"""Python wrappers around TensorFlow ops. This file is MACHINE GENERATED! Do not edit. """ import collections from tensorflow.python import pywrap_tfe as pywrap_tfe from tensorflow.python.eager import context as _context from tensorflow.python.eager import core as _core from tensorflow.python.eager import execute as _execute from tensorflow.python.framework import dtypes as _dtypes from tensorflow.security.fuzzing.py import annotation_types as _atypes from tensorflow.python.framework import op_def_registry as _op_def_registry from tensorflow.python.framework import ops as _ops from tensorflow.python.framework import op_def_library as _op_def_library from tensorflow.python.util.deprecation import deprecated_endpoints from tensorflow.python.util import dispatch as _dispatch from tensorflow.python.util.tf_export import tf_export from typing import TypeVar, List, Any from typing_extensions import Annotated TV_AllToAll_T = TypeVar("TV_AllToAll_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.UInt16, _atypes.UInt32, _atypes.UInt64, _atypes.UInt8) def all_to_all(input: Annotated[Any, TV_AllToAll_T], group_assignment: Annotated[Any, _atypes.Int32], concat_dimension: int, split_dimension: int, split_count: int, name=None) -> Annotated[Any, TV_AllToAll_T]: r"""An Op to exchange data across TPU replicas. On each replica, the input is split into `split_count` blocks along `split_dimension` and send to the other replicas given group_assignment. After receiving `split_count` - 1 blocks from other replicas, we concatenate the blocks along `concat_dimension` as the output. For example, suppose there are 2 TPU replicas: replica 0 receives input: `[[A, B]]` replica 1 receives input: `[[C, D]]` group_assignment=`[[0, 1]]` concat_dimension=0 split_dimension=1 split_count=2 replica 0's output: `[[A], [C]]` replica 1's output: `[[B], [D]]` Args: input: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `qint16`, `quint16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`, `bool`. The local input to the sum. group_assignment: A `Tensor` of type `int32`. An int32 tensor with shape [num_groups, num_replicas_per_group]. `group_assignment[i]` represents the replica ids in the ith subgroup. concat_dimension: An `int`. The dimension number to concatenate. split_dimension: An `int`. The dimension number to split. split_count: An `int`. The number of splits, this number must equal to the sub-group size(group_assignment.get_shape()[1]) name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "AllToAll", name, input, group_assignment, "concat_dimension", concat_dimension, "split_dimension", split_dimension, "split_count", split_count) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return all_to_all_eager_fallback( input, group_assignment, concat_dimension=concat_dimension, split_dimension=split_dimension, split_count=split_count, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. concat_dimension = _execute.make_int(concat_dimension, "concat_dimension") split_dimension = _execute.make_int(split_dimension, "split_dimension") split_count = _execute.make_int(split_count, "split_count") _, _, _op, _outputs = _op_def_library._apply_op_helper( "AllToAll", input=input, group_assignment=group_assignment, concat_dimension=concat_dimension, split_dimension=split_dimension, split_count=split_count, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "concat_dimension", _op._get_attr_int("concat_dimension"), "split_dimension", _op._get_attr_int("split_dimension"), "split_count", _op._get_attr_int("split_count")) _inputs_flat = _op.inputs _execute.record_gradient( "AllToAll", _inputs_flat, _attrs, _result) _result, = _result return _result AllToAll = tf_export("raw_ops.AllToAll")(_ops.to_raw_op(all_to_all)) def all_to_all_eager_fallback(input: Annotated[Any, TV_AllToAll_T], group_assignment: Annotated[Any, _atypes.Int32], concat_dimension: int, split_dimension: int, split_count: int, name, ctx) -> Annotated[Any, TV_AllToAll_T]: concat_dimension = _execute.make_int(concat_dimension, "concat_dimension") split_dimension = _execute.make_int(split_dimension, "split_dimension") split_count = _execute.make_int(split_count, "split_count") _attr_T, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.uint8, _dtypes.int16, _dtypes.int8, _dtypes.complex64, _dtypes.int64, _dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.bfloat16, _dtypes.qint16, _dtypes.quint16, _dtypes.uint16, _dtypes.complex128, _dtypes.half, _dtypes.uint32, _dtypes.uint64, _dtypes.bool, ]) group_assignment = _ops.convert_to_tensor(group_assignment, _dtypes.int32) _inputs_flat = [input, group_assignment] _attrs = ("T", _attr_T, "concat_dimension", concat_dimension, "split_dimension", split_dimension, "split_count", split_count) _result = _execute.execute(b"AllToAll", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "AllToAll", _inputs_flat, _attrs, _result) _result, = _result return _result TV_AssignVariableXlaConcatND_T = TypeVar("TV_AssignVariableXlaConcatND_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def assign_variable_xla_concat_nd(resource: Annotated[Any, _atypes.Resource], inputs: Annotated[List[Any], TV_AssignVariableXlaConcatND_T], num_concats, paddings=[], name=None): r"""Concats input tensor across all dimensions. An op which merges slices the input tensor based on the given num_splits attribute, strips paddings optionally, and writes the merged tensor without paddings to the resource variable. This op may be generated via the TPU bridge. For example, with `input` tensor: ``` [[0, 1], [4, 5]] [[2, 3], [6, 7]] [[8, 9], [12, 13]] [[10, 11], [14, 15]] ``` `num_splits`: ``` [2, 2] ``` and `paddings`: ``` [1, 1] ``` the expected `outputs` is: ``` [[0, 1, 2], [4, 5, 6], [8, 9, 10]] ``` Args: resource: A `Tensor` of type `resource`. Resource variable for concatenated input tensors across all dimensions. } in_arg { name: "inputs" description: < Annotated[Any, TV_CollectivePermute_T]: r"""An Op to permute tensors across replicated TPU instances. Each instance supplies its own input. For example, suppose there are 4 TPU instances: `[A, B, C, D]`. Passing source_target_pairs=`[[0,1],[1,2],[2,3],[3,0]]` gets the outputs: `[D, A, B, C]`. Args: input: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `qint16`, `quint16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. The local input to be permuted. Currently only supports float and bfloat16. source_target_pairs: A `Tensor` of type `int32`. A tensor with shape [num_pairs, 2]. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "CollectivePermute", name, input, source_target_pairs) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return collective_permute_eager_fallback( input, source_target_pairs, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "CollectivePermute", input=input, source_target_pairs=source_target_pairs, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "CollectivePermute", _inputs_flat, _attrs, _result) _result, = _result return _result CollectivePermute = tf_export("raw_ops.CollectivePermute")(_ops.to_raw_op(collective_permute)) def collective_permute_eager_fallback(input: Annotated[Any, TV_CollectivePermute_T], source_target_pairs: Annotated[Any, _atypes.Int32], name, ctx) -> Annotated[Any, TV_CollectivePermute_T]: _attr_T, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.uint8, _dtypes.int16, _dtypes.int8, _dtypes.complex64, _dtypes.int64, _dtypes.qint8, _dtypes.quint8, _dtypes.qint32, _dtypes.bfloat16, _dtypes.qint16, _dtypes.quint16, _dtypes.uint16, _dtypes.complex128, _dtypes.half, _dtypes.uint32, _dtypes.uint64, ]) source_target_pairs = _ops.convert_to_tensor(source_target_pairs, _dtypes.int32) _inputs_flat = [input, source_target_pairs] _attrs = ("T", _attr_T) _result = _execute.execute(b"CollectivePermute", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "CollectivePermute", _inputs_flat, _attrs, _result) _result, = _result return _result def configure_distributed_tpu(embedding_config:str="", tpu_embedding_config:str="", is_global_init:bool=False, enable_whole_mesh_compilations:bool=False, compilation_failure_closes_chips:bool=True, tpu_cancellation_closes_chips:int=0, name=None) -> Annotated[Any, _atypes.String]: r"""Sets up the centralized structures for a distributed TPU system. Args: embedding_config: An optional `string`. Defaults to `""`. Reserved. Do not use. tpu_embedding_config: An optional `string`. Defaults to `""`. Serialized tensorflow.tpu.TPUEmbeddingConfiguration that describes the embedding lookups of the program. is_global_init: An optional `bool`. Defaults to `False`. Reserved. Do not use. enable_whole_mesh_compilations: An optional `bool`. Defaults to `False`. compilation_failure_closes_chips: An optional `bool`. Defaults to `True`. tpu_cancellation_closes_chips: An optional `int`. Defaults to `0`. name: A name for the operation (optional). Returns: A `Tensor` of type `string`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "ConfigureDistributedTPU", name, "embedding_config", embedding_config, "tpu_embedding_config", tpu_embedding_config, "is_global_init", is_global_init, "enable_whole_mesh_compilations", enable_whole_mesh_compilations, "compilation_failure_closes_chips", compilation_failure_closes_chips, "tpu_cancellation_closes_chips", tpu_cancellation_closes_chips) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return configure_distributed_tpu_eager_fallback( embedding_config=embedding_config, tpu_embedding_config=tpu_embedding_config, is_global_init=is_global_init, enable_whole_mesh_compilations=enable_whole_mesh_compilations, compilation_failure_closes_chips=compilation_failure_closes_chips, tpu_cancellation_closes_chips=tpu_cancellation_closes_chips, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if embedding_config is None: embedding_config = "" embedding_config = _execute.make_str(embedding_config, "embedding_config") if tpu_embedding_config is None: tpu_embedding_config = "" tpu_embedding_config = _execute.make_str(tpu_embedding_config, "tpu_embedding_config") if is_global_init is None: is_global_init = False is_global_init = _execute.make_bool(is_global_init, "is_global_init") if enable_whole_mesh_compilations is None: enable_whole_mesh_compilations = False enable_whole_mesh_compilations = _execute.make_bool(enable_whole_mesh_compilations, "enable_whole_mesh_compilations") if compilation_failure_closes_chips is None: compilation_failure_closes_chips = True compilation_failure_closes_chips = _execute.make_bool(compilation_failure_closes_chips, "compilation_failure_closes_chips") if tpu_cancellation_closes_chips is None: tpu_cancellation_closes_chips = 0 tpu_cancellation_closes_chips = _execute.make_int(tpu_cancellation_closes_chips, "tpu_cancellation_closes_chips") _, _, _op, _outputs = _op_def_library._apply_op_helper( "ConfigureDistributedTPU", embedding_config=embedding_config, tpu_embedding_config=tpu_embedding_config, is_global_init=is_global_init, enable_whole_mesh_compilations=enable_whole_mesh_compilations, compilation_failure_closes_chips=compilation_failure_closes_chips, tpu_cancellation_closes_chips=tpu_cancellation_closes_chips, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("embedding_config", _op.get_attr("embedding_config"), "tpu_embedding_config", _op.get_attr("tpu_embedding_config"), "is_global_init", _op._get_attr_bool("is_global_init"), "enable_whole_mesh_compilations", _op._get_attr_bool("enable_whole_mesh_compilations"), "compilation_failure_closes_chips", _op._get_attr_bool("compilation_failure_closes_chips"), "tpu_cancellation_closes_chips", _op._get_attr_int("tpu_cancellation_closes_chips")) _inputs_flat = _op.inputs _execute.record_gradient( "ConfigureDistributedTPU", _inputs_flat, _attrs, _result) _result, = _result