"""Python wrappers around TensorFlow ops. This file is MACHINE GENERATED! Do not edit. """ import collections from tensorflow.python import pywrap_tfe as pywrap_tfe from tensorflow.python.eager import context as _context from tensorflow.python.eager import core as _core from tensorflow.python.eager import execute as _execute from tensorflow.python.framework import dtypes as _dtypes from tensorflow.security.fuzzing.py import annotation_types as _atypes from tensorflow.python.framework import op_def_registry as _op_def_registry from tensorflow.python.framework import ops as _ops from tensorflow.python.framework import op_def_library as _op_def_library from tensorflow.python.util.deprecation import deprecated_endpoints from tensorflow.python.util import dispatch as _dispatch from tensorflow.python.util.tf_export import tf_export from typing import TypeVar, List, Any from typing_extensions import Annotated TV_Assign_T = TypeVar("TV_Assign_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def assign(ref: Annotated[Any, TV_Assign_T], value: Annotated[Any, TV_Assign_T], validate_shape:bool=True, use_locking:bool=True, name=None) -> Annotated[Any, TV_Assign_T]: r"""Update 'ref' by assigning 'value' to it. This operation outputs "ref" after the assignment is done. This makes it easier to chain operations that need to use the reset value. Args: ref: A mutable `Tensor`. Should be from a `Variable` node. May be uninitialized. value: A `Tensor`. Must have the same type as `ref`. The value to be assigned to the variable. validate_shape: An optional `bool`. Defaults to `True`. If true, the operation will validate that the shape of 'value' matches the shape of the Tensor being assigned to. If false, 'ref' will take on the shape of 'value'. use_locking: An optional `bool`. Defaults to `True`. If True, the assignment will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. name: A name for the operation (optional). Returns: A mutable `Tensor`. Has the same type as `ref`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("assign op does not support eager execution. Arg 'output_ref' is a ref.") # Add nodes to the TensorFlow graph. if validate_shape is None: validate_shape = True validate_shape = _execute.make_bool(validate_shape, "validate_shape") if use_locking is None: use_locking = True use_locking = _execute.make_bool(use_locking, "use_locking") _, _, _op, _outputs = _op_def_library._apply_op_helper( "Assign", ref=ref, value=value, validate_shape=validate_shape, use_locking=use_locking, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "validate_shape", _op._get_attr_bool("validate_shape"), "use_locking", _op._get_attr_bool("use_locking")) _inputs_flat = _op.inputs _execute.record_gradient( "Assign", _inputs_flat, _attrs, _result) _result, = _result return _result Assign = tf_export("raw_ops.Assign")(_ops.to_raw_op(assign)) def assign_eager_fallback(ref: Annotated[Any, TV_Assign_T], value: Annotated[Any, TV_Assign_T], validate_shape: bool, use_locking: bool, name, ctx) -> Annotated[Any, TV_Assign_T]: raise RuntimeError("assign op does not support eager execution. Arg 'output_ref' is a ref.") TV_AssignAdd_T = TypeVar("TV_AssignAdd_T", _atypes.BFloat16, _atypes.Complex128, _atypes.Complex64, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.UInt16, _atypes.UInt32, _atypes.UInt64, _atypes.UInt8) def assign_add(ref: Annotated[Any, TV_AssignAdd_T], value: Annotated[Any, TV_AssignAdd_T], use_locking:bool=False, name=None) -> Annotated[Any, TV_AssignAdd_T]: r"""Update 'ref' by adding 'value' to it. This operation outputs "ref" after the update is done. This makes it easier to chain operations that need to use the reset value. Args: ref: A mutable `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `qint16`, `quint16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. Should be from a `Variable` node. value: A `Tensor`. Must have the same type as `ref`. The value to be added to the variable. use_locking: An optional `bool`. Defaults to `False`. If True, the addition will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. name: A name for the operation (optional). Returns: A mutable `Tensor`. Has the same type as `ref`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("assign_add op does not support eager execution. Arg 'output_ref' is a ref.") # Add nodes to the TensorFlow graph. if use_locking is None: use_locking = False use_locking = _execute.make_bool(use_locking, "use_locking") _, _, _op, _outputs = _op_def_library._apply_op_helper( "AssignAdd", ref=ref, value=value, use_locking=use_locking, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "use_locking", _op._get_attr_bool("use_locking")) _inputs_flat = _op.inputs _execute.record_gradient( "AssignAdd", _inputs_flat, _attrs, _result) _result, = _result return _result AssignAdd = tf_export("raw_ops.AssignAdd")(_ops.to_raw_op(assign_add)) def assign_add_eager_fallback(ref: Annotated[Any, TV_AssignAdd_T], value: Annotated[Any, TV_AssignAdd_T], use_locking: bool, name, ctx) -> Annotated[Any, TV_AssignAdd_T]: raise RuntimeError("assign_add op does not support eager execution. Arg 'output_ref' is a ref.") TV_AssignSub_T = TypeVar("TV_AssignSub_T", _atypes.BFloat16, _atypes.Complex128, _atypes.Complex64, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.UInt16, _atypes.UInt32, _atypes.UInt64, _atypes.UInt8) def assign_sub(ref: Annotated[Any, TV_AssignSub_T], value: Annotated[Any, TV_AssignSub_T], use_locking:bool=False, name=None) -> Annotated[Any, TV_AssignSub_T]: r"""Update 'ref' by subtracting 'value' from it. This operation outputs "ref" after the update is done. This makes it easier to chain operations that need to use the reset value. Args: ref: A mutable `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `qint16`, `quint16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. Should be from a `Variable` node. value: A `Tensor`. Must have the same type as `ref`. The value to be subtracted to the variable. use_locking: An optional `bool`. Defaults to `False`. If True, the subtraction will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. name: A name for the operation (optional). Returns: A mutable `Tensor`. Has the same type as `ref`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("assign_sub op does not support eager execution. Arg 'output_ref' is a ref.") # Add nodes to the TensorFlow graph. if use_locking is None: use_locking = False use_locking = _execute.make_bool(use_locking, "use_locking") _, _, _op, _outputs = _op_def_library._apply_op_helper( "AssignSub", ref=ref, value=value, use_locking=use_locking, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "use_locking", _op._get_attr_bool("use_locking")) _inputs_flat = _op.inputs _execute.record_gradient( "AssignSub", _inputs_flat, _attrs, _result) _result, = _result return _result AssignSub = tf_export("raw_ops.AssignSub")(_ops.to_raw_op(assign_sub)) def assign_sub_eager_fallback(ref: Annotated[Any, TV_AssignSub_T], value: Annotated[Any, TV_AssignSub_T], use_locking: bool, name, ctx) -> Annotated[Any, TV_AssignSub_T]: raise RuntimeError("assign_sub op does not support eager execution. Arg 'output_ref' is a ref.") TV_CountUpTo_T = TypeVar("TV_CountUpTo_T", _atypes.Int32, _atypes.Int64) def count_up_to(ref: Annotated[Any, TV_CountUpTo_T], limit: int, name=None) -> Annotated[Any, TV_CountUpTo_T]: r"""Increments 'ref' until it reaches 'limit'. Args: ref: A mutable `Tensor`. Must be one of the following types: `int32`, `int64`. Should be from a scalar `Variable` node. limit: An `int`. If incrementing ref would bring it above limit, instead generates an 'OutOfRange' error. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `ref`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("count_up_to op does not support eager execution. Arg 'ref' is a ref.") # Add nodes to the TensorFlow graph. limit = _execute.make_int(limit, "limit") _, _, _op, _outputs = _op_def_library._apply_op_helper( "CountUpTo", ref=ref, limit=limit, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("limit", _op._get_attr_int("limit"), "T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "CountUpTo", _inputs_flat, _attrs, _result) _result, = _result return _result CountUpTo = tf_export("raw_ops.CountUpTo")(_ops.to_raw_op(count_up_to)) def count_up_to_eager_fallback(ref: Annotated[Any, TV_CountUpTo_T], limit: int, name, ctx) -> Annotated[Any, TV_CountUpTo_T]: raise RuntimeError("count_up_to op does not support eager execution. Arg 'ref' is a ref.") TV_DestroyTemporaryVariable_T = TypeVar("TV_DestroyTemporaryVariable_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def destroy_temporary_variable(ref: Annotated[Any, TV_DestroyTemporaryVariable_T], var_name: str, name=None) -> Annotated[Any, TV_DestroyTemporaryVariable_T]: r"""Destroys the temporary variable and returns its final value. Sets output to the value of the Tensor pointed to by 'ref', then destroys the temporary variable called 'var_name'. All other uses of 'ref' *must* have executed before this op. This is typically achieved by chaining the ref through each assign op, or by using control dependencies. Outputs the final value of the tensor pointed to by 'ref'. Args: ref: A mutable `Tensor`. A reference to the temporary variable tensor. var_name: A `string`. Name of the temporary variable, usually the name of the matching 'TemporaryVariable' op. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `ref`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("destroy_temporary_variable op does not support eager execution. Arg 'ref' is a ref.") # Add nodes to the TensorFlow graph. var_name = _execute.make_str(var_name, "var_name") _, _, _op, _outputs = _op_def_library._apply_op_helper( "DestroyTemporaryVariable", ref=ref, var_name=var_name, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "var_name", _op.get_attr("var_name")) _inputs_flat = _op.inputs _execute.record_gradient( "DestroyTemporaryVariable", _inputs_flat, _attrs, _result) _result, = _result return _result DestroyTemporaryVariable = tf_export("raw_ops.DestroyTemporaryVariable")(_ops.to_raw_op(destroy_temporary_variable)) def destroy_temporary_variable_eager_fallback(ref: Annotated[Any, TV_DestroyTemporaryVariable_T], var_name: str, name, ctx) -> Annotated[Any, TV_DestroyTemporaryVariable_T]: raise RuntimeError("destroy_temporary_variable op does not support eager execution. Arg 'ref' is a ref.") TV_IsVariableInitialized_dtype = TypeVar("TV_IsVariableInitialized_dtype", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def is_variable_initialized(ref: Annotated[Any, TV_IsVariableInitialized_dtype], name=None) -> Annotated[Any, _atypes.Bool]: r"""Checks whether a tensor has been initialized. Outputs boolean scalar indicating whether the tensor has been initialized. Args: ref: A mutable `Tensor`. Should be from a `Variable` node. May be uninitialized. name: A name for the operation (optional). Returns: A `Tensor` of type `bool`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("is_variable_initialized op does not support eager execution. Arg 'ref' is a ref.") # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "IsVariableInitialized", ref=ref, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("dtype", _op._get_attr_type("dtype")) _inputs_flat = _op.inputs _execute.record_gradient( "IsVariableInitialized", _inputs_flat, _attrs, _result) _result, = _result return _result IsVariableInitialized = tf_export("raw_ops.IsVariableInitialized")(_ops.to_raw_op(is_variable_initialized)) def is_variable_initialized_eager_fallback(ref: Annotated[Any, TV_IsVariableInitialized_dtype], name, ctx) -> Annotated[Any, _atypes.Bool]: raise RuntimeError("is_variable_initialized op does not support eager execution. Arg 'ref' is a ref.") TV_ResourceCountUpTo_T = TypeVar("TV_ResourceCountUpTo_T", _atypes.Int32, _atypes.Int64) def resource_count_up_to(resource: Annotated[Any, _atypes.Resource], limit: int, T: TV_ResourceCountUpTo_T, name=None) -> Annotated[Any, TV_ResourceCountUpTo_T]: r"""Increments variable pointed to by 'resource' until it reaches 'limit'. Args: resource: A `Tensor` of type `resource`. Should be from a scalar `Variable` node. limit: An `int`. If incrementing ref would bring it above limit, instead generates an 'OutOfRange' error. T: A `tf.DType` from: `tf.int32, tf.int64`. name: A name for the operation (optional). Returns: A `Tensor` of type `T`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "ResourceCountUpTo", name, resource, "limit", limit, "T", T) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return resource_count_up_to_eager_fallback( resource, limit=limit, T=T, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. limit = _execute.make_int(limit, "limit") T = _execute.make_type(T, "T") _, _, _op, _outputs = _op_def_library._apply_op_helper( "ResourceCountUpTo", resource=resource, limit=limit, T=T, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("limit", _op._get_attr_int("limit"), "T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "ResourceCountUpTo", _inputs_flat, _attrs, _result) _result, = _result return _result ResourceCountUpTo = tf_export("raw_ops.ResourceCountUpTo")(_ops.to_raw_op(resource_count_up_to)) def resource_count_up_to_eager_fallback(resource: Annotated[Any, _atypes.Resource], limit: int, T: TV_ResourceCountUpTo_T, name, ctx) -> Annotated[Any, TV_ResourceCountUpTo_T]: limit = _execute.make_int(limit, "limit") T = _execute.make_type(T, "T") resource = _ops.convert_to_tensor(resource, _dtypes.resource) _inputs_flat = [resource] _attrs = ("limit", limit, "T", T) _result = _execute.execute(b"ResourceCountUpTo", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "ResourceCountUpTo", _inputs_flat, _attrs, _result) _result, = _result return _result TV_ResourceScatterNdAdd_T = TypeVar("TV_ResourceScatterNdAdd_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) TV_ResourceScatterNdAdd_Tindices = TypeVar("TV_ResourceScatterNdAdd_Tindices", _atypes.Int32, _atypes.Int64) def resource_scatter_nd_add(ref: Annotated[Any, _atypes.Resource], indices: Annotated[Any, TV_ResourceScatterNdAdd_Tindices], updates: Annotated[Any, TV_ResourceScatterNdAdd_T], use_locking:bool=True, name=None): r"""Applies sparse addition to individual values or slices in a Variable. `ref` is a `Tensor` with rank `P` and `indices` is a `Tensor` of rank `Q`. `indices` must be integer tensor, containing indices into `ref`. It must be shape `[d_0, ..., d_{Q-2}, K]` where `0 < K <= P`. The innermost dimension of `indices` (with length `K`) corresponds to indices into elements (if `K = P`) or slices (if `K < P`) along the `K`th dimension of `ref`. `updates` is `Tensor` of rank `Q-1+P-K` with shape: ``` [d_0, ..., d_{Q-2}, ref.shape[K], ..., ref.shape[P-1]] ``` For example, say we want to add 4 scattered elements to a rank-1 tensor to 8 elements. In Python, that addition would look like this: ```python ref = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8], use_resource=True) indices = tf.constant([[4], [3], [1], [7]]) updates = tf.constant([9, 10, 11, 12]) add = tf.scatter_nd_add(ref, indices, updates) with tf.Session() as sess: print sess.run(add) ``` The resulting update to ref would look like this: [1, 13, 3, 14, 14, 6, 7, 20] See `tf.scatter_nd` for more details about how to make updates to slices. Args: ref: A `Tensor` of type `resource`. A resource handle. Must be from a VarHandleOp. indices: A `Tensor`. Must be one of the following types: `int32`, `int64`. A Tensor. Must be one of the following types: int32, int64. A tensor of indices into ref. updates: A `Tensor`. A Tensor. Must have the same type as ref. A tensor of values to add to ref. use_locking: An optional `bool`. Defaults to `True`. An optional bool. Defaults to True. If True, the assignment will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "ResourceScatterNdAdd", name, ref, indices, updates, "use_locking", use_locking) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return resource_scatter_nd_add_eager_fallback( ref, indices, updates, use_locking=use_locking, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if use_locking is None: use_locking = True use_locking = _execute.make_bool(use_locking, "use_locking") _, _, _op, _outputs = _op_def_library._apply_op_helper( "ResourceScatterNdAdd", ref=ref, indices=indices, updates=updates, use_locking=use_locking, name=name) return _op ResourceScatterNdAdd = tf_export("raw_ops.ResourceScatterNdAdd")(_ops.to_raw_op(resource_scatter_nd_add)) def resource_scatter_nd_add_eager_fallback(ref: Annotated[Any, _atypes.Resource], indices: Annotated[Any, TV_ResourceScatterNdAdd_Tindices], updates: Annotated[Any, TV_ResourceScatterNdAdd_T], use_locking: bool, name, ctx): if use_locking is None: use_locking = True use_locking = _execute.make_bool(use_locking, "use_locking") _attr_T, (updates,) = _execute.args_to_matching_eager([updates], ctx, []) _attr_Tindices, (indices,) = _execute.args_to_matching_eager([indices], ctx, [_dtypes.int32, _dtypes.int64, ]) ref = _ops.convert_to_tensor(ref, _dtypes.resource) _inputs_flat = [ref, indices, updates] _attrs = ("T", _attr_T, "Tindices", _attr_Tindices, "use_locking", use_locking) _result = _execute.execute(b"ResourceScatterNdAdd", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result TV_ResourceScatterNdMax_T = TypeVar("TV_ResourceScatterNdMax_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) TV_ResourceScatterNdMax_Tindices = TypeVar("TV_ResourceScatterNdMax_Tindices", _atypes.Int32, _atypes.Int64) def resource_scatter_nd_max(ref: Annotated[Any, _atypes.Resource], indices: Annotated[Any, TV_ResourceScatterNdMax_Tindices], updates: Annotated[Any, TV_ResourceScatterNdMax_T], use_locking:bool=True, name=None): r"""TODO: add doc. Args: ref: A `Tensor` of