizer' Op, not %r." % dense_weights) if len(dense_weights) != _attr_num_dense_features: raise ValueError( "List argument 'dense_weights' to 'sdca_optimizer' Op with length %d " "must match length %d of argument 'dense_features'." % (len(dense_weights), _attr_num_dense_features)) loss_type = _execute.make_str(loss_type, "loss_type") l1 = _execute.make_float(l1, "l1") l2 = _execute.make_float(l2, "l2") num_loss_partitions = _execute.make_int(num_loss_partitions, "num_loss_partitions") num_inner_iterations = _execute.make_int(num_inner_iterations, "num_inner_iterations") if adaptative is None: adaptative = True adaptative = _execute.make_bool(adaptative, "adaptative") sparse_example_indices = _ops.convert_n_to_tensor(sparse_example_indices, _dtypes.int64) sparse_feature_indices = _ops.convert_n_to_tensor(sparse_feature_indices, _dtypes.int64) sparse_feature_values = _ops.convert_n_to_tensor(sparse_feature_values, _dtypes.float32) dense_features = _ops.convert_n_to_tensor(dense_features, _dtypes.float32) example_weights = _ops.convert_to_tensor(example_weights, _dtypes.float32) example_labels = _ops.convert_to_tensor(example_labels, _dtypes.float32) sparse_indices = _ops.convert_n_to_tensor(sparse_indices, _dtypes.int64) sparse_weights = _ops.convert_n_to_tensor(sparse_weights, _dtypes.float32) dense_weights = _ops.convert_n_to_tensor(dense_weights, _dtypes.float32) example_state_data = _ops.convert_to_tensor(example_state_data, _dtypes.float32) _inputs_flat = list(sparse_example_indices) + list(sparse_feature_indices) + list(sparse_feature_values) + list(dense_features) + [example_weights, example_labels] + list(sparse_indices) + list(sparse_weights) + list(dense_weights) + [example_state_data] _attrs = ("loss_type", loss_type, "adaptative", adaptative, "num_sparse_features", _attr_num_sparse_features, "num_sparse_features_with_values", _attr_num_sparse_features_with_values, "num_dense_features", _attr_num_dense_features, "l1", l1, "l2", l2, "num_loss_partitions", num_loss_partitions, "num_inner_iterations", num_inner_iterations) _result = _execute.execute(b"SdcaOptimizer", _attr_num_sparse_features + _attr_num_dense_features + 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "SdcaOptimizer", _inputs_flat, _attrs, _result) _result = _result[:1] + [_result[1:1 + _attr_num_sparse_features]] + _result[1 + _attr_num_sparse_features:] _result = _result[:2] + [_result[2:]] _result = _SdcaOptimizerOutput._make(_result) return _result _SdcaOptimizerV2Output = collections.namedtuple( "SdcaOptimizerV2", ["out_example_state_data", "out_delta_sparse_weights", "out_delta_dense_weights"]) def sdca_optimizer_v2(sparse_example_indices: Annotated[List[Any], _atypes.Int64], sparse_feature_indices: Annotated[List[Any], _atypes.Int64], sparse_feature_values: Annotated[List[Any], _atypes.Float32], dense_features: Annotated[List[Any], _atypes.Float32], example_weights: Annotated[Any, _atypes.Float32], example_labels: Annotated[Any, _atypes.Float32], sparse_indices: Annotated[List[Any], _atypes.Int64], sparse_weights: Annotated[List[Any], _atypes.Float32], dense_weights: Annotated[List[Any], _atypes.Float32], example_state_data: Annotated[Any, _atypes.Float32], loss_type: str, l1: float, l2: float, num_loss_partitions: int, num_inner_iterations: int, adaptive:bool=True, name=None): r"""Distributed version of Stochastic Dual Coordinate Ascent (SDCA) optimizer for linear models with L1 + L2 regularization. As global optimization objective is strongly-convex, the optimizer optimizes the dual objective at each step. The optimizer applies each update one example at a time. Examples are sampled uniformly, and the optimizer is learning rate free and enjoys linear convergence rate. [Proximal Stochastic Dual Coordinate Ascent](http://arxiv.org/pdf/1211.2717v1.pdf).