return _result ConfigureDistributedTPU = tf_export("raw_ops.ConfigureDistributedTPU")(_ops.to_raw_op(configure_distributed_tpu)) def configure_distributed_tpu_eager_fallback(embedding_config: str, tpu_embedding_config: str, is_global_init: bool, enable_whole_mesh_compilations: bool, compilation_failure_closes_chips: bool, tpu_cancellation_closes_chips: int, name, ctx) -> Annotated[Any, _atypes.String]: if embedding_config is None: embedding_config = "" embedding_config = _execute.make_str(embedding_config, "embedding_config") if tpu_embedding_config is None: tpu_embedding_config = "" tpu_embedding_config = _execute.make_str(tpu_embedding_config, "tpu_embedding_config") if is_global_init is None: is_global_init = False is_global_init = _execute.make_bool(is_global_init, "is_global_init") if enable_whole_mesh_compilations is None: enable_whole_mesh_compilations = False enable_whole_mesh_compilations = _execute.make_bool(enable_whole_mesh_compilations, "enable_whole_mesh_compilations") if compilation_failure_closes_chips is None: compilation_failure_closes_chips = True compilation_failure_closes_chips = _execute.make_bool(compilation_failure_closes_chips, "compilation_failure_closes_chips") if tpu_cancellation_closes_chips is None: tpu_cancellation_closes_chips = 0 tpu_cancellation_closes_chips = _execute.make_int(tpu_cancellation_closes_chips, "tpu_cancellation_closes_chips") _inputs_flat = [] _attrs = ("embedding_config", embedding_config, "tpu_embedding_config", tpu_embedding_config, "is_global_init", is_global_init, "enable_whole_mesh_compilations", enable_whole_mesh_compilations, "compilation_failure_closes_chips", compilation_failure_closes_chips, "tpu_cancellation_closes_chips", tpu_cancellation_closes_chips) _result = _execute.execute(b"ConfigureDistributedTPU", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "ConfigureDistributedTPU", _inputs_flat, _attrs, _result) _result, = _result return _result def configure_tpu_embedding(config: str, name=None): r"""Sets up TPUEmbedding in a distributed TPU system. Args: config: A `string`. Serialized tensorflow.tpu.TPUEmbeddingConfiguration that describes the embedding lookups of the program. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "ConfigureTPUEmbedding", name, "config", config) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return configure_tpu_embedding_eager_fallback( config=config, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. config = _execute.make_str(config, "config") _, _, _op, _outputs = _op_def_library._apply_op_helper( "ConfigureTPUEmbedding", config=config, name=name) return _op ConfigureTPUEmbedding = tf_export("raw_ops.ConfigureTPUEmbedding")(_ops.to_raw_op(configure_tpu_embedding)) def configure_tpu_embedding_eager_fallback(config: str, name, ctx): config = _execute.make_str(config, "config") _inputs_flat = [] _attrs = ("config", config) _result = _execute.execute(b"ConfigureTPUEmbedding", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result TV_CrossReplicaSum_T = TypeVar("TV_CrossReplicaSum_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int32, _atypes.UInt32) def cross_replica_sum(input: Annotated[Any, TV_CrossReplicaSum_T], group_assignment: Annotated[Any, _atypes.Int32], name=None) -> Annotated[Any, TV_CrossReplicaSum_T]: r"""An Op to sum inputs across replicated TPU instances. Each instance supplies its own input. For example, suppose there are 8 TPU instances: `[A, B, C, D, E, F, G, H]`. Passing group_assignment=`[[0,2,4,6],[1,3,5,7]]` sets `A, C, E, G` as group 0, and `B, D, F, H` as group 1. Thus we get the outputs: `[A+C+E+G, B+D+F+H, A+C+E+G, B+D+F+H, A+C+E+G, B+D+F+H, A+C+E+G, B+D+F+H]`. Args: input: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`, `int32`, `uint32`. The local input to the sum. group_assignment: A `Tensor` of type `int32`. An int32 tensor with shape [num_groups, num_replicas_per_group]. `group_assignment[i]` represents the replica ids in the ith subgroup. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "CrossReplicaSum", name, input, group_assignment) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return cross_replica_sum_eager_fallback( input, group_assignment, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "CrossReplicaSum", input=input, group_assignment=group_assignment, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "CrossReplicaSum", _inputs_flat, _attrs, _result) _result, = _result return _result CrossReplicaSum = tf_export("raw_ops.CrossReplicaSum")(_ops.to_raw_op(cross_replica_sum)) def cross_replica_sum_eager_fallback(input: Annotated[Any, TV_CrossReplicaSum_T], group_assignment: Annotated[Any, _atypes.Int32], name, ctx) -> Annotated[Any, TV_CrossReplicaSum_T]: _attr_T, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.uint32, ]) group_assignment = _ops.convert_to_tensor(group_assignment, _dtypes.int32) _inputs_flat = [input, group_assignment] _attrs = ("T", _attr_T) _result = _execute.execute(b"CrossReplicaSum", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "CrossReplicaSum", _inputs_flat, _attrs, _result) _result, = _result return _result TV_DynamicEnqueueTPUEmbeddingArbitraryTensorBatch_T1 = TypeVar("TV_DynamicEnqueueTPUEmbeddingArbitraryTensorBatch_T1", _atypes.Int32, _atypes.Int64) TV_DynamicEnqueueTPUEmbeddingArbitraryTensorBatch_T2 = TypeVar("TV_DynamicEnqueueTPUEmbeddingArbitraryTensorBatch_T2", _atypes.Int32, _atypes.Int64) TV_DynamicEnqueueTPUEmbeddingArbitraryTensorBatch_T3 = TypeVar("TV_DynamicEnqueueTPUEmbeddingArbitraryTensorBatch_T3", _atypes.Float32, _atypes.Float64) def dynamic_enqueue_tpu_embedding_arbitrary_tensor_batch(sample_indices_or_row_splits: Annotated[List[Any], TV_DynamicEnqueueTPUEmbeddingArbitraryTensorBatch_T1], embedding_indices: Annotated[List[Any], TV_DynamicEnqueueTPUEmbeddingArbitraryTensorBatch_T2], aggregation_weights: Annotated[List[Any], TV_DynamicEnqueueTPUEmbeddingArbitraryTensorBatch_T3], mode_override: Annotated[Any, _atypes.String], device_ordinal: Annotated[Any, _atypes.Int32], combiners=[], name=None): r"""Eases the porting of code that uses tf.nn.embedding_lookup_sparse(). embedding_indices[i] and aggregation_weights[i] correspond to the ith feature. The tensors at corresponding positions in the three input lists (sample_indices, embedding_indices and aggregation_weights) must have the same shape, i.e. rank 1 with dim_size() equal to the total number of lookups into the table described by the corresponding feature. Args: sample_indices_or_row_splits: A list of at least 1 `Tensor` objects with the same type in: `int32`, `int64`. A list of rank 2 Tensors specifying the training example to which the corresponding embedding_indices and aggregation_weights values belong. If the size of its first dimension is 0, we assume each embedding_indices belongs to a different sample. Both int32 and int64 are allowed and will be converted to int32 internally. Or a list of rank 1 Tensors specifying the row splits for splitting embedding_indices and aggregation_weights into rows. It corresponds to ids.row_splits in embedding_lookup(), when ids is a RaggedTensor. When enqueuing N-D ragged tensor, only the last dimension is allowed to be ragged. the row splits is 1-D dense tensor. When empty, we assume a dense tensor is passed to the op Both int32 and int64 are allowed and will be converted to int32 internally. embedding_indices: A list with the same length as `sample_indices_or_row_splits` of `Tensor` objects with the same type in: `int32`, `int64`. A list of rank 1 Tensors, indices into the embedding tables. Both int32 and int64 are allowed and will be converted to int32 internally. aggregation_weights: A list with the same length as `sample_indices_or_row_splits` of `Tensor` objects with the same type in: `float32`, `float64`. A list of rank 1 Tensors containing per training example aggregation weights. Both float32 and float64 are allowed and will be converted to float32 internally. mode_override: A `Tensor` of type `string`. A string input that overrides the mode specified in the TPUEmbeddingConfiguration. Supported values are {'unspecified', 'inference', 'training', 'backward_pass_only'}. When set to 'unspecified', the mode set in TPUEmbeddingConfiguration is used, otherwise mode_override is used. device_ordinal: A `Tensor` of type `int32`. The TPU device to use. Should be >= 0 and less than the number of TPU cores in the task on which the node is placed. combiners: An optional list of `strings`. Defaults to `[]`. A list of string scalars, one for each embedding table that specify how to normalize the embedding activations after weighted summation. Supported combiners are 'mean', 'sum', or 'sqrtn'. It is invalid to have the sum of the weights be 0 for 'mean' or the sum of the squared weights be 0 for 'sqrtn'. If combiners isn't passed, the default is to use 'sum' for all tables. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "DynamicEnqueueTPUEmbeddingArbitraryTensorBatch", name, sample_indices_or_row_splits, embedding_indices, aggregation_weights, mode_override, device_ordinal, "combiners", combiners) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return dynamic_enqueue_tpu_embedding_arbitrary_tensor_batch_eager_fallback( sample_indices_or_row_splits, embedding_indices, aggregation_weights, mode_override, device_ordinal, combiners=combiners, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(sample_indices_or_row_splits, (list, tuple)): raise TypeError( "Expected list for 'sample_indices_or_row_splits' argument to " "'dynamic_enqueue_tpu_embedding_arbitrary_tensor_batch' Op, not %r." % sample_indices_or_row_splits) _attr_N = len(sample_indices_or_row_splits) if not isinstance(embedding_indices, (list, tuple)): raise TypeError( "Expected list for 'embedding_indices' argument to " "'dynamic_enqueue_tpu_embedding_arbitrary_tensor_batch' Op, not %r." % embedding_indices) if len(embedding_indices) != _attr_N: raise ValueError( "List argument 'embedding_indices' to 'dynamic_enqueue_tpu_embedding_arbitrary_tensor_batch' Op with length %d " "must match length %d of argument 'sample_indices_or_row_splits'." % (len(embedding_indices), _attr_N)) if not isinstance(aggregation_weights, (list, tuple)): raise TypeError( "Expected list for 'aggregation_weights' argument to " "'dynamic_enqueue_tpu_embedding_arbitrary_tensor_batch' Op, not %r." % aggregation_weights) if len(aggregation_weights) != _attr_N: raise ValueError( "List argument 'aggregation_weights' to 'dynamic_enqueue_tpu_embedding_arbitrary_tensor_batch' Op with length %d " "must match length %d of argument 'sample_indices_or_row_splits'." % (len(aggregation_weights), _attr_N)) if combiners is None: combiners = [] if not isinstance(combiners, (list, tuple)): raise TypeError( "Expected list for 'combiners' argument to " "'dynamic_enqueue_tpu_embedding_arbitrary_tensor_batch' Op, not %r." % combiners) combiners = [_execute.make_str(_s, "combiners") for _s in combiners] _, _, _op, _outputs = _op_def_library._apply_op_helper( "DynamicEnqueueTPUEmbeddingArbitraryTensorBatch", sample_indices_or_row_splits=sample_indices_or_row_splits, embedding_indices=embedding_indices, aggregation_weights=aggregation_weights, mode_override=mode_override, device_ordinal=device_ordinal, combiners=combiners, name=name) return _op DynamicEnqueueTPUEmbeddingArbitraryTensorBatch = tf_export("raw_ops.DynamicEnqueueTPUEmbeddingArbitraryTensorBatch")(_ops.to_raw_op(dynamic_enqueue_tpu_embedding_arbitrary_tensor_batch)) def dynamic_enqueue_tpu_embedding_arbitrary_tensor_batch_eager_fallback(sample_indices_or_row_splits: Annotated[List[Any], TV_DynamicEnqueueTPUEmbeddingArbitraryTensorBatch_T1], embedding_indices: Annotated[List[Any], TV_DynamicEnqueueTPUEmbeddingArbitraryTensorBatch_T2], aggregation_weights: Annotated[List[Any], TV_DynamicEnqueueTPUEmbeddingArbitraryTensorBatch_T3], mode_override: Annotated[Any, _atypes.String], device_ordinal: Annotated[Any, _atypes.Int32], combiners, name, ctx): if not isinstance(sample_indices_or_row_splits, (list, tuple)): raise TypeError( "Expected list for 'sample_indices_or_row_splits' argument to " "'dynamic_enqueue_tpu_embedding_arbitrary_tensor_batch' Op, not %r." % sample_indices_or_row_splits) _attr_N = len(sample_indices_or_row_splits) if not isinstance(embedding_indices, (list, tuple)): raise TypeError( "Expected list for 'embedding_indices' argument to " "'dynamic_enqueue_tpu_embedding_arbitrary_tensor_batch' Op, not %r." % embedding_indices) if len(embedding_indices) != _attr_N: raise ValueError( "List argument 'embedding_indices' to 'dynamic_enqueue_tpu_embedding_arbitrary_tensor_batch' Op with length %d " "must match length %d of argument 'sample_indices_or_row_splits'." % (len(embedding_indices), _attr_N)) if not isinstance(aggregation_weights, (list, tuple)): raise TypeError( "Expected list for 'aggregation_weights' argument to " "'dynamic_enqueue_tpu_embedding_arbitrary_tensor_batch' Op, not %r." % aggregation_weights) if len(aggregation_weights) != _attr_N: raise ValueError( "List argument 'aggregation_weights' to 'dynamic_enqueue_tpu_embedding_arbitrary_tensor_batch' Op with length %d " "must match length %d of argument 'sample_indices_or_row_splits'." % (len(aggregation_weights), _attr_N)) if combiners is None: combiners = [] if not isinstance(combiners, (list, tuple)): raise TypeError( "Expected list for 'combiners' argument to " "'dynamic_enqueue_tpu_embedding_arbitrary_tensor_batch' Op, not %r." % combiners) combiners = [_execute.make_str(_s, "combiners") for _s in combiners] _attr_T1, sample_indices_or_row_splits = _execute.args_to_matching_eager(list(sample_indices_or_row_splits), ctx, [_dtypes.int32, _dtypes.int64, ], _dtypes.int32) _attr_T2, embedding_indices = _execute.args_to_matching_eager(list(embedding_indices), ctx, [_dtypes.int32, _dtypes.int64, ], _dtypes.int32) _attr_T3, aggregation_weights = _execute.args_to_matching_eager(list(aggregation_weights), ctx, [_dtypes.float32, _dtypes.float64, ], _dtypes.float32) mode_override = _ops.convert_to_tensor(mode_override, _dtypes.string) device_ordinal = _ops.convert_to_tensor(device_ordinal, _dtypes.int32) _inputs_flat = list(sample_indices_or_row_splits) + list(embedding_indices) + list(aggregation_weights) + [mode_override, device_ordinal] _attrs = ("T1", _attr_T1, "T2", _attr_T2, "T3", _attr_T3, "N", _attr_N, "combiners", combiners) _result = _execute.execute(b"DynamicEnqueueTPUEmbeddingArbitraryTensorBatch", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result TV_DynamicEnqueueTPUEmbeddingRaggedTensorBatch_T1 = TypeVar("TV_DynamicEnqueueTPUEmbeddingRaggedTensorBatch_T1", _atypes.Int32, _atypes.Int64) TV_DynamicEnqueueTPUEmbeddingRaggedTensorBatch_T2 = TypeVar("TV_DynamicEnqueueTPUEmbeddingRaggedTensorBatch_T2", _atypes.Int32, _atypes.Int64) TV_DynamicEnqueueTPUEmbeddingRaggedTensorBatch_T3 = TypeVar("TV_DynamicEnqueueTPUEmbeddingRaggedTensorBatch_T3", _atypes.Float32, _atypes.Float64) def dynamic_enqueue_tpu_embedding_ragged_tensor_batch(sample_splits: Annotated[List[Any], TV_DynamicEnqueueTPUEmbeddingRaggedTensorBatch_T1], embedding_indices: Annotated[List[Any], TV_DynamicEnqueueTPUEmbeddingRaggedTensorBatch_T2], aggregation_weights: Annotated[List[Any], TV_DynamicEnqueueTPUEmbeddingRaggedTensorBatch_T3], mode_override: Annotated[Any, _atypes.String], device_ordinal: Annotated[Any, _atypes.Int32], table_ids, combiners=[], max_sequence_lengths=[], num_features=[], name=None): r"""TODO: add doc. Args: sample_splits: A list of at least 1 `Tensor` objects with the same type in: `int32`, `int64`. embedding_indices: A list with the same length as `sample_splits` of `Tensor` objects with the same type in: `int32`, `int64`. aggregation_weights: A list with the same length as `sample_splits` of `Tensor` objects with the same type in: `float32`, `float64`. mode_override: A `Tensor` of type `string`. device_ordinal: A `Tensor` of type `int32`. table_ids: A list of `ints`. combiners: An optional list of `strings`. Defaults to `[]`. max_sequence_lengths: An optional list of `ints`. Defaults to `[]`. num_features: An optional list of `ints`. Defaults to `[]`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "DynamicEnqueueTPUEmbeddingRaggedTensorBatch", name, sample_splits, embedding_indices, aggregation_weights, mode_override, device_ordinal, "combiners", combiners, "table_ids", table_ids, "max_sequence_lengths", max_sequence_lengths, "num_features", num_features) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return dynamic_enqueue_tpu_embedding_ragged_tensor_batch_eager_fallback( sample_splits, embedding_indices, aggregation_weights, mode_override, device_ordinal, combiners=combiners, table_ids=table_ids, max_sequence_lengths=max_sequence_lengths, num_features=num_features, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(sample_splits, (list, tuple)): raise TypeError( "Expected list for 'sample_splits' argument to " "'dynamic_enqueue_tpu_embedding_ragged_tensor_batch' Op, not %r." % sample_splits) _attr_N = len(sample_splits) if not isinstance(embedding_indices, (list, tuple)): raise TypeError( "Expected list for 'embedding_indices' argument to " "'dynamic_enqueue_tpu_embedding_ragged_tensor_batch' Op, not %r." % embedding_indices) if len(embedding_indices) != _attr_N: raise ValueError( "List argument 'embedding_indices' to 'dynamic_enqueue_tpu_embedding_ragged_tensor_batch' Op with length %d " "must match length %d of argument 'sample_splits'." % (len(embedding_indices), _attr_N)) if not isinstance(aggregation_weights, (list, tuple)): raise TypeError( "Expected list for 