type `resource`. A resource handle. Must be from a VarHandleOp. indices: A `Tensor`. Must be one of the following types: `int32`, `int64`. A Tensor. Must be one of the following types: int32, int64. A tensor of indices into ref. updates: A `Tensor`. A Tensor. Must have the same type as ref. A tensor of values whose element wise max is taken with ref use_locking: An optional `bool`. Defaults to `True`. An optional bool. Defaults to True. If True, the assignment will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "ResourceScatterNdMax", name, ref, indices, updates, "use_locking", use_locking) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return resource_scatter_nd_max_eager_fallback( ref, indices, updates, use_locking=use_locking, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if use_locking is None: use_locking = True use_locking = _execute.make_bool(use_locking, "use_locking") _, _, _op, _outputs = _op_def_library._apply_op_helper( "ResourceScatterNdMax", ref=ref, indices=indices, updates=updates, use_locking=use_locking, name=name) return _op ResourceScatterNdMax = tf_export("raw_ops.ResourceScatterNdMax")(_ops.to_raw_op(resource_scatter_nd_max)) def resource_scatter_nd_max_eager_fallback(ref: Annotated[Any, _atypes.Resource], indices: Annotated[Any, TV_ResourceScatterNdMax_Tindices], updates: Annotated[Any, TV_ResourceScatterNdMax_T], use_locking: bool, name, ctx): if use_locking is None: use_locking = True use_locking = _execute.make_bool(use_locking, "use_locking") _attr_T, (updates,) = _execute.args_to_matching_eager([updates], ctx, []) _attr_Tindices, (indices,) = _execute.args_to_matching_eager([indices], ctx, [_dtypes.int32, _dtypes.int64, ]) ref = _ops.convert_to_tensor(ref, _dtypes.resource) _inputs_flat = [ref, indices, updates] _attrs = ("T", _attr_T, "Tindices", _attr_Tindices, "use_locking", use_locking) _result = _execute.execute(b"ResourceScatterNdMax", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result TV_ResourceScatterNdMin_T = TypeVar("TV_ResourceScatterNdMin_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) TV_ResourceScatterNdMin_Tindices = TypeVar("TV_ResourceScatterNdMin_Tindices", _atypes.Int32, _atypes.Int64) def resource_scatter_nd_min(ref: Annotated[Any, _atypes.Resource], indices: Annotated[Any, TV_ResourceScatterNdMin_Tindices], updates: Annotated[Any, TV_ResourceScatterNdMin_T], use_locking:bool=True, name=None): r"""TODO: add doc. Args: ref: A `Tensor` of type `resource`. A resource handle. Must be from a VarHandleOp. indices: A `Tensor`. Must be one of the following types: `int32`, `int64`. A Tensor. Must be one of the following types: int32, int64. A tensor of indices into ref. updates: A `Tensor`. A Tensor. Must have the same type as ref. A tensor of values whose element wise min is taken with ref. use_locking: An optional `bool`. Defaults to `True`. An optional bool. Defaults to True. If True, the assignment will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "ResourceScatterNdMin", name, ref, indices, updates, "use_locking", use_locking) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return resource_scatter_nd_min_eager_fallback( ref, indices, updates, use_locking=use_locking, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if use_locking is None: use_locking = True use_locking = _execute.make_bool(use_locking, "use_locking") _, _, _op, _outputs = _op_def_library._apply_op_helper( "ResourceScatterNdMin", ref=ref, indices=indices, updates=updates, use_locking=use_locking, name=name) return _op ResourceScatterNdMin = tf_export("raw_ops.ResourceScatterNdMin")(_ops.to_raw_op(resource_scatter_nd_min)) def resource_scatter_nd_min_eager_fallback(ref: Annotated[Any, _atypes.Resource], indices: Annotated[Any, TV_ResourceScatterNdMin_Tindices], updates: Annotated[Any, TV_ResourceScatterNdMin_T], use_locking: bool, name, ctx): if use_locking is None: use_locking = True use_locking = _execute.make_bool(use_locking, "use_locking") _attr_T, (updates,) = _execute.args_to_matching_eager([updates], ctx, []) _attr_Tindices, (indices,) = _execute.args_to_matching_eager([indices], ctx, [_dtypes.int32, _dtypes.int64, ]) ref = _ops.convert_to_tensor(ref, _dtypes.resource) _inputs_flat = [ref, indices, updates] _attrs = ("T", _attr_T, "Tindices", _attr_Tindices, "use_locking", use_locking) _result = _execute.execute(b"ResourceScatterNdMin", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result TV_ResourceScatterNdSub_T = TypeVar("TV_ResourceScatterNdSub_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) TV_ResourceScatterNdSub_Tindices = TypeVar("TV_ResourceScatterNdSub_Tindices", _atypes.Int32, _atypes.Int64) def resource_scatter_nd_sub(ref: Annotated[Any, _atypes.Resource], indices: Annotated[Any, TV_ResourceScatterNdSub_Tindices], updates: Annotated[Any, TV_ResourceScatterNdSub_T], use_locking:bool=True, name=None): r"""Applies sparse subtraction to individual values or slices in a Variable. `ref` is a `Tensor` with rank `P` and `indices` is a `Tensor` of rank `Q`. `indices` must be integer tensor, containing indices into `ref`. It must be shape `[d_0, ..., d_{Q-2}, K]` where `0 < K <= P`. The innermost dimension of `indices` (with length `K`) corresponds to indices into elements (if `K = P`) or slices (if `K < P`) along the `K`th dimension of `ref`. `updates` is `Tensor` of rank `Q-1+P-K` with shape: ``` [d_0, ..., d_{Q-2}, ref.shape[K], ..., ref.shape[P-1]] ``` For example, say we want to subtract 4 scattered elements from a rank-1 tensor with 8 elements. In Python, that subtraction would look like this: ```python ref = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8], use_resource=True) indices = tf.constant([[4], [3], [1], [7]]) updates = tf.constant([9, 10, 11, 12]) sub = tf.scatter_nd_sub(ref, indices, updates) with tf.Session() as sess: print sess.run(sub) ``` The resulting update to ref would look like this: [1, -9, 3, -6, -4, 6, 7, -4] See `tf.scatter_nd` for more details about how to make updates to slices. Args: ref: A `Tensor` of type `resource`. A resource handle. Must be from a VarHandleOp. indices: A `Tensor`. Must be one of the following types: `int32`, `int64`. A Tensor. Must be one of the following types: int32, int64. A tensor of indices into ref. updates: A `Tensor`. A Tensor. Must have the same type as ref. A tensor of values to add to ref. use_locking: An optional `bool`. Defaults to `True`. An optional bool. Defaults to True. If True, the assignment will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "ResourceScatterNdSub", name, ref, indices, updates, "use_locking", use_locking) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return resource_scatter_nd_sub_eager_fallback( ref, indices, updates, use_locking=use_locking, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if use_locking is None: use_locking = True use_locking = _execute.make_bool(use_locking, "use_locking") _, _, _op, _outputs = _op_def_library._apply_op_helper( "ResourceScatterNdSub", ref=ref, indices=indices, updates=updates, use_locking=use_locking, name=name) return _op ResourceScatterNdSub = tf_export("raw_ops.ResourceScatterNdSub")(_ops.to_raw_op(resource_scatter_nd_sub)) def resource_scatter_nd_sub_eager_fallback(ref: Annotated[Any, _atypes.Resource], indices: Annotated[Any, TV_ResourceScatterNdSub_Tindices], updates: Annotated[Any, TV_ResourceScatterNdSub_T], use_locking: bool, name, ctx): if use_locking is None: use_locking = True use_locking = _execute.make_bool(use_locking, "use_locking") _attr_T, (updates,) = _execute.args_to_matching_eager([updates], ctx, []) _attr_Tindices, (indices,) = _execute.args_to_matching_eager([indices], ctx, [_dtypes.int32, _dtypes.int64, ]) ref = _ops.convert_to_tensor(ref, _dtypes.resource) _inputs_flat = [ref, indices, updates] _attrs = ("T", _attr_T, "Tindices", _attr_Tindices, "use_locking", use_locking) _result = _execute.execute(b"ResourceScatterNdSub", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result TV_ResourceScatterNdUpdate_T = TypeVar("TV_ResourceScatterNdUpdate_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) TV_ResourceScatterNdUpdate_Tindices = TypeVar("TV_ResourceScatterNdUpdate_Tindices", _atypes.Int32, _atypes.Int64) def resource_scatter_nd_update(ref: Annotated[Any, _atypes.Resource], indices: Annotated[Any, TV_ResourceScatterNdUpdate_Tindices], updates: Annotated[Any, TV_ResourceScatterNdUpdate_T], use_locking:bool=True, name=None): r"""Applies sparse `updates` to individual values or slices within a given variable according to `indices`. `ref` is a `Tensor` with rank `P` and `indices` is a `Tensor` of rank `Q`. `indices` must be integer tensor, containing indices into `ref`. It must be shape `[d_0, ..., d_{Q-2}, K]` where `0 < K <= P`. The innermost dimension of `indices` (with length `K`) corresponds to indices into elements (if `K = P`) or slices (if `K < P`) along