"""Python wrappers around TensorFlow ops. This file is MACHINE GENERATED! Do not edit. """ import collections from tensorflow.python import pywrap_tfe as pywrap_tfe from tensorflow.python.eager import context as _context from tensorflow.python.eager import core as _core from tensorflow.python.eager import execute as _execute from tensorflow.python.framework import dtypes as _dtypes from tensorflow.security.fuzzing.py import annotation_types as _atypes from tensorflow.python.framework import op_def_registry as _op_def_registry from tensorflow.python.framework import ops as _ops from tensorflow.python.framework import op_def_library as _op_def_library from tensorflow.python.util.deprecation import deprecated_endpoints from tensorflow.python.util import dispatch as _dispatch from tensorflow.python.util.tf_export import tf_export from typing import TypeVar, List, Any from typing_extensions import Annotated def close_summary_writer(writer: Annotated[Any, _atypes.Resource], name=None): r"""TODO: add doc. Args: writer: A `Tensor` of type `resource`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "CloseSummaryWriter", name, writer) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return close_summary_writer_eager_fallback( writer, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "CloseSummaryWriter", writer=writer, name=name) return _op CloseSummaryWriter = tf_export("raw_ops.CloseSummaryWriter")(_ops.to_raw_op(close_summary_writer)) def close_summary_writer_eager_fallback(writer: Annotated[Any, _atypes.Resource], name, ctx): writer = _ops.convert_to_tensor(writer, _dtypes.resource) _inputs_flat = [writer] _attrs = None _result = _execute.execute(b"CloseSummaryWriter", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result def create_summary_db_writer(writer: Annotated[Any, _atypes.Resource], db_uri: Annotated[Any, _atypes.String], experiment_name: Annotated[Any, _atypes.String], run_name: Annotated[Any, _atypes.String], user_name: Annotated[Any, _atypes.String], name=None): r"""TODO: add doc. Args: writer: A `Tensor` of type `resource`. db_uri: A `Tensor` of type `string`. experiment_name: A `Tensor` of type `string`. run_name: A `Tensor` of type `string`. user_name: A `Tensor` of type `string`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "CreateSummaryDbWriter", name, writer, db_uri, experiment_name, run_name, user_name) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return create_summary_db_writer_eager_fallback( writer, db_uri, experiment_name, run_name, user_name, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "CreateSummaryDbWriter", writer=writer, db_uri=db_uri, experiment_name=experiment_name, run_name=run_name, user_name=user_name, name=name) return _op CreateSummaryDbWriter = tf_export("raw_ops.CreateSummaryDbWriter")(_ops.to_raw_op(create_summary_db_writer)) def create_summary_db_writer_eager_fallback(writer: Annotated[Any, _atypes.Resource], db_uri: Annotated[Any, _atypes.String], experiment_name: Annotated[Any, _atypes.String], run_name: Annotated[Any, _atypes.String], user_name: Annotated[Any, _atypes.String], name, ctx): writer = _ops.convert_to_tensor(writer, _dtypes.resource) db_uri = _ops.convert_to_tensor(db_uri, _dtypes.string) experiment_name = _ops.convert_to_tensor(experiment_name, _dtypes.string) run_name = _ops.convert_to_tensor(run_name, _dtypes.string) user_name = _ops.convert_to_tensor(user_name, _dtypes.string) _inputs_flat = [writer, db_uri, experiment_name, run_name, user_name] _attrs = None _result = _execute.execute(b"CreateSummaryDbWriter", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result def create_summary_file_writer(writer: Annotated[Any, _atypes.Resource], logdir: Annotated[Any, _atypes.String], max_queue: Annotated[Any, _atypes.Int32], flush_millis: Annotated[Any, _atypes.Int32], filename_suffix: Annotated[Any, _atypes.String], name=None): r"""TODO: add doc. Args: writer: A `Tensor` of type `resource`. logdir: A `Tensor` of type `string`. max_queue: A `Tensor` of type `int32`. flush_millis: A `Tensor` of type `int32`. filename_suffix: A `Tensor` of type `string`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "CreateSummaryFileWriter", name, writer, logdir, max_queue, flush_millis, filename_suffix) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return