Shai Shalev-Shwartz, Tong Zhang. 2012 $$Loss Objective = \sum f_{i} (wx_{i}) + (l2 / 2) * |w|^2 + l1 * |w|$$ [Adding vs. Averaging in Distributed Primal-Dual Optimization](http://arxiv.org/abs/1502.03508).
Chenxin Ma, Virginia Smith, Martin Jaggi, Michael I. Jordan, Peter Richtarik, Martin Takac. 2015 [Stochastic Dual Coordinate Ascent with Adaptive Probabilities](https://arxiv.org/abs/1502.08053).
Dominik Csiba, Zheng Qu, Peter Richtarik. 2015 Args: sparse_example_indices: A list of `Tensor` objects with type `int64`. a list of vectors which contain example indices. sparse_feature_indices: A list with the same length as `sparse_example_indices` of `Tensor` objects with type `int64`. a list of vectors which contain feature indices. sparse_feature_values: A list of `Tensor` objects with type `float32`. a list of vectors which contains feature value associated with each feature group. dense_features: A list of `Tensor` objects with type `float32`. a list of matrices which contains the dense feature values. example_weights: A `Tensor` of type `float32`. a vector which contains the weight associated with each example. example_labels: A `Tensor` of type `float32`. a vector which contains the label/target associated with each example. sparse_indices: A list with the same length as `sparse_example_indices` of `Tensor` objects with type `int64`. a list of vectors where each value is the indices which has corresponding weights in sparse_weights. This field maybe omitted for the dense approach. sparse_weights: A list with the same length as `sparse_example_indices` of `Tensor` objects with type `float32`. a list of vectors where each value is the weight associated with a sparse feature group. dense_weights: A list with the same length as `dense_features` of `Tensor` objects with type `float32`. a list of vectors where the values are the weights associated with a dense feature group. example_state_data: A `Tensor` of type `float32`. a list of vectors containing the example state data. loss_type: A `string` from: `"logistic_loss", "squared_loss", "hinge_loss", "smooth_hinge_loss", "poisson_loss"`. Type of the primal loss. Currently SdcaSolver supports logistic, squared and hinge losses. l1: A `float`. Symmetric l1 regularization strength. l2: A `float`. Symmetric l2 regularization strength. num_loss_partitions: An `int` that is `>= 1`. Number of partitions of the global loss function. num_inner_iterations: An `int` that is `>= 1`. Number of iterations per mini-batch. adaptive: An optional `bool`. Defaults to `True`. Whether to use Adaptive SDCA for the inner loop. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (out_example_state_data, out_delta_sparse_weights, out_delta_dense_weights). out_example_state_data: A `Tensor` of type `float32`. out_delta_sparse_weights: A list with the same length as `sparse_example_indices` of `Tensor` objects with type `float32`. out_delta_dense_weights: A list with the same length as `dense_features` of `Tensor` objects with type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "SdcaOptimizerV2", name, sparse_example_indices, sparse_feature_indices, sparse_feature_values, dense_features, example_weights, example_labels, sparse_indices, sparse_weights, dense_weights, example_state_data, "loss_type", loss_type, "adaptive", adaptive, "l1", l1, "l2", l2, "num_loss_partitions", num_loss_partitions, "num_inner_iterations", num_inner_iterations) _result = _SdcaOptimizerV2Output._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return sdca_optimizer_v2_eager_fallback( sparse_example_indices, sparse_feature_indices, sparse_feature_values, dense_features, example_weights, example_labels, sparse_indices, sparse_weights, dense_weights, example_state_data, loss_type=loss_type, adaptive=adaptive, l1=l1, l2=l2, num_loss_partitions=num_loss_partitions, num_inner_iterations=num_inner_iterations, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(sparse_example_indices, (list, tuple)): raise