the `K`th dimension of `ref`. `updates` is `Tensor` of rank `Q-1+P-K` with shape: ``` [d_0, ..., d_{Q-2}, ref.shape[K], ..., ref.shape[P-1]]. ``` For example, say we want to update 4 scattered elements to a rank-1 tensor to 8 elements. In Python, that update would look like this: ```python ref = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8]) indices = tf.constant([[4], [3], [1] ,[7]]) updates = tf.constant([9, 10, 11, 12]) update = tf.scatter_nd_update(ref, indices, updates) with tf.Session() as sess: print sess.run(update) ``` The resulting update to ref would look like this: [1, 11, 3, 10, 9, 6, 7, 12] See `tf.scatter_nd` for more details about how to make updates to slices. Args: ref: A `Tensor` of type `resource`. A resource handle. Must be from a VarHandleOp. indices: A `Tensor`. Must be one of the following types: `int32`, `int64`. A Tensor. Must be one of the following types: int32, int64. A tensor of indices into ref. updates: A `Tensor`. A Tensor. Must have the same type as ref. A tensor of updated values to add to ref. use_locking: An optional `bool`. Defaults to `True`. An optional bool. Defaults to True. If True, the assignment will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "ResourceScatterNdUpdate", name, ref, indices, updates, "use_locking", use_locking) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return resource_scatter_nd_update_eager_fallback( ref, indices, updates, use_locking=use_locking, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if use_locking is None: use_locking = True use_locking = _execute.make_bool(use_locking, "use_locking") _, _, _op, _outputs = _op_def_library._apply_op_helper( "ResourceScatterNdUpdate", ref=ref, indices=indices, updates=updates, use_locking=use_locking, name=name) return _op ResourceScatterNdUpdate = tf_export("raw_ops.ResourceScatterNdUpdate")(_ops.to_raw_op(resource_scatter_nd_update)) def resource_scatter_nd_update_eager_fallback(ref: Annotated[Any, _atypes.Resource], indices: Annotated[Any, TV_ResourceScatterNdUpdate_Tindices], updates: Annotated[Any, TV_ResourceScatterNdUpdate_T], use_locking: bool, name, ctx): if use_locking is None: use_locking = True use_locking = _execute.make_bool(use_locking, "use_locking") _attr_T, (updates,) = _execute.args_to_matching_eager([updates], ctx, []) _attr_Tindices, (indices,) = _execute.args_to_matching_eager([indices], ctx, [_dtypes.int32, _dtypes.int64, ]) ref = _ops.convert_to_tensor(ref, _dtypes.resource) _inputs_flat = [ref, indices, updates] _attrs = ("T", _attr_T, "Tindices", _attr_Tindices, "use_locking", use_locking) _result = _execute.execute(b"ResourceScatterNdUpdate", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result TV_ScatterAdd_T = TypeVar("TV_ScatterAdd_T", _atypes.BFloat16, _atypes.Complex128, _atypes.Complex64, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.UInt16, _atypes.UInt32, _atypes.UInt64, _atypes.UInt8) TV_ScatterAdd_Tindices = TypeVar("TV_ScatterAdd_Tindices", _atypes.Int32, _atypes.Int64) def scatter_add(ref: Annotated[Any, TV_ScatterAdd_T], indices: Annotated[Any, TV_ScatterAdd_Tindices], updates: Annotated[Any, TV_ScatterAdd_T], use_locking:bool=False, name=None) -> Annotated[Any, TV_ScatterAdd_T]: r"""Adds sparse updates to a variable reference. This operation computes # Scalar indices ref[indices, ...] += updates[...] # Vector indices (for each i) ref[indices[i], ...] += updates[i, ...] # High rank indices (for each i, ..., j) ref[indices[i, ..., j], ...] += updates[i, ..., j, ...] This operation outputs `ref` after the update is done. This makes it easier to chain operations that need to use the reset value. Duplicate entries are handled correctly: if multiple `indices` reference the same location, their contributions add. Requires `updates.shape = indices.shape + ref.shape[1:]` or `updates.shape = []`.
Args: ref: A mutable `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `qint16`, `quint16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. Should be from a `Variable` node. indices: A `Tensor`. Must be one of the following types: `int32`, `int64`. A tensor of indices into the first dimension of `ref`. updates: A `Tensor`. Must have the same type as `ref`. A tensor of updated values to add to `ref`. use_locking: An optional `bool`. Defaults to `False`. If True, the addition will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. name: A name for the operation (optional). Returns: A mutable `Tensor`. Has the same type as `ref`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("scatter_add op does not support eager execution. Arg 'output_ref' is a ref.") # Add nodes to the TensorFlow graph. if use_locking is None: use_locking = False use_locking = _execute.make_bool(use_locking, "use_locking") _, _, _op, _outputs = _op_def_library._apply_op_helper( "ScatterAdd", ref=ref, indices=indices, updates=updates, use_locking=use_locking, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "Tindices", _op._get_attr_type("Tindices"), "use_locking", _op._get_attr_bool("use_locking")) _inputs_flat = _op.inputs _execute.record_gradient( "ScatterAdd", _inputs_flat, _attrs, _result) _result, = _result return _result ScatterAdd = tf_export("raw_ops.ScatterAdd")(_ops.to_raw_op(scatter_add)) def scatter_add_eager_fallback(ref: Annotated[Any, TV_ScatterAdd_T], indices: Annotated[Any, TV_ScatterAdd_Tindices], updates: Annotated[Any, TV_ScatterAdd_T], use_locking: bool, name, ctx) -> Annotated[Any, TV_ScatterAdd_T]: raise RuntimeError("scatter_add op does not support eager execution. Arg 'output_ref' is a ref.") TV_ScatterDiv_T = TypeVar("TV_ScatterDiv_T", _atypes.BFloat16, _atypes.Complex128, _atypes.Complex64, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.UInt16, _atypes.UInt32, _atypes.UInt64, _atypes.UInt8) TV_ScatterDiv_Tindices = TypeVar("TV_ScatterDiv_Tindices", _atypes.Int32, _atypes.Int64) def scatter_div(ref: Annotated[Any, TV_ScatterDiv_T], indices: Annotated[Any, TV_ScatterDiv_Tindices], updates: Annotated[Any, TV_ScatterDiv_T], use_locking:bool=False, name=None) -> Annotated[Any, TV_ScatterDiv_T]: r"""Divides a variable reference by sparse updates. This operation computes ```python # Scalar indices ref[indices, ...] /= updates[...] # Vector indices (for each i) ref[indices[i], ...] /= updates[i, ...] # High rank indices (for each i, ..., j) ref[indices[i, ..., j], ...] /= updates[i, ..., j, ...] ``` This operation outputs `ref` after the update is done. This makes it easier to chain operations that need to use the reset value. Duplicate entries are handled correctly: if multiple `indices` reference the same location, their contributions divide. Requires `updates.shape = indices.shape + ref.shape[1:]` or `updates.shape = []`. Args: ref: A mutable `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `qint16`, `quint16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. Should be from a `Variable` node. indices: A `Tensor`. Must be one of the following types: `int32`, `int64`. A tensor of indices into the first dimension of `ref`. updates: A `Tensor`. Must have the same type as `ref`. A tensor of values that `ref` is divided by. use_locking: An optional `bool`. Defaults to `False`. If True, the operation will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. name: A name for the operation (optional). Returns: A mutable `Tensor`. Has the same type as `ref`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("scatter_div op does not support eager execution. Arg 'output_ref' is a ref.") # Add nodes to the TensorFlow graph. if use_locking is None: use_locking = False use_locking = _execute.make_bool(use_locking, "use_locking") _, _, _op, _outputs = _op_def_library._apply_op_helper( "ScatterDiv", ref=ref, indices=indices, updates=updates, use_locking=use_locking, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "Tindices", _op._get_attr_type("Tindices"), "use_locking", _op._get_attr_bool("use_locking")) _inputs_flat = _op.inputs _execute.record_gradient( "ScatterDiv", _inputs_flat, _attrs, _result) _result, = _result return _result ScatterDiv = tf_export("raw_ops.ScatterDiv")(_ops.to_raw_op(scatter_div)) def scatter_div_eager_fallback(ref: Annotated[Any, TV_ScatterDiv_T], indices: Annotated[Any, TV_ScatterDiv_Tindices], updates: Annotated[Any, TV_ScatterDiv_T], use_locking: bool, name, ctx) -> Annotated[Any, TV_ScatterDiv_T]: raise RuntimeError("scatter_div op does not support eager execution. Arg 'output_ref' is a ref.") TV_ScatterMax_T = TypeVar("TV_ScatterMax_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int32, _atypes.Int64) TV_ScatterMax_Tindices = TypeVar("TV_ScatterMax_Tindices", _atypes.Int32, _atypes.Int64) def scatter_max(ref: Annotated[Any, TV_ScatterMax_T], indices: Annotated[Any, TV_ScatterMax_Tindices], updates: Annotated[Any, TV_ScatterMax_T], use_locking:bool=False, name=None) -> Annotated[Any, TV_ScatterMax_T]: r"""Reduces sparse updates into a variable reference using the `max` operation. This operation computes # Scalar indices ref[indices, ...] = max(ref[indices, ...], updates[...]) # Vector indices (for each i) ref[indices[i], ...] = max(ref[indices[i], ...], updates[i, ...]) # High rank indices (for each i, ..., j) ref[indices[i, ..., j], ...] = max(ref[indices[i, ..., j], ...], updates[i, ..., j, ...]) This operation outputs `ref` after the update is done. This makes it easier to chain operations that need to use the reset value. Duplicate entries are handled correctly: if multiple `indices` reference the same location, their contributions combine. Requires `updates.shape = indices.shape + ref.shape[1:]` or `updates.shape = []`.