'aggregation_weights' argument to " "'dynamic_enqueue_tpu_embedding_ragged_tensor_batch' Op, not %r." % aggregation_weights) if len(aggregation_weights) != _attr_N: raise ValueError( "List argument 'aggregation_weights' to 'dynamic_enqueue_tpu_embedding_ragged_tensor_batch' Op with length %d " "must match length %d of argument 'sample_splits'." % (len(aggregation_weights), _attr_N)) if not isinstance(table_ids, (list, tuple)): raise TypeError( "Expected list for 'table_ids' argument to " "'dynamic_enqueue_tpu_embedding_ragged_tensor_batch' Op, not %r." % table_ids) table_ids = [_execute.make_int(_i, "table_ids") for _i in table_ids] if combiners is None: combiners = [] if not isinstance(combiners, (list, tuple)): raise TypeError( "Expected list for 'combiners' argument to " "'dynamic_enqueue_tpu_embedding_ragged_tensor_batch' Op, not %r." % combiners) combiners = [_execute.make_str(_s, "combiners") for _s in combiners] if max_sequence_lengths is None: max_sequence_lengths = [] if not isinstance(max_sequence_lengths, (list, tuple)): raise TypeError( "Expected list for 'max_sequence_lengths' argument to " "'dynamic_enqueue_tpu_embedding_ragged_tensor_batch' Op, not %r." % max_sequence_lengths) max_sequence_lengths = [_execute.make_int(_i, "max_sequence_lengths") for _i in max_sequence_lengths] if num_features is None: num_features = [] if not isinstance(num_features, (list, tuple)): raise TypeError( "Expected list for 'num_features' argument to " "'dynamic_enqueue_tpu_embedding_ragged_tensor_batch' Op, not %r." % num_features) num_features = [_execute.make_int(_i, "num_features") for _i in num_features] _, _, _op, _outputs = _op_def_library._apply_op_helper( "DynamicEnqueueTPUEmbeddingRaggedTensorBatch", sample_splits=sample_splits, embedding_indices=embedding_indices, aggregation_weights=aggregation_weights, mode_override=mode_override, device_ordinal=device_ordinal, table_ids=table_ids, combiners=combiners, max_sequence_lengths=max_sequence_lengths, num_features=num_features, name=name) return _op DynamicEnqueueTPUEmbeddingRaggedTensorBatch = tf_export("raw_ops.DynamicEnqueueTPUEmbeddingRaggedTensorBatch")(_ops.to_raw_op(dynamic_enqueue_tpu_embedding_ragged_tensor_batch)) def dynamic_enqueue_tpu_embedding_ragged_tensor_batch_eager_fallback(sample_splits: Annotated[List[Any], TV_DynamicEnqueueTPUEmbeddingRaggedTensorBatch_T1], embedding_indices: Annotated[List[Any], TV_DynamicEnqueueTPUEmbeddingRaggedTensorBatch_T2], aggregation_weights: Annotated[List[Any], TV_DynamicEnqueueTPUEmbeddingRaggedTensorBatch_T3], mode_override: Annotated[Any, _atypes.String], device_ordinal: Annotated[Any, _atypes.Int32], table_ids, combiners, max_sequence_lengths, num_features, name, ctx): if not isinstance(sample_splits, (list, tuple)): raise TypeError( "Expected list for 'sample_splits' argument to " "'dynamic_enqueue_tpu_embedding_ragged_tensor_batch' Op, not %r." % sample_splits) _attr_N = len(sample_splits) if not isinstance(embedding_indices, (list, tuple)): raise TypeError( "Expected list for 'embedding_indices' argument to " "'dynamic_enqueue_tpu_embedding_ragged_tensor_batch' Op, not %r." % embedding_indices) if len(embedding_indices) != _attr_N: raise ValueError( "List argument 'embedding_indices' to 'dynamic_enqueue_tpu_embedding_ragged_tensor_batch' Op with length %d " "must match length %d of argument 'sample_splits'." % (len(embedding_indices), _attr_N)) if not isinstance(aggregation_weights, (list, tuple)): raise TypeError( "Expected list for 'aggregation_weights' argument to " "'dynamic_enqueue_tpu_embedding_ragged_tensor_batch' Op, not %r." % aggregation_weights) if len(aggregation_weights) != _attr_N: raise ValueError( "List argument 'aggregation_weights' to 'dynamic_enqueue_tpu_embedding_ragged_tensor_batch' Op with length %d " "must match length %d of argument 'sample_splits'." % (len(aggregation_weights), _attr_N)) if not isinstance(table_ids, (list, tuple)): raise TypeError( "Expected list for 'table_ids' argument to " "'dynamic_enqueue_tpu_embedding_ragged_tensor_batch' Op, not %r." % table_ids) table_ids = [_execute.make_int(_i, "table_ids") for _i in table_ids] if combiners is None: combiners = [] if not isinstance(combiners, (list, tuple)): raise TypeError( "Expected list for 'combiners' argument to " "'dynamic_enqueue_tpu_embedding_ragged_tensor_batch' Op, not %r." % combiners) combiners = [_execute.make_str(_s, "combiners") for _s in combiners] if max_sequence_lengths is None: max_sequence_lengths = [] if not isinstance(max_sequence_lengths, (list, tuple)): raise TypeError( "Expected list for 'max_sequence_lengths' argument to " "'dynamic_enqueue_tpu_embedding_ragged_tensor_batch' Op, not %r." % max_sequence_lengths) max_sequence_lengths = [_execute.make_int(_i, "max_sequence_lengths") for _i in max_sequence_lengths] if num_features is None: num_features = [] if not isinstance(num_features, (list, tuple)): raise TypeError( "Expected list for 'num_features' argument to " "'dynamic_enqueue_tpu_embedding_ragged_tensor_batch' Op, not %r." % num_features) num_features = [_execute.make_int(_i, "num_features") for _i in num_features] _attr_T1, sample_splits = _execute.args_to_matching_eager(list(sample_splits), ctx, [_dtypes.int32, _dtypes.int64, ], _dtypes.int32) _attr_T2, embedding_indices = _execute.args_to_matching_eager(list(embedding_indices), ctx, [_dtypes.int32, _dtypes.int64, ], _dtypes.int32) _attr_T3, aggregation_weights = _execute.args_to_matching_eager(list(aggregation_weights), ctx, [_dtypes.float32, _dtypes.float64, ], _dtypes.float32) mode_override = _ops.convert_to_tensor(mode_override, _dtypes.string) device_ordinal = _ops.convert_to_tensor(device_ordinal, _dtypes.int32) _inputs_flat = list(sample_splits) + list(embedding_indices) + list(aggregation_weights) + [mode_override, device_ordinal] _attrs = ("T1", _attr_T1, "T2", _attr_T2, "T3", _attr_T3, "N", _attr_N, "combiners", combiners, "table_ids", table_ids, "max_sequence_lengths", max_sequence_lengths, "num_features", num_features) _result = _execute.execute(b"DynamicEnqueueTPUEmbeddingRaggedTensorBatch", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result TV_EnqueueTPUEmbeddingArbitraryTensorBatch_T1 = TypeVar("TV_EnqueueTPUEmbeddingArbitraryTensorBatch_T1", _atypes.Int32, _atypes.Int64) TV_EnqueueTPUEmbeddingArbitraryTensorBatch_T2 = TypeVar("TV_EnqueueTPUEmbeddingArbitraryTensorBatch_T2", _atypes.Int32, _atypes.Int64) TV_EnqueueTPUEmbeddingArbitraryTensorBatch_T3 = TypeVar("TV_EnqueueTPUEmbeddingArbitraryTensorBatch_T3", _atypes.Float32, _atypes.Float64) def enqueue_tpu_embedding_arbitrary_tensor_batch(sample_indices_or_row_splits: Annotated[List[Any], TV_EnqueueTPUEmbeddingArbitraryTensorBatch_T1], embedding_indices: Annotated[List[Any], TV_EnqueueTPUEmbeddingArbitraryTensorBatch_T2], aggregation_weights: Annotated[List[Any], TV_EnqueueTPUEmbeddingArbitraryTensorBatch_T3], mode_override: Annotated[Any, _atypes.String], device_ordinal:int=-1, combiners=[], name=None): r"""Eases the porting of code that uses tf.nn.embedding_lookup_sparse(). embedding_indices[i] and aggregation_weights[i] correspond to the ith feature. The tensors at corresponding positions in the three input lists (sample_indices, embedding_indices and aggregation_weights) must have the same shape, i.e. rank 1 with dim_size() equal to the total number of lookups into the table described by the corresponding feature. Args: sample_indices_or_row_splits: A list of at least 1 `Tensor` objects with the same type in: `int32`, `int64`. A list of rank 2 Tensors specifying the training example to which the corresponding embedding_indices and aggregation_weights values belong. If the size of its first dimension is 0, we assume each embedding_indices belongs to a different sample. Both int32 and int64 are allowed and will be converted to int32 internally. Or a list of rank 1 Tensors specifying the row splits for splitting embedding_indices and aggregation_weights into rows. It corresponds to ids.row_splits in embedding_lookup(), when ids is a RaggedTensor. When enqueuing N-D ragged tensor, only the last dimension is allowed to be ragged. the row splits is 1-D dense tensor. When empty, we assume a dense tensor is passed to the op Both int32 and int64 are allowed and will be converted to int32 internally. embedding_indices: A list with the same length as `sample_indices_or_row_splits` of `Tensor` objects with the same type in: `int32`, `int64`. A list of rank 1 Tensors, indices into the embedding tables. Both int32 and int64 are allowed and will be converted to int32 internally. aggregation_weights: A list with the same length as `sample_indices_or_row_splits` of `Tensor` objects with the same type in: `float32`, `float64`. A list of rank 1 Tensors containing per training example aggregation weights. Both float32 and float64 are allowed and will be converted to float32 internally. mode_override: A `Tensor` of type `string`. A string input that overrides the mode specified in the TPUEmbeddingConfiguration. Supported values are {'unspecified', 'inference', 'training', 'backward_pass_only'}. When set to 'unspecified', the mode set in TPUEmbeddingConfiguration is used, otherwise mode_override is used. device_ordinal: An optional `int`. Defaults to `-1`. The TPU device to use. Should be >= 0 and less than the number of TPU cores in the task on which the node is placed. combiners: An optional list of `strings`. Defaults to `[]`. A list of string scalars, one for each embedding table that specify how to normalize the embedding activations after weighted summation. Supported combiners are 'mean', 'sum', or 'sqrtn'. It is invalid to have the sum of the weights be 0 for 'mean' or the sum of the squared weights be 0 for 'sqrtn'. If combiners isn't passed, the default is to use 'sum' for all tables. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "EnqueueTPUEmbeddingArbitraryTensorBatch", name, sample_indices_or_row_splits, embedding_indices, aggregation_weights, mode_override, "device_ordinal", device_ordinal, "combiners", combiners) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return enqueue_tpu_embedding_arbitrary_tensor_batch_eager_fallback( sample_indices_or_row_splits, embedding_indices, aggregation_weights, mode_override, device_ordinal=device_ordinal, combiners=combiners, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(sample_indices_or_row_splits, (list, tuple)): raise TypeError( "Expected list for 'sample_indices_or_row_splits' argument to " "'enqueue_tpu_embedding_arbitrary_tensor_batch' Op, not %r." % sample_indices_or_row_splits) _attr_N = len(sample_indices_or_row_splits) if not isinstance(embedding_indices, (list, tuple)): raise TypeError( "Expected list for 'embedding_indices' argument to " "'enqueue_tpu_embedding_arbitrary_tensor_batch' Op, not %r." % embedding_indices) if len(embedding_indices) != _attr_N: raise ValueError( "List argument 'embedding_indices' to 'enqueue_tpu_embedding_arbitrary_tensor_batch' Op with length %d " "must match length %d of argument 'sample_indices_or_row_splits'." % (len(embedding_indices), _attr_N)) if not isinstance(aggregation_weights, (list, tuple)): raise TypeError( "Expected list for 'aggregation_weights' argument to " "'enqueue_tpu_embedding_arbitrary_tensor_batch' Op, not %r." % aggregation_weights) if len(aggregation_weights) != _attr_N: raise ValueError( "List argument 'aggregation_weights' to 'enqueue_tpu_embedding_arbitrary_tensor_batch' Op with length %d " "must match length %d of argument 'sample_indices_or_row_splits'." % (len(aggregation_weights), _attr_N)) if device_ordinal is None: device_ordinal = -1 device_ordinal = _execute.make_int(device_ordinal, "device_ordinal") if combiners is None: combiners = [] if not