TypeError( "Expected list for 'sparse_example_indices' argument to " "'sdca_optimizer_v2' Op, not %r." % sparse_example_indices) _attr_num_sparse_features = len(sparse_example_indices) if not isinstance(sparse_feature_indices, (list, tuple)): raise TypeError( "Expected list for 'sparse_feature_indices' argument to " "'sdca_optimizer_v2' Op, not %r." % sparse_feature_indices) if len(sparse_feature_indices) != _attr_num_sparse_features: raise ValueError( "List argument 'sparse_feature_indices' to 'sdca_optimizer_v2' Op with length %d " "must match length %d of argument 'sparse_example_indices'." % (len(sparse_feature_indices), _attr_num_sparse_features)) if not isinstance(sparse_indices, (list, tuple)): raise TypeError( "Expected list for 'sparse_indices' argument to " "'sdca_optimizer_v2' Op, not %r." % sparse_indices) if len(sparse_indices) != _attr_num_sparse_features: raise ValueError( "List argument 'sparse_indices' to 'sdca_optimizer_v2' Op with length %d " "must match length %d of argument 'sparse_example_indices'." % (len(sparse_indices), _attr_num_sparse_features)) if not isinstance(sparse_weights, (list, tuple)): raise TypeError( "Expected list for 'sparse_weights' argument to " "'sdca_optimizer_v2' Op, not %r." % sparse_weights) if len(sparse_weights) != _attr_num_sparse_features: raise ValueError( "List argument 'sparse_weights' to 'sdca_optimizer_v2' Op with length %d " "must match length %d of argument 'sparse_example_indices'." % (len(sparse_weights), _attr_num_sparse_features)) if not isinstance(sparse_feature_values, (list, tuple)): raise TypeError( "Expected list for 'sparse_feature_values' argument to " "'sdca_optimizer_v2' Op, not %r." % sparse_feature_values) _attr_num_sparse_features_with_values = len(sparse_feature_values) if not isinstance(dense_features, (list, tuple)): raise TypeError( "Expected list for 'dense_features' argument to " "'sdca_optimizer_v2' Op, not %r." % dense_features) _attr_num_dense_features = len(dense_features) if not isinstance(dense_weights, (list, tuple)): raise TypeError( "Expected list for 'dense_weights' argument to " "'sdca_optimizer_v2' Op, not %r." % dense_weights) if len(dense_weights) != _attr_num_dense_features: raise ValueError( "List argument 'dense_weights' to 'sdca_optimizer_v2' Op with length %d " "must match length %d of argument 'dense_features'." % (len(dense_weights), _attr_num_dense_features)) loss_type = _execute.make_str(loss_type, "loss_type") l1 = _execute.make_float(l1, "l1") l2 = _execute.make_float(l2, "l2") num_loss_partitions = _execute.make_int(num_loss_partitions, "num_loss_partitions") num_inner_iterations = _execute.make_int(num_inner_iterations, "num_inner_iterations") if adaptive is None: adaptive = True adaptive = _execute.make_bool(adaptive, "adaptive") _, _, _op, _outputs = _op_def_library._apply_op_helper( "SdcaOptimizerV2", sparse_example_indices=sparse_example_indices, sparse_feature_indices=sparse_feature_indices, sparse_feature_values=sparse_feature_values, dense_features=dense_features, example_weights=example_weights, example_labels=example_labels, sparse_indices=sparse_indices, sparse_weights=sparse_weights, dense_weights=dense_weights, example_state_data=example_state_data, loss_type=loss_type, l1=l1, l2=l2, num_loss_partitions=num_loss_partitions, num_inner_iterations=num_inner_iterations, adaptive=adaptive, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("loss_type", _op.get_attr("loss_type"), "adaptive", _op._get_attr_bool("adaptive"), "num_sparse_features", _op._get_attr_int("num_sparse_features"), "num_sparse_features_with_values", _op._get_attr_int("num_sparse_features_with_values"), "num_dense_features", _op._get_attr_int("num_dense_features"), "l1", _op.get_attr("l1"), "l2", _op.get_attr("l2"), "num_loss_partitions", _op._get_attr_int("num_loss_partitions"), "num_inner_iterations", _op._get_attr_int("num_inner_iterations")) _inputs_flat = _op.inputs _execute.record_gradient( "SdcaOptimizerV2", _inputs_flat, _attrs, _result) _result = _result[:1] + [_result[1:1 + _attr_num_sparse_features]] + _result[1 + _attr_num_sparse_features:] _result = _result[:2] + [_result[2:]] _result = _SdcaOptimizerV2Output._make(_result) return _result SdcaOptimizerV2 = tf_export("raw_ops.SdcaOptimizerV2")(_ops.to_raw_op(sdca_optimizer_v2)) def sdca_optimizer_v2_eager_fallback(sparse_example_indices: Annotated[List[Any], _atypes.Int64], sparse_feature_indices: Annotated[List[Any], _atypes.Int64], sparse_feature_values: Annotated[List[Any], _atypes.Float32], dense_features: Annotated[List[Any], _atypes.Float32], example_weights: Annotated[Any, _atypes.Float32], example_labels: Annotated[Any, _atypes.Float32], sparse_indices: Annotated[List[Any], _atypes.Int64], sparse_weights: Annotated[List[Any], _atypes.Float32], dense_weights: Annotated[List[Any], _atypes.Float32], example_state_data: Annotated[Any, _atypes.Float32], loss_type: str, l1: float, l2: float, num_loss_partitions: int, num_inner_iterations: int, adaptive: bool, name, ctx): if not isinstance(sparse_example_indices, (list, tuple)): raise TypeError( "Expected list for 'sparse_example_indices' argument to " "'sdca_optimizer_v2' Op, not %r." % sparse_example_indices) _attr_num_sparse_features = len(sparse_example_indices) if not isinstance(sparse_feature_indices, (list, tuple)): raise TypeError( "Expected list for 'sparse_feature_indices' argument to " "'sdca_optimizer_v2' Op, not %r." % sparse_feature_indices) if len(sparse_feature_indices) != _attr_num_sparse_features: raise ValueError( "List argument 'sparse_feature_indices' to 'sdca_optimizer_v2' Op with length %d " "must match length %d of argument 'sparse_example_indices'." % (len(sparse_feature_indices), _attr_num_sparse_features)) if not isinstance(sparse_indices, (list, tuple)): raise TypeError( "Expected list for 'sparse_indices' argument to " "'sdca_optimizer_v2' Op, not %r." % sparse_indices) if len(sparse_indices) != _attr_num_sparse_features: raise ValueError( "List argument 'sparse_indices' to 'sdca_optimizer_v2' Op with length %d " "must match length %d of argument 'sparse_example_indices'." % (len(sparse_indices), _attr_num_sparse_features)) if not isinstance(sparse_weights, (list, tuple)): raise TypeError( "Expected list for 'sparse_weights' argument to " "'sdca_optimizer_v2' Op, not %r." % sparse_weights) if len(sparse_weights) != _attr_num_sparse_features: raise ValueError( "List argument 'sparse_weights' to 'sdca_optimizer_v2' Op with length %d " "must match length %d of argument 'sparse_example_indices'." % (len(sparse_weights), _attr_num_sparse_features)) if not isinstance(sparse_feature_values, (list, tuple)): raise TypeError( "Expected list for 'sparse_feature_values' argument to " "'sdca_optimizer_v2' Op, not %r." % sparse_feature_values) _attr_num_sparse_features_with_values = len(sparse_feature_values) if not isinstance(dense_features, (list, tuple)): raise TypeError( "Expected list for 'dense_features' argument to " "'sdca_optimizer_v2' Op, not %r." % dense_features) _attr_num_dense_features = len(dense_features) if not isinstance(dense_weights, (list, tuple)): raise TypeError( "Expected list for 'dense_weights' argument to " "'sdca_optimizer_v2' Op, not %r." % dense_weights) if len(dense_weights) != _attr_num_dense_features: raise ValueError( "List argument 'dense_weights' to 'sdca_optimizer_v2' Op with length %d " "must match length %d of argument 'dense_features'." % (len(dense_weights), _attr_num_dense_features)) loss_type = _execute.make_str(loss_type, "loss_type") l1 = _execute.make_float(l1, "l1") l2 = _execute.make_float(l2, "l2") num_loss_partitions = _execute.make_int(num_loss_partitions, "num_loss_partitions") num_inner_iterations = _execute.make_int(num_inner_iterations, "num_inner_iterations") if adaptive is None: adaptive = True adaptive = _execute.make_bool(adaptive, "adaptive") sparse_example_indices = _ops.convert_n_to_tensor(sparse_example_indices, _dtypes.int64) sparse_feature_indices = _ops.convert_n_to_tensor(sparse_feature_indices, _dtypes.int64) sparse_feature_values = _ops.convert_n_to_tensor(sparse_feature_values, _dtypes.float32) dense_features = _ops.convert_n_to_tensor(dense_features, _dtypes.float32) example_weights = _ops.convert_to_tensor(example_weights, _dtypes.float32) example_labels = _ops.convert_to_tensor(example_labels, _dtypes.float32) sparse_indices = _ops.convert_n_to_tensor(sparse_indices, _dtypes.int64) sparse_weights = _ops.convert_n_to_tensor(sparse_weights, _dtypes.float32) dense_weights = _ops.convert_n_to_tensor(dense_weights, _dtypes.float32) example_state_data = _ops.convert_to_tensor(example_state_data, _dtypes.float32) _inputs_flat = list(sparse_example_indices) + list(sparse_feature_indices) + list(sparse_feature_values) + list(dense_features) + [example_weights, example_labels] + list(sparse_indices) + list(sparse_weights) + list(dense_weights) + [example_state_data] _attrs = ("loss_type", loss_type, "adaptive", adaptive, "num_sparse_features", _attr_num_sparse_features, "num_sparse_features_with_values", _attr_num_sparse_features_with_values, "num_dense_features", _attr_num_dense_features, "l1", l1, "l2", l2, "num_loss_partitions", num_loss_partitions, "num_inner_iterations", num_inner_iterations) _result = _execute.execute(b"SdcaOptimizerV2", _attr_num_sparse_features + _attr_num_dense_features + 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "SdcaOptimizerV2", _inputs_flat, _attrs, _result) _result = _result[:1] + [_result[1:1 + _attr_num_sparse_features]] + _result[1 + _attr_num_sparse_features:] _result = _result[:2] + [_result[2:]] _result = _SdcaOptimizerV2Output._make(_result) return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export(v1=['train.sdca_shrink_l1']) @deprecated_endpoints('train.sdca_shrink_l1') def sdca_shrink_l1(weights: Annotated[List[Any], _atypes.Float32], l1: float, l2: float, name=None): r"""Applies L1 regularization shrink step on the parameters. Args: weights: A list of `Tensor` objects with type mutable `float32`. a list of vectors where each value is the weight associated with a feature group. l1: A `float`. Symmetric l1 regularization strength. l2: A `float`. Symmetric l2 regularization strength. Should be a positive float. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("sdca_shrink_l1 op does not support eager execution. Arg 'weights' is a ref.") else: _result = _dispatcher_for_sdca_shrink_l1( (weights, l1, l2, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if not isinstance(weights, (list, tuple)): raise TypeError( "Expected list for 'weights' argument to " "'sdca_shrink_l1' Op, not %r." % weights) _attr_num_features = len(weights) l1 = _execute.make_float(l1, "l1") l2 = _execute.make_float(l2, "l2") try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "SdcaShrinkL1", weights=weights, l1=l1, l2=l2, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( sdca_shrink_l1, (), dict(weights=weights, l1=l1, l2=l2, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise return _op SdcaShrinkL1 = tf_export("raw_ops.SdcaShrinkL1")(_ops.to_raw_op(sdca_shrink_l1)) _dispatcher_for_sdca_shrink_l1 = sdca_shrink_l1._tf_type_based_dispatcher.Dispatch def sdca_shrink_l1_eager_fallback(weights: Annotated[List[Any], _atypes.Float32], l1: float, l2: float, name, ctx): raise RuntimeError("sdca_shrink_l1 op does not support eager execution. Arg 'weights' is a ref.")