Args: ref: A mutable `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`, `int32`, `int64`. Should be from a `Variable` node. indices: A `Tensor`. Must be one of the following types: `int32`, `int64`. A tensor of indices into the first dimension of `ref`. updates: A `Tensor`. Must have the same type as `ref`. A tensor of updated values to reduce into `ref`. use_locking: An optional `bool`. Defaults to `False`. If True, the update will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. name: A name for the operation (optional). Returns: A mutable `Tensor`. Has the same type as `ref`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("scatter_max op does not support eager execution. Arg 'output_ref' is a ref.") # Add nodes to the TensorFlow graph. if use_locking is None: use_locking = False use_locking = _execute.make_bool(use_locking, "use_locking") _, _, _op, _outputs = _op_def_library._apply_op_helper( "ScatterMax", ref=ref, indices=indices, updates=updates, use_locking=use_locking, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "Tindices", _op._get_attr_type("Tindices"), "use_locking", _op._get_attr_bool("use_locking")) _inputs_flat = _op.inputs _execute.record_gradient( "ScatterMax", _inputs_flat, _attrs, _result) _result, = _result return _result ScatterMax = tf_export("raw_ops.ScatterMax")(_ops.to_raw_op(scatter_max)) def scatter_max_eager_fallback(ref: Annotated[Any, TV_ScatterMax_T], indices: Annotated[Any, TV_ScatterMax_Tindices], updates: Annotated[Any, TV_ScatterMax_T], use_locking: bool, name, ctx) -> Annotated[Any, TV_ScatterMax_T]: raise RuntimeError("scatter_max op does not support eager execution. Arg 'output_ref' is a ref.") TV_ScatterMin_T = TypeVar("TV_ScatterMin_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int32, _atypes.Int64) TV_ScatterMin_Tindices = TypeVar("TV_ScatterMin_Tindices", _atypes.Int32, _atypes.Int64) def scatter_min(ref: Annotated[Any, TV_ScatterMin_T], indices: Annotated[Any, TV_ScatterMin_Tindices], updates: Annotated[Any, TV_ScatterMin_T], use_locking:bool=False, name=None) -> Annotated[Any, TV_ScatterMin_T]: r"""Reduces sparse updates into a variable reference using the `min` operation. This operation computes # Scalar indices ref[indices, ...] = min(ref[indices, ...], updates[...]) # Vector indices (for each i) ref[indices[i], ...] = min(ref[indices[i], ...], updates[i, ...]) # High rank indices (for each i, ..., j) ref[indices[i, ..., j], ...] = min(ref[indices[i, ..., j], ...], updates[i, ..., j, ...]) This operation outputs `ref` after the update is done. This makes it easier to chain operations that need to use the reset value. Duplicate entries are handled correctly: if multiple `indices` reference the same location, their contributions combine. Requires `updates.shape = indices.shape + ref.shape[1:]` or `updates.shape = []`.
Args: ref: A mutable `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`, `int32`, `int64`. Should be from a `Variable` node. indices: A `Tensor`. Must be one of the following types: `int32`, `int64`. A tensor of indices into the first dimension of `ref`. updates: A `Tensor`. Must have the same type as `ref`. A tensor of updated values to reduce into `ref`. use_locking: An optional `bool`. Defaults to `False`. If True, the update will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. name: A name for the operation (optional). Returns: A mutable `Tensor`. Has the same type as `ref`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("scatter_min op does not support eager execution. Arg 'output_ref' is a ref.") # Add nodes to the TensorFlow graph. if use_locking is None: use_locking = False use_locking = _execute.make_bool(use_locking, "use_locking") _, _, _op, _outputs = _op_def_library._apply_op_helper( "ScatterMin", ref=ref, indices=indices, updates=updates, use_locking=use_locking, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "Tindices", _op._get_attr_type("Tindices"), "use_locking", _op._get_attr_bool("use_locking")) _inputs_flat = _op.inputs _execute.record_gradient( "ScatterMin", _inputs_flat, _attrs, _result) _result, = _result return _result ScatterMin = tf_export("raw_ops.ScatterMin")(_ops.to_raw_op(scatter_min)) def scatter_min_eager_fallback(ref: Annotated[Any, TV_ScatterMin_T], indices: Annotated[Any, TV_ScatterMin_Tindices], updates: Annotated[Any, TV_ScatterMin_T], use_locking: bool, name, ctx) -> Annotated[Any, TV_ScatterMin_T]: raise RuntimeError("scatter_min op does not support eager execution. Arg 'output_ref' is a ref.") TV_ScatterMul_T = TypeVar("TV_ScatterMul_T", _atypes.BFloat16, _atypes.Complex128, _atypes.Complex64, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.UInt16, _atypes.UInt32, _atypes.UInt64, _atypes.UInt8) TV_ScatterMul_Tindices = TypeVar("TV_ScatterMul_Tindices", _atypes.Int32, _atypes.Int64) def scatter_mul(ref: Annotated[Any, TV_ScatterMul_T], indices: Annotated[Any, TV_ScatterMul_Tindices], updates: Annotated[Any, TV_ScatterMul_T], use_locking:bool=False, name=None) -> Annotated[Any, TV_ScatterMul_T]: r"""Multiplies sparse updates into a variable reference. This operation computes ```python # Scalar indices ref[indices, ...] *= updates[...] # Vector indices (for each i) ref[indices[i], ...] *= updates[i, ...] # High rank indices (for each i, ..., j) ref[indices[i, ..., j], ...] *= updates[i, ..., j, ...] ``` This operation outputs `ref` after the update is done. This makes it easier to chain operations that need to use the reset value. Duplicate entries are handled correctly: if multiple `indices` reference the same location, their contributions multiply. Requires `updates.shape = indices.shape + ref.shape[1:]` or `updates.shape = []`. Args: ref: A mutable `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `qint16`, `quint16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. Should be from a `Variable` node. indices: A `Tensor`. Must be one of the following types: `int32`, `int64`. A tensor of indices into the first dimension of `ref`. updates: A `Tensor`. Must have the same type as `ref`. A tensor of updated values to multiply to `ref`. use_locking: An optional `bool`. Defaults to `False`. If True, the operation will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. name: A name for the operation (optional). Returns: A mutable `Tensor`. Has the same type as `ref`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("scatter_mul op does not support eager execution. Arg 'output_ref' is a ref.") # Add nodes to the TensorFlow graph. if use_locking is None: use_locking = False use_locking = _execute.make_bool(use_locking, "use_locking") _, _, _op, _outputs = _op_def_library._apply_op_helper( "ScatterMul", ref=ref, indices=indices, updates=updates, use_locking=use_locking, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "Tindices", _op._get_attr_type("Tindices"), "use_locking", _op._get_attr_bool("use_locking")) _inputs_flat = _op.inputs _execute.record_gradient( "ScatterMul", _inputs_flat, _attrs, _result) _result, = _result return _result ScatterMul = tf_export("raw_ops.ScatterMul")(_ops.to_raw_op(scatter_mul)) def scatter_mul_eager_fallback(ref: Annotated[Any, TV_ScatterMul_T], indices: Annotated[Any, TV_ScatterMul_Tindices], updates: Annotated[Any, TV_ScatterMul_T], use_locking: bool, name, ctx) -> Annotated[Any, TV_ScatterMul_T]: raise RuntimeError("scatter_mul op does not support eager execution. Arg 'output_ref' is a ref.") TV_ScatterNdAdd_T = TypeVar("TV_ScatterNdAdd_T", _atypes.BFloat16, _atypes.Complex128, _atypes.Complex64, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.UInt16, _atypes.UInt32, _atypes.UInt64, _atypes.UInt8) TV_ScatterNdAdd_Tindices = TypeVar("TV_ScatterNdAdd_Tindices", _atypes.Int32, _atypes.Int64) def scatter_nd_add(ref: Annotated[Any, TV_ScatterNdAdd_T], indices: Annotated[Any, TV_ScatterNdAdd_Tindices], updates: Annotated[Any, TV_ScatterNdAdd_T], use_locking:bool=False, name=None) -> Annotated[Any, TV_ScatterNdAdd_T]: r"""Applies sparse addition to individual values or slices in a Variable. `ref` is a `Tensor` with rank `P` and `indices` is a `Tensor` of rank `Q`. `indices` must be integer tensor, containing