create_summary_file_writer_eager_fallback( writer, logdir, max_queue, flush_millis, filename_suffix, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "CreateSummaryFileWriter", writer=writer, logdir=logdir, max_queue=max_queue, flush_millis=flush_millis, filename_suffix=filename_suffix, name=name) return _op CreateSummaryFileWriter = tf_export("raw_ops.CreateSummaryFileWriter")(_ops.to_raw_op(create_summary_file_writer)) def create_summary_file_writer_eager_fallback(writer: Annotated[Any, _atypes.Resource], logdir: Annotated[Any, _atypes.String], max_queue: Annotated[Any, _atypes.Int32], flush_millis: Annotated[Any, _atypes.Int32], filename_suffix: Annotated[Any, _atypes.String], name, ctx): writer = _ops.convert_to_tensor(writer, _dtypes.resource) logdir = _ops.convert_to_tensor(logdir, _dtypes.string) max_queue = _ops.convert_to_tensor(max_queue, _dtypes.int32) flush_millis = _ops.convert_to_tensor(flush_millis, _dtypes.int32) filename_suffix = _ops.convert_to_tensor(filename_suffix, _dtypes.string) _inputs_flat = [writer, logdir, max_queue, flush_millis, filename_suffix] _attrs = None _result = _execute.execute(b"CreateSummaryFileWriter", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result def flush_summary_writer(writer: Annotated[Any, _atypes.Resource], name=None): r"""TODO: add doc. Args: writer: A `Tensor` of type `resource`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "FlushSummaryWriter", name, writer) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return flush_summary_writer_eager_fallback( writer, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "FlushSummaryWriter", writer=writer, name=name) return _op FlushSummaryWriter = tf_export("raw_ops.FlushSummaryWriter")(_ops.to_raw_op(flush_summary_writer)) def flush_summary_writer_eager_fallback(writer: Annotated[Any, _atypes.Resource], name, ctx): writer = _ops.convert_to_tensor(writer, _dtypes.resource) _inputs_flat = [writer] _attrs = None _result = _execute.execute(b"FlushSummaryWriter", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result def import_event(writer: Annotated[Any, _atypes.Resource], event: Annotated[Any, _atypes.String], name=None): r"""TODO: add doc. Args: writer: A `Tensor` of type `resource`. event: A `Tensor` of type `string`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "ImportEvent", name, writer, event) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return import_event_eager_fallback( writer, event, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "ImportEvent", writer=writer, event=event, name=name) return _op ImportEvent = tf_export("raw_ops.ImportEvent")(_ops.to_raw_op(import_event)) def import_event_eager_fallback(writer: Annotated[Any, _atypes.Resource], event: Annotated[Any, _atypes.String], name, ctx): writer = _ops.convert_to_tensor(writer, _dtypes.resource) event = _ops.convert_to_tensor(event, _dtypes.string) _inputs_flat = [writer, event] _attrs = None _result = _execute.execute(b"ImportEvent", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result def summary_writer(shared_name:str="", container:str="", name=None) -> Annotated[Any, _atypes.Resource]: r"""TODO: add doc. Args: shared_name: An optional `string`. Defaults to `""`. container: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: A `Tensor` of type `resource`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "SummaryWriter", name, "shared_name", shared_name, "container", container) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return summary_writer_eager_fallback( shared_name=shared_name, container=container, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") if container is None: container = "" container = _execute.make_str(container, "container") _, _, _op, _outputs = _op_def_library._apply_op_helper( "SummaryWriter", shared_name=shared_name, container=container, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("shared_name", _op.get_attr("shared_name"), "container", _op.get_attr("container")) _inputs_flat = _op.inputs _execute.record_gradient( "SummaryWriter", _inputs_flat, _attrs, _result) _result, = _result return _result SummaryWriter = tf_export("raw_ops.SummaryWriter")(_ops.to_raw_op(summary_writer)) def summary_writer_eager_fallback(shared_name: str, container: str, name, ctx) -> Annotated[Any, _atypes.Resource]: if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") if container is None: container = "" container = _execute.make_str(container, "container") _inputs_flat = [] _attrs = ("shared_name", shared_name, "container", container) _result = _execute.execute(b"SummaryWriter", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "SummaryWriter", _inputs_flat, _attrs, _result) _result, = _result return _result def write_audio_summary(writer: Annotated[Any, _atypes.Resource], step: Annotated[Any, _atypes.Int64], tag: Annotated[Any, _atypes.String], tensor: Annotated[Any, _atypes.Float32], sample_rate: Annotated[Any, _atypes.Float32], max_outputs:int=3, name=None): r"""Writes an audio summary. Writes encoded audio summary `tensor` at `step` with `tag` using summary `writer`. `sample_rate` is the audio sample rate is Hz. Args: writer: A `Tensor` of type `resource`. step: A `Tensor` of type `int64`. tag: A `Tensor` of type `string`. tensor: A `Tensor` of type `float32`. sample_rate: A `Tensor` of type `float32`. max_outputs: An optional `int` that is `>= 1`. Defaults to `3`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "WriteAudioSummary", name, writer, step, tag, tensor, sample_rate, "max_outputs", max_outputs) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return write_audio_summary_eager_fallback( writer, step, tag, tensor, sample_rate, max_outputs=max_outputs, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if max_outputs is None: max_outputs = 3 max_outputs = _execute.make_int(max_outputs, "max_outputs") _, _, _op, _outputs = _op_def_library._apply_op_helper( "WriteAudioSummary", writer=writer, step=step, tag=tag, tensor=tensor, sample_rate=sample_rate, max_outputs=max_outputs, name=name) return _op WriteAudioSummary = tf_export("raw_ops.WriteAudioSummary")(_ops.to_raw_op(write_audio_summary)) def write_audio_summary_eager_fallback(writer: Annotated[Any, _atypes.Resource], step: Annotated[Any, _atypes.Int64], tag: Annotated[Any, _atypes.String], tensor: Annotated[Any, _atypes.Float32], sample_rate: Annotated[Any, _atypes.Float32], max_outputs: int, name, ctx): if max_outputs is None: max_outputs = 3 max_outputs = _execute.make_int(max_outputs, "max_outputs") writer = _ops.convert_to_tensor(writer, _dtypes.resource) step = _ops.convert_to_tensor(step, _dtypes.int64) tag = _ops.convert_to_tensor(tag, _dtypes.string) tensor = _ops.convert_to_tensor(tensor, _dtypes.float32) sample_rate = _ops.convert_to_tensor(sample_rate, _dtypes.float32) _inputs_flat = [writer, step, tag, tensor, sample_rate] _attrs = ("max_outputs", max_outputs) _result = _execute.execute(b"WriteAudioSummary", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result def write_graph_summary(writer: Annotated[Any, _atypes.Resource], step: Annotated[Any, _atypes.Int64], tensor: Annotated[Any, _atypes.String], name=None): r"""Writes a graph summary. Writes TensorFlow graph `tensor` at `step` using summary `writer`. Args: writer: A `Tensor` of type `resource`. step: A `Tensor` of type `int64`. tensor: A `Tensor` of type `string`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "WriteGraphSummary", name, writer, step, tensor) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return write_graph_summary_eager_fallback( writer, step, tensor, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "WriteGraphSummary", writer=writer, step=step, tensor=tensor, name=name) return _op WriteGraphSummary = tf_export("raw_ops.WriteGraphSummary")(_ops.to_raw_op(write_graph_summary)) def write_graph_summary_eager_fallback(writer: Annotated[Any, _atypes.Resource], step: Annotated[Any, _atypes.Int64], tensor: Annotated[Any, _atypes.String], name, ctx): writer = _ops.convert_to_tensor(writer, _dtypes.resource) step = _ops.convert_to_tensor(step, _dtypes.int64) tensor = _ops.convert_to_tensor(tensor, _dtypes.string) _inputs_flat = [writer, step, tensor] _attrs = None _result = _execute.execute(b"WriteGraphSummary", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result TV_WriteHistogramSummary_T = TypeVar("TV_WriteHistogramSummary_T", _atypes.BFloat16, _atypes.Bool, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.UInt16, _atypes.UInt32, _atypes.UInt64, _atypes.UInt8) def write_histogram_summary(writer: Annotated[Any, _atypes.Resource], step: Annotated[Any, _atypes.Int64], tag: Annotated[Any, _atypes.String], values: Annotated[Any, TV_WriteHistogramSummary_T], name=None): r"""Writes a histogram summary. Writes histogram `values` at `step` with `tag` using summary `writer`. Args: writer: A `Tensor` of type `resource`. step: A `Tensor` of type `int64`. tag: A `Tensor` of type `string`. values: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`, `bool`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "WriteHistogramSummary", name, writer, step, tag, values) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return write_histogram_summary_eager_fallback( writer, step, tag, values, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "WriteHistogramSummary", writer=writer, step=step, tag=tag, values=values, name=name) return _op WriteHistogramSummary = tf_export("raw_ops.WriteHistogramSummary")(_ops.to_raw_op(write_histogram_summary)) def write_histogram_summary_eager_fallback(writer: Annotated[Any, _atypes.Resource], step: Annotated[Any, _atypes.Int64], tag: Annotated[Any, _atypes.String], values: Annotated[Any, TV_WriteHistogramSummary_T], name, ctx): _attr_T, (values,) = _execute.args_to_matching_eager([values], ctx, [_dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.uint8, _dtypes.int16, _dtypes.int8, _dtypes.int64, _dtypes.bfloat16, _dtypes.uint16, _dtypes.half, _dtypes.uint32, _dtypes.uint64, _dtypes.bool, ], _dtypes.float32) writer = _ops.convert_to_tensor(writer, _dtypes.resource) step = _ops.convert_to_tensor(step, _dtypes.int64) tag = _ops.convert_to_tensor(tag, _dtypes.string) _inputs_flat = [writer, step, tag, values] _attrs = ("T", _attr_T) _result = _execute.execute(b"WriteHistogramSummary", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result TV_WriteImageSummary_T = TypeVar("TV_WriteImageSummary_T", _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.UInt8) def write_image_summary(writer: Annotated[Any, _atypes.Resource], step: Annotated[Any, _atypes.Int64], tag: Annotated[Any, _atypes.String], tensor: Annotated[Any, TV_WriteImageSummary_T], bad_color: Annotated[Any, _atypes.UInt8], max_images:int=3, name=None): r"""Writes an image summary. Writes image `tensor` at `step` with `tag` using summary `writer`. `tensor` is image with shape [height, width, channels]. Args: writer: A `Tensor` of type `resource`. step: A `Tensor` of type `int64`. tag: A `Tensor` of type `string`. tensor: A `Tensor`. Must be one of the following types: `uint8`, `float64`, `float32`, `half`. bad_color: A `Tensor` of type `uint8`. max_images: An optional `int` that is `>= 1`. Defaults to `3`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "WriteImageSummary", name, writer, step, tag, tensor, bad_color, "max_images", max_images) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return write_image_summary_eager_fallback( writer, step, tag, tensor, bad_color, max_images=max_images, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if max_images is None: max_images = 3 max_images = _execute.make_int(max_images, "max_images") _, _, _op, _outputs = _op_def_library._apply_op_helper( "WriteImageSummary", writer=writer, step=step, tag=tag, tensor=tensor, bad_color=bad_color, max_images=max_images, name=name) return _op WriteImageSummary = tf_export("raw_ops.WriteImageSummary")(_ops.to_raw_op(write_image_summary)) def write_image_summary_eager_fallback(writer: Annotated[Any, _atypes.Resource], step: Annotated[Any, _atypes.Int64], tag: Annotated[Any, _atypes.String], tensor: Annotated[Any, TV_WriteImageSummary_T], bad_color: Annotated[Any, _atypes.UInt8], max_images: int, name, ctx): if max_images is None: max_images = 3 max_images = _execute.make_int(max_images, "max_images") _attr_T, (tensor,) = _execute.args_to_matching_eager([tensor], ctx, [_dtypes.uint8, _dtypes.float64, _dtypes.float32, _dtypes.half, ], _dtypes.float32) writer = _ops.convert_to_tensor(writer, _dtypes.resource) step = _ops.convert_to_tensor(step, _dtypes.int64) tag = _ops.convert_to_tensor(tag, _dtypes.string) bad_color = _ops.convert_to_tensor(bad_color, _dtypes.uint8) _inputs_flat = [writer, step, tag, tensor, bad_color] _attrs = ("max_images", max_images, "T", _attr_T) _result = _execute.execute(b"WriteImageSummary", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result def write_raw_proto_summary(writer: Annotated[Any, _atypes.Resource], step: Annotated[Any, _atypes.Int64], tensor: Annotated[Any, _atypes.String], name=None): r"""Writes a serialized proto summary. Writes `tensor`, a serialized proto at `step` using summary `writer`. Args: writer: A `Tensor` of type `resource`. step: A `Tensor` of type `int64`. tensor: A `Tensor` of type `string`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "WriteRawProtoSummary", name, writer, step, tensor) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return