indices into `ref`. It must be shape `[d_0, ..., d_{Q-2}, K]` where `0 < K <= P`. The innermost dimension of `indices` (with length `K`) corresponds to indices into elements (if `K = P`) or slices (if `K < P`) along the `K`th dimension of `ref`. `updates` is `Tensor` of rank `Q-1+P-K` with shape: ``` [d_0, ..., d_{Q-2}, ref.shape[K], ..., ref.shape[P-1]] ``` For example, say we want to add 4 scattered elements to a rank-1 tensor to 8 elements. In Python, that addition would look like this: ```python ref = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8]) indices = tf.constant([[4], [3], [1], [7]]) updates = tf.constant([9, 10, 11, 12]) add = tf.scatter_nd_add(ref, indices, updates) with tf.Session() as sess: print sess.run(add) ``` The resulting update to ref would look like this: [1, 13, 3, 14, 14, 6, 7, 20] See `tf.scatter_nd` for more details about how to make updates to slices. Args: ref: A mutable `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `qint16`, `quint16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. A mutable Tensor. Should be from a Variable node. indices: A `Tensor`. Must be one of the following types: `int32`, `int64`. A Tensor. Must be one of the following types: int32, int64. A tensor of indices into ref. updates: A `Tensor`. Must have the same type as `ref`. A Tensor. Must have the same type as ref. A tensor of updated values to add to ref. use_locking: An optional `bool`. Defaults to `False`. An optional bool. Defaults to True. If True, the assignment will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. name: A name for the operation (optional). Returns: A mutable `Tensor`. Has the same type as `ref`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("scatter_nd_add op does not support eager execution. Arg 'output_ref' is a ref.") # Add nodes to the TensorFlow graph. if use_locking is None: use_locking = False use_locking = _execute.make_bool(use_locking, "use_locking") _, _, _op, _outputs = _op_def_library._apply_op_helper( "ScatterNdAdd", ref=ref, indices=indices, updates=updates, use_locking=use_locking, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "Tindices", _op._get_attr_type("Tindices"), "use_locking", _op._get_attr_bool("use_locking")) _inputs_flat = _op.inputs _execute.record_gradient( "ScatterNdAdd", _inputs_flat, _attrs, _result) _result, = _result return _result ScatterNdAdd = tf_export("raw_ops.ScatterNdAdd")(_ops.to_raw_op(scatter_nd_add)) def scatter_nd_add_eager_fallback(ref: Annotated[Any, TV_ScatterNdAdd_T], indices: Annotated[Any, TV_ScatterNdAdd_Tindices], updates: Annotated[Any, TV_ScatterNdAdd_T], use_locking: bool, name, ctx) -> Annotated[Any, TV_ScatterNdAdd_T]: raise RuntimeError("scatter_nd_add op does not support eager execution. Arg 'output_ref' is a ref.") TV_ScatterNdMax_T = TypeVar("TV_ScatterNdMax_T", _atypes.BFloat16, _atypes.Complex128, _atypes.Complex64, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.UInt16, _atypes.UInt32, _atypes.UInt64, _atypes.UInt8) TV_ScatterNdMax_Tindices = TypeVar("TV_ScatterNdMax_Tindices", _atypes.Int32, _atypes.Int64) def scatter_nd_max(ref: Annotated[Any, TV_ScatterNdMax_T], indices: Annotated[Any, TV_ScatterNdMax_Tindices], updates: Annotated[Any, TV_ScatterNdMax_T], use_locking:bool=False, name=None) -> Annotated[Any, TV_ScatterNdMax_T]: r"""Computes element-wise maximum. Args: ref: A mutable `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `qint16`, `quint16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. A mutable Tensor. Should be from a Variable node. indices: A `Tensor`. Must be one of the following types: `int32`, `int64`. A Tensor. Must be one of the following types: int32, int64. A tensor of indices into ref. updates: A `Tensor`. Must have the same type as `ref`. A Tensor. Must have the same type as ref. A tensor of updated values to add to ref. use_locking: An optional `bool`. Defaults to `False`. An optional bool. Defaults to True. If True, the assignment will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. name: A name for the operation (optional). Returns: A mutable `Tensor`. Has the same type as `ref`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("scatter_nd_max op does not support eager execution. Arg 'output_ref' is a ref.") # Add nodes to the TensorFlow graph. if use_locking is None: use_locking = False use_locking = _execute.make_bool(use_locking, "use_locking") _, _, _op, _outputs = _op_def_library._apply_op_helper( "ScatterNdMax", ref=ref, indices=indices, updates=updates, use_locking=use_locking, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "Tindices", _op._get_attr_type("Tindices"), "use_locking", _op._get_attr_bool("use_locking")) _inputs_flat = _op.inputs _execute.record_gradient( "ScatterNdMax", _inputs_flat, _attrs, _result) _result, = _result return _result ScatterNdMax = tf_export("raw_ops.ScatterNdMax")(_ops.to_raw_op(scatter_nd_max)) def scatter_nd_max_eager_fallback(ref: Annotated[Any, TV_ScatterNdMax_T], indices: Annotated[Any, TV_ScatterNdMax_Tindices], updates: Annotated[Any, TV_ScatterNdMax_T], use_locking: bool, name, ctx) -> Annotated[Any, TV_ScatterNdMax_T]: raise RuntimeError("scatter_nd_max op does not support eager execution. Arg 'output_ref' is a ref.") TV_ScatterNdMin_T = TypeVar("TV_ScatterNdMin_T", _atypes.BFloat16, _atypes.Complex128, _atypes.Complex64, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.UInt16, _atypes.UInt32, _atypes.UInt64, _atypes.UInt8) TV_ScatterNdMin_Tindices = TypeVar("TV_ScatterNdMin_Tindices", _atypes.Int32, _atypes.Int64) def scatter_nd_min(ref: Annotated[Any, TV_ScatterNdMin_T], indices: Annotated[Any, TV_ScatterNdMin_Tindices], updates: Annotated[Any, TV_ScatterNdMin_T], use_locking:bool=False, name=None) -> Annotated[Any, TV_ScatterNdMin_T]: r"""Computes element-wise minimum. Args: ref: A mutable `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `qint16`, `quint16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. A mutable Tensor. Should be from a Variable node. indices: A `Tensor`. Must be one of the following types: `int32`, `int64`. A Tensor. Must be one of the following types: int32, int64. A tensor of indices into ref. updates: A `Tensor`. Must have the same type as `ref`. A Tensor. Must have the same type as ref. A tensor of updated values to add to ref. use_locking: An optional `bool`. Defaults to `False`. An optional bool. Defaults to True. If True, the assignment will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. name: A name for the operation (optional). Returns: A mutable `Tensor`. Has the same type as `ref`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("scatter_nd_min op does not support eager execution. Arg 'output_ref' is a ref.") # Add nodes to the TensorFlow graph. if use_locking is None: use_locking = False use_locking = _execute.make_bool(use_locking, "use_locking") _, _, _op, _outputs = _op_def_library._apply_op_helper( "ScatterNdMin", ref=ref, indices=indices, updates=updates, use_locking=use_locking, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "Tindices", _op._get_attr_type("Tindices"), "use_locking", _op._get_attr_bool("use_locking")) _inputs_flat = _op.inputs _execute.record_gradient( "ScatterNdMin", _inputs_flat, _attrs, _result) _result, = _result return _result ScatterNdMin = tf_export("raw_ops.ScatterNdMin")(_ops.to_raw_op(scatter_nd_min)) def scatter_nd_min_eager_fallback(ref: Annotated[Any, TV_ScatterNdMin_T], indices: Annotated[Any, TV_ScatterNdMin_Tindices], updates: Annotated[Any, TV_ScatterNdMin_T], use_locking: bool, name, ctx) -> Annotated[Any, TV_ScatterNdMin_T]: raise RuntimeError("scatter_nd_min op does not support eager execution. Arg 'output_ref' is a ref.") TV_ScatterNdSub_T = TypeVar("TV_ScatterNdSub_T", _atypes.BFloat16, _atypes.Complex128, _atypes.Complex64, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.UInt16, _atypes.UInt32, _atypes.UInt64, _atypes.UInt8) TV_ScatterNdSub_Tindices = TypeVar("TV_ScatterNdSub_Tindices", _atypes.Int32, _atypes.Int64) def scatter_nd_sub(ref: Annotated[Any, TV_ScatterNdSub_T], indices: Annotated[Any, TV_ScatterNdSub_Tindices], updates: Annotated[Any, TV_ScatterNdSub_T], use_locking:bool=False, name=None) -> Annotated[Any, TV_ScatterNdSub_T]: r"""Applies sparse subtraction to individual values or slices in a Variable. within a given variable according to `indices`. `ref` is a `Tensor` with rank `P` and `indices` is a `Tensor` of rank `Q`. `indices` must be integer tensor, containing indices into `ref`. It must be shape `[d_0, ..., d_{Q-2}, K]` where `0 < K <= P`. The innermost dimension of `indices` (with length `K`) corresponds to indices into elements (if `K = P`) or slices (if `K < P`) along the `K`th dimension of `ref`. `updates` is `Tensor` of rank `Q-1+P-K` with shape: ``` [d_0, ..., d_{Q-2}, ref.shape[K], ..., ref.shape[P-1]] ``` For example, say we want to subtract 4 scattered elements from a rank-1 tensor with 8 elements. In Python, that subtraction would look like this: ```python ref = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8]) indices = tf.constant([[4], [3], [1], [7]]) updates = tf.constant([9, 10, 11, 12]) sub = tf.scatter_nd_sub(ref, indices, updates) with tf.Session() as sess: print sess.run(sub) ``` The resulting update to ref would look like this: [1, -9, 3, -6, -4, 6, 7, -4] See `tf.scatter_nd` for more details about how to make updates to slices. Args: ref: A mutable `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `qint16`, `quint16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. A mutable Tensor. Should be from a Variable node. indices: A `Tensor`. Must be one of the following types: `int32`, `int64`. A Tensor. Must be one of the following types: int32, int64. A tensor of indices into ref. updates: A `Tensor`. Must have the same type as `ref`. A Tensor. Must have the same type as ref. A tensor of updated values to subtract from ref. use_locking: An optional `bool`. Defaults to `False`. An optional bool. Defaults to True. If True, the assignment will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. name: A name for the operation (optional). Returns: A mutable `Tensor`. Has the same type as `ref`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("scatter_nd_sub op does not support eager execution. Arg 'output_ref' is a ref.") # Add nodes to the TensorFlow graph. if use_locking is None: use_locking = False use_locking = _execute.make_bool(use_locking, "use_locking") _, _, _op, _outputs = _op_def_library._apply_op_helper( "ScatterNdSub", ref=ref, indices=indices, updates=updates, use_locking=use_locking, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "Tindices", _op._get_attr_type("Tindices"), "use_locking", _op._get_attr_bool("use_locking")) _inputs_flat = _op.inputs _execute.record_gradient( "ScatterNdSub", _inputs_flat, _attrs, _result) _result, = _result return _result ScatterNdSub = tf_export("raw_ops.ScatterNdSub")(_ops.to_raw_op(scatter_nd_sub)) def scatter_nd_sub_eager_fallback(ref: Annotated[Any, TV_ScatterNdSub_T], indices: Annotated[Any, TV_ScatterNdSub_Tindices], updates: Annotated[Any, TV_ScatterNdSub_T], use_locking: bool, name, ctx) -> Annotated[Any, TV_ScatterNdSub_T]: raise RuntimeError("scatter_nd_sub op does not support eager execution. Arg 'output_ref' is a ref.") TV_ScatterNdUpdate_T = TypeVar("TV_ScatterNdUpdate_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) TV_ScatterNdUpdate_Tindices = TypeVar("TV_ScatterNdUpdate_Tindices", _atypes.Int32, _atypes.Int64) def scatter_nd_update(ref: Annotated[Any, TV_ScatterNdUpdate_T], indices: Annotated[Any, TV_ScatterNdUpdate_Tindices], updates: Annotated[Any, TV_ScatterNdUpdate_T], use_locking:bool=True, name=None) -> Annotated[Any, TV_ScatterNdUpdate_T]: r"""Applies sparse `updates` to individual values or slices within a given variable according to `indices`. `ref` is a `Tensor` with rank `P` and `indices` is a `Tensor` of rank `Q`. `indices` must be integer tensor, containing indices into `ref`. It must be shape \\([d_0, ..., d_{Q-2}, K]\\) where `0 < K <= P`. The innermost dimension of `indices` (with length `K`) corresponds to indices into elements (if `K = P`) or slices (if `K < P`) along the `K`th dimension of `ref`. `updates` is `Tensor` of rank `Q-1+P-K` with shape: $$[d_0, ..., d_{Q-2}, ref.shape[K], ..., ref.shape[P-1]].$$ For example, say we want to update 4 scattered elements to a rank-1 tensor to 8 elements. In Python, that update would look like this: ```python ref = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8]) indices = tf.constant([[4], [3], [1] ,[7]]) updates = tf.constant([9, 10, 11, 12]) update = tf.scatter_nd_update(ref, indices, updates) with tf.Session() as sess: print sess.run(update) ``` The resulting update to ref would look like this: [1, 11, 3, 10, 9, 6, 7, 12] See `tf.scatter_nd` for more details about how to make updates to slices. See also `tf.scatter_update` and `tf.batch_scatter_update`. Args: ref: A mutable `Tensor`. A mutable Tensor. Should be from a Variable node. indices: A `Tensor`. Must be one of the following types: `int32`, `int64`. A Tensor. Must be one of the following types: int32, int64. A tensor of indices into ref. updates: A `Tensor`. Must have the same type as `ref`. A Tensor. Must have the same type as ref. A tensor of updated values to add to ref. use_locking: An optional `bool`. Defaults to `True`. An optional bool. Defaults to True. If True, the assignment will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. name: A name for the operation (optional). Returns: A mutable `Tensor`. Has the same type as `ref`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("scatter_nd_update op does not support eager execution. Arg 'output_ref' is a ref.") # Add nodes to the TensorFlow graph. if use_locking is None: use_locking = True use_locking = _execute.make_bool(use_locking, "use_locking") _, _, _op, _outputs = _op_def_library._apply_op_helper( "ScatterNdUpdate", ref=ref, indices=indices, updates=updates, use_locking=use_locking, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "Tindices", _op._get_attr_type("Tindices"), "use_locking", _op._get_attr_bool("use_locking")) _inputs_flat = _op.inputs _execute.record_gradient( "ScatterNdUpdate", _inputs_flat, _attrs, _result) _result, = _result return _result ScatterNdUpdate = tf_export("raw_ops.ScatterNdUpdate")(_ops.to_raw_op(scatter_nd_update)) def scatter_nd_update_eager_fallback(ref: Annotated[Any, TV_ScatterNdUpdate_T], indices: Annotated[Any, TV_ScatterNdUpdate_Tindices], updates: Annotated[Any, TV_ScatterNdUpdate_T], use_locking: bool, name, ctx) -> Annotated[Any, TV_ScatterNdUpdate_T]: raise RuntimeError("scatter_nd_update op does not support eager execution. Arg 'output_ref' is a ref.") TV_ScatterSub_T = TypeVar("TV_ScatterSub_T", _atypes.BFloat16, _atypes.Complex128, _atypes.Complex64, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.UInt16, _atypes.UInt32, _atypes.UInt64, _atypes.UInt8) TV_ScatterSub_Tindices = TypeVar("TV_ScatterSub_Tindices", _atypes.Int32, _atypes.Int64) def scatter_sub(ref: Annotated[Any, TV_ScatterSub_T], indices: Annotated[Any, TV_ScatterSub_Tindices], updates: Annotated[Any, TV_ScatterSub_T], use_locking:bool=False, name=None) -> Annotated[Any, TV_ScatterSub_T]: r"""Subtracts sparse updates to a variable reference. ```python # Scalar indices ref[indices, ...] -= updates[...] # Vector indices (for each i) ref[indices[i], ...] -= updates[i, ...] # High rank indices (for each i, ..., j) ref[indices[i, ..., j], ...] -= updates[i, ..., j, ...] ``` This operation outputs `ref` after the update is done. This makes it easier to chain operations that need to use the reset value. Duplicate entries are handled correctly: if multiple `indices` reference the same location, their (negated) contributions add. Requires `updates.shape = indices.shape + ref.shape[1:]` or `updates.shape = []`.
Args: ref: A mutable `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `qint16`, `quint16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. Should be from a `Variable` node. indices: A `Tensor`. Must be one of the following types: `int32`, `int64`. A tensor of indices into the first dimension of `ref`. updates: A `Tensor`. Must have the same type as `ref`. A tensor of updated values to subtract from `ref`. use_locking: An optional `bool`. Defaults to `False`. If True, the subtraction will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. name: A name for the operation (optional). Returns: A mutable `Tensor`. Has the same type as `ref`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("scatter_sub op does not support eager execution. Arg 'output_ref' is a ref.") # Add nodes to the TensorFlow graph. if use_locking is None: use_locking = False use_locking = _execute.make_bool(use_locking, "use_locking") _, _, _op, _outputs = _op_def_library._apply_op_helper( "ScatterSub", ref=ref, indices=indices, updates=updates, use_locking=use_locking, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "Tindices", _op._get_attr_type("Tindices"), "use_locking", _op._get_attr_bool("use_locking")) _inputs_flat = _op.inputs _execute.record_gradient( "ScatterSub", _inputs_flat, _attrs, _result) _result, = _result return _result ScatterSub = tf_export("raw_ops.ScatterSub")(_ops.to_raw_op(scatter_sub)) def scatter_sub_eager_fallback(ref: Annotated[Any, TV_ScatterSub_T], indices: Annotated[Any, TV_ScatterSub_Tindices], updates: Annotated[Any, TV_ScatterSub_T], use_locking: bool, name, ctx) -> Annotated[Any, TV_ScatterSub_T]: raise RuntimeError("scatter_sub op does not support eager execution. Arg 'output_ref' is a ref.") TV_ScatterUpdate_T = TypeVar("TV_ScatterUpdate_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) TV_ScatterUpdate_Tindices = TypeVar("TV_ScatterUpdate_Tindices", _atypes.Int32, _atypes.Int64) def scatter_update(ref: Annotated[Any, TV_ScatterUpdate_T], indices: Annotated[Any, TV_ScatterUpdate_Tindices], updates: Annotated[Any, TV_ScatterUpdate_T], use_locking:bool=True, name=None) -> Annotated[Any, TV_ScatterUpdate_T]: r"""Applies sparse updates to a variable reference. This operation computes ```python # Scalar indices ref[indices, ...] = updates[...] # Vector indices (for each i) ref[indices[i], ...] = updates[i, ...] # High rank indices (for each i, ..., j) ref[indices[i, ..., j], ...] = updates[i, ..., j, ...] ``` This operation outputs `ref` after the update is done. This makes it easier to chain operations that need to use the reset value. If values in `ref` is to be updated more than once, because there are duplicate entries in `indices`, the order at which the updates happen for each value is undefined. Requires `updates.shape = indices.shape + ref.shape[1:]` or `updates.shape = []`.