write_raw_proto_summary_eager_fallback( writer, step, tensor, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "WriteRawProtoSummary", writer=writer, step=step, tensor=tensor, name=name) return _op WriteRawProtoSummary = tf_export("raw_ops.WriteRawProtoSummary")(_ops.to_raw_op(write_raw_proto_summary)) def write_raw_proto_summary_eager_fallback(writer: Annotated[Any, _atypes.Resource], step: Annotated[Any, _atypes.Int64], tensor: Annotated[Any, _atypes.String], name, ctx): writer = _ops.convert_to_tensor(writer, _dtypes.resource) step = _ops.convert_to_tensor(step, _dtypes.int64) tensor = _ops.convert_to_tensor(tensor, _dtypes.string) _inputs_flat = [writer, step, tensor] _attrs = None _result = _execute.execute(b"WriteRawProtoSummary", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result TV_WriteScalarSummary_T = TypeVar("TV_WriteScalarSummary_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.UInt16, _atypes.UInt32, _atypes.UInt64, _atypes.UInt8) def write_scalar_summary(writer: Annotated[Any, _atypes.Resource], step: Annotated[Any, _atypes.Int64], tag: Annotated[Any, _atypes.String], value: Annotated[Any, TV_WriteScalarSummary_T], name=None): r"""Writes a scalar summary. Writes scalar `value` at `step` with `tag` using summary `writer`. Args: writer: A `Tensor` of type `resource`. step: A `Tensor` of type `int64`. tag: A `Tensor` of type `string`. value: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "WriteScalarSummary", name, writer, step, tag, value) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return write_scalar_summary_eager_fallback( writer, step, tag, value, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "WriteScalarSummary", writer=writer, step=step, tag=tag, value=value, name=name) return _op WriteScalarSummary = tf_export("raw_ops.WriteScalarSummary")(_ops.to_raw_op(write_scalar_summary)) def write_scalar_summary_eager_fallback(writer: Annotated[Any, _atypes.Resource], step: Annotated[Any, _atypes.Int64], tag: Annotated[Any, _atypes.String], value: Annotated[Any, TV_WriteScalarSummary_T], name, ctx): _attr_T, (value,) = _execute.args_to_matching_eager([value], ctx, [_dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.uint8, _dtypes.int16, _dtypes.int8, _dtypes.int64, _dtypes.bfloat16, _dtypes.uint16, _dtypes.half, _dtypes.uint32, _dtypes.uint64, ]) writer = _ops.convert_to_tensor(writer, _dtypes.resource) step = _ops.convert_to_tensor(step, _dtypes.int64) tag = _ops.convert_to_tensor(tag, _dtypes.string) _inputs_flat = [writer, step, tag, value] _attrs = ("T", _attr_T) _result = _execute.execute(b"WriteScalarSummary", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result TV_WriteSummary_T = TypeVar("TV_WriteSummary_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def write_summary(writer: Annotated[Any, _atypes.Resource], step: Annotated[Any, _atypes.Int64], tensor: Annotated[Any, TV_WriteSummary_T], tag: Annotated[Any, _atypes.String], summary_metadata: Annotated[Any, _atypes.String], name=None): r"""Writes a tensor summary. Writes `tensor` at `step` with `tag` using summary `writer`. Args: writer: A `Tensor` of type `resource`. step: A `Tensor` of type `int64`. tensor: A `Tensor`. tag: A `Tensor` of type `string`. summary_metadata: A `Tensor` of type `string`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "WriteSummary", name, writer, step, tensor, tag, summary_metadata) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return write_summary_eager_fallback( writer, step, tensor, tag, summary_metadata, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "WriteSummary", writer=writer, step=step, tensor=tensor, tag=tag, summary_metadata=summary_metadata, name=name) return _op WriteSummary = tf_export("raw_ops.WriteSummary")(_ops.to_raw_op(write_summary)) def write_summary_eager_fallback(writer: Annotated[Any, _atypes.Resource], step: Annotated[Any, _atypes.Int64], tensor: Annotated[Any, TV_WriteSummary_T], tag: Annotated[Any, _atypes.String], summary_metadata: Annotated[Any, _atypes.String], name, ctx): _attr_T, (tensor,) = _execute.args_to_matching_eager([tensor], ctx, []) writer = _ops.convert_to_tensor(writer, _dtypes.resource) step = _ops.convert_to_tensor(step, _dtypes.int64) tag = _ops.convert_to_tensor(tag, _dtypes.string) summary_metadata = _ops.convert_to_tensor(summary_metadata, _dtypes.string) _inputs_flat = [writer, step, tensor, tag, summary_metadata] _attrs = ("T", _attr_T) _result = _execute.execute(b"WriteSummary", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result