See also `tf.batch_scatter_update` and `tf.scatter_nd_update`. Args: ref: A mutable `Tensor`. Should be from a `Variable` node. indices: A `Tensor`. Must be one of the following types: `int32`, `int64`. A tensor of indices into the first dimension of `ref`. updates: A `Tensor`. Must have the same type as `ref`. A tensor of updated values to store in `ref`. use_locking: An optional `bool`. Defaults to `True`. If True, the assignment will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. name: A name for the operation (optional). Returns: A mutable `Tensor`. Has the same type as `ref`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("scatter_update op does not support eager execution. Arg 'output_ref' is a ref.") # Add nodes to the TensorFlow graph. if use_locking is None: use_locking = True use_locking = _execute.make_bool(use_locking, "use_locking") _, _, _op, _outputs = _op_def_library._apply_op_helper( "ScatterUpdate", ref=ref, indices=indices, updates=updates, use_locking=use_locking, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "Tindices", _op._get_attr_type("Tindices"), "use_locking", _op._get_attr_bool("use_locking")) _inputs_flat = _op.inputs _execute.record_gradient( "ScatterUpdate", _inputs_flat, _attrs, _result) _result, = _result return _result ScatterUpdate = tf_export("raw_ops.ScatterUpdate")(_ops.to_raw_op(scatter_update)) def scatter_update_eager_fallback(ref: Annotated[Any, TV_ScatterUpdate_T], indices: Annotated[Any, TV_ScatterUpdate_Tindices], updates: Annotated[Any, TV_ScatterUpdate_T], use_locking: bool, name, ctx) -> Annotated[Any, TV_ScatterUpdate_T]: raise RuntimeError("scatter_update op does not support eager execution. Arg 'output_ref' is a ref.") TV_TemporaryVariable_dtype = TypeVar("TV_TemporaryVariable_dtype", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def temporary_variable(shape, dtype: TV_TemporaryVariable_dtype, var_name:str="", name=None) -> Annotated[Any, TV_TemporaryVariable_dtype]: r"""Returns a tensor that may be mutated, but only persists within a single step. This is an experimental op for internal use only and it is possible to use this op in unsafe ways. DO NOT USE unless you fully understand the risks. It is the caller's responsibility to ensure that 'ref' is eventually passed to a matching 'DestroyTemporaryVariable' op after all other uses have completed. Outputs a ref to the tensor state so it may be read or modified. E.g. var = state_ops._temporary_variable([1, 2], types.float_) var_name = var.op.name var = state_ops.assign(var, [[4.0, 5.0]]) var = state_ops.assign_add(var, [[6.0, 7.0]]) final = state_ops._destroy_temporary_variable(var, var_name=var_name) Args: shape: A `tf.TensorShape` or list of `ints`. The shape of the variable tensor. dtype: A `tf.DType`. The type of elements in the variable tensor. var_name: An optional `string`. Defaults to `""`. Overrides the name used for the temporary variable resource. Default value is the name of the 'TemporaryVariable' op (which is guaranteed unique). name: A name for the operation (optional). Returns: A mutable `Tensor` of type `dtype`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("temporary_variable op does not support eager execution. Arg 'ref' is a ref.") # Add nodes to the TensorFlow graph. shape = _execute.make_shape(shape, "shape") dtype = _execute.make_type(dtype, "dtype") if var_name is None: var_name = "" var_name = _execute.make_str(var_name, "var_name") _, _, _op, _outputs = _op_def_library._apply_op_helper( "TemporaryVariable", shape=shape, dtype=dtype, var_name=var_name, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("shape", _op.get_attr("shape"), "dtype", _op._get_attr_type("dtype"), "var_name", _op.get_attr("var_name")) _inputs_flat = _op.inputs _execute.record_gradient( "TemporaryVariable", _inputs_flat, _attrs, _result) _result, = _result return _result TemporaryVariable = tf_export("raw_ops.TemporaryVariable")(_ops.to_raw_op(temporary_variable)) def temporary_variable_eager_fallback(shape, dtype: TV_TemporaryVariable_dtype, var_name: str, name, ctx) -> Annotated[Any, TV_TemporaryVariable_dtype]: raise RuntimeError("temporary_variable op does not support eager execution. Arg 'ref' is a ref.") TV_Variable_dtype = TypeVar("TV_Variable_dtype", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def variable(shape, dtype: TV_Variable_dtype, container:str="", shared_name:str="", name=None) -> Annotated[Any, TV_Variable_dtype]: r"""Use VariableV2 instead. Args: shape: A `tf.TensorShape` or list of `ints`. dtype: A `tf.DType`. container: An optional `string`. Defaults to `""`. shared_name: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: A mutable `Tensor` of type `dtype`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("variable op does not support eager execution. Arg 'ref' is a ref.") # Add nodes to the TensorFlow graph. shape = _execute.make_shape(shape, "shape") dtype = _execute.make_type(dtype, "dtype") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _, _, _op, _outputs = _op_def_library._apply_op_helper( "Variable", shape=shape, dtype=dtype, container=container, shared_name=shared_name, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("shape", _op.get_attr("shape"), "dtype", _op._get_attr_type("dtype"), "container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name")) _inputs_flat = _op.inputs _execute.record_gradient( "Variable", _inputs_flat, _attrs, _result) _result, = _result return _result Variable = tf_export("raw_ops.Variable")(_ops.to_raw_op(variable)) def variable_eager_fallback(shape, dtype: TV_Variable_dtype, container: str, shared_name: str, name, ctx) -> Annotated[Any, TV_Variable_dtype]: raise RuntimeError("variable op does not support eager execution. Arg 'ref' is a ref.") TV_VariableV2_dtype = TypeVar("TV_VariableV2_dtype", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def variable_v2(shape, dtype: TV_VariableV2_dtype, container:str="", shared_name:str="", name=None) -> Annotated[Any, TV_VariableV2_dtype]: r"""Holds state in the form of a tensor that persists across steps. Outputs a ref to the tensor state so it may be read or modified. TODO(zhifengc/mrry): Adds a pointer to a more detail document about sharing states in tensorflow. Args: shape: A `tf.TensorShape` or list of `ints`. The shape of the variable tensor. dtype: A `tf.DType`. The type of elements in the variable tensor. container: An optional `string`. Defaults to `""`. If non-empty, this variable is placed in the given container. Otherwise, a default container is used. shared_name: An optional `string`. Defaults to `""`. If non-empty, this variable is named in the given bucket with this shared_name. Otherwise, the node name is used instead. name: A name for the operation (optional). Returns: A mutable `Tensor` of type `dtype`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: raise RuntimeError("variable_v2 op does not support eager execution. Arg 'ref' is a ref.") # Add nodes to the TensorFlow graph. shape = _execute.make_shape(shape, "shape") dtype = _execute.make_type(dtype, "dtype") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _, _, _op, _outputs = _op_def_library._apply_op_helper( "VariableV2", shape=shape, dtype=dtype, container=container, shared_name=shared_name, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("shape", _op.get_attr("shape"), "dtype", _op._get_attr_type("dtype"), "container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name")) _inputs_flat = _op.inputs _execute.record_gradient( "VariableV2", _inputs_flat, _attrs, _result) _result, = _result return _result VariableV2 = tf_export("raw_ops.VariableV2")(_ops.to_raw_op(variable_v2)) def variable_v2_eager_fallback(shape, dtype: TV_VariableV2_dtype, container: str, shared_name: str, name, ctx) -> Annotated[Any, TV_VariableV2_dtype]: raise RuntimeError("variable_v2 op does not support eager execution. Arg 'ref' is a ref.")