isinstance(combiners, (list, tuple)): raise TypeError( "Expected list for 'combiners' argument to " "'enqueue_tpu_embedding_arbitrary_tensor_batch' Op, not %r." % combiners) combiners = [_execute.make_str(_s, "combiners") for _s in combiners] _, _, _op, _outputs = _op_def_library._apply_op_helper( "EnqueueTPUEmbeddingArbitraryTensorBatch", sample_indices_or_row_splits=sample_indices_or_row_splits, embedding_indices=embedding_indices, aggregation_weights=aggregation_weights, mode_override=mode_override, device_ordinal=device_ordinal, combiners=combiners, name=name) return _op EnqueueTPUEmbeddingArbitraryTensorBatch = tf_export("raw_ops.EnqueueTPUEmbeddingArbitraryTensorBatch")(_ops.to_raw_op(enqueue_tpu_embedding_arbitrary_tensor_batch)) def enqueue_tpu_embedding_arbitrary_tensor_batch_eager_fallback(sample_indices_or_row_splits: Annotated[List[Any], TV_EnqueueTPUEmbeddingArbitraryTensorBatch_T1], embedding_indices: Annotated[List[Any], TV_EnqueueTPUEmbeddingArbitraryTensorBatch_T2], aggregation_weights: Annotated[List[Any], TV_EnqueueTPUEmbeddingArbitraryTensorBatch_T3], mode_override: Annotated[Any, _atypes.String], device_ordinal: int, combiners, name, ctx): if not isinstance(sample_indices_or_row_splits, (list, tuple)): raise TypeError( "Expected list for 'sample_indices_or_row_splits' argument to " "'enqueue_tpu_embedding_arbitrary_tensor_batch' Op, not %r." % sample_indices_or_row_splits) _attr_N = len(sample_indices_or_row_splits) if not isinstance(embedding_indices, (list, tuple)): raise TypeError( "Expected list for 'embedding_indices' argument to " "'enqueue_tpu_embedding_arbitrary_tensor_batch' Op, not %r." % embedding_indices) if len(embedding_indices) != _attr_N: raise ValueError( "List argument 'embedding_indices' to 'enqueue_tpu_embedding_arbitrary_tensor_batch' Op with length %d " "must match length %d of argument 'sample_indices_or_row_splits'." % (len(embedding_indices), _attr_N)) if not isinstance(aggregation_weights, (list, tuple)): raise TypeError( "Expected list for 'aggregation_weights' argument to " "'enqueue_tpu_embedding_arbitrary_tensor_batch' Op, not %r." % aggregation_weights) if len(aggregation_weights) != _attr_N: raise ValueError( "List argument 'aggregation_weights' to 'enqueue_tpu_embedding_arbitrary_tensor_batch' Op with length %d " "must match length %d of argument 'sample_indices_or_row_splits'." % (len(aggregation_weights), _attr_N)) if device_ordinal is None: device_ordinal = -1 device_ordinal = _execute.make_int(device_ordinal, "device_ordinal") if combiners is None: combiners = [] if not isinstance(combiners, (list, tuple)): raise TypeError( "Expected list for 'combiners' argument to " "'enqueue_tpu_embedding_arbitrary_tensor_batch' Op, not %r." % combiners) combiners = [_execute.make_str(_s, "combiners") for _s in combiners] _attr_T1, sample_indices_or_row_splits = _execute.args_to_matching_eager(list(sample_indices_or_row_splits), ctx, [_dtypes.int32, _dtypes.int64, ], _dtypes.int32) _attr_T2, embedding_indices = _execute.args_to_matching_eager(list(embedding_indices), ctx, [_dtypes.int32, _dtypes.int64, ], _dtypes.int32) _attr_T3, aggregation_weights = _execute.args_to_matching_eager(list(aggregation_weights), ctx, [_dtypes.float32, _dtypes.float64, ], _dtypes.float32) mode_override = _ops.convert_to_tensor(mode_override, _dtypes.string) _inputs_flat = list(sample_indices_or_row_splits) + list(embedding_indices) + list(aggregation_weights) + [mode_override] _attrs = ("T1", _attr_T1, "T2", _attr_T2, "T3", _attr_T3, "N", _attr_N, "device_ordinal", device_ordinal, "combiners", combiners) _result = _execute.execute(b"EnqueueTPUEmbeddingArbitraryTensorBatch", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result def enqueue_tpu_embedding_integer_batch(batch: Annotated[List[Any], _atypes.Int32], mode_override: Annotated[Any, _atypes.String], device_ordinal:int=-1, name=None): r"""An op that enqueues a list of input batch tensors to TPUEmbedding. Args: batch: A list of at least 1 `Tensor` objects with type `int32`. A list of 1D tensors, one for each embedding table, containing the indices into the tables. mode_override: A `Tensor` of type `string`. A string input that overrides the mode specified in the TPUEmbeddingConfiguration. Supported values are {'unspecified', 'inference', 'training', 'backward_pass_only'}. When set to 'unspecified', the mode set in TPUEmbeddingConfiguration is used, otherwise mode_override is used. device_ordinal: An optional `int`. Defaults to `-1`. The TPU device to use. Should be >= 0 and less than the number of TPU cores in the task on which the node is placed. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "EnqueueTPUEmbeddingIntegerBatch", name, batch, mode_override, "device_ordinal", device_ordinal) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return enqueue_tpu_embedding_integer_batch_eager_fallback( batch, mode_override, device_ordinal=device_ordinal, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(batch, (list, tuple)): raise TypeError( "Expected list for 'batch' argument to " "'enqueue_tpu_embedding_integer_batch' Op, not %r." % batch) _attr_N = len(batch) if device_ordinal is None: device_ordinal = -1 device_ordinal = _execute.make_int(device_ordinal, "device_ordinal") _, _, _op, _outputs = _op_def_library._apply_op_helper( "EnqueueTPUEmbeddingIntegerBatch", batch=batch, mode_override=mode_override, device_ordinal=device_ordinal, name=name) return _op EnqueueTPUEmbeddingIntegerBatch = tf_export("raw_ops.EnqueueTPUEmbeddingIntegerBatch")(_ops.to_raw_op(enqueue_tpu_embedding_integer_batch)) def enqueue_tpu_embedding_integer_batch_eager_fallback(batch: Annotated[List[Any], _atypes.Int32], mode_override: Annotated[Any, _atypes.String], device_ordinal: int, name, ctx): if not isinstance(batch, (list, tuple)): raise TypeError( "Expected list for 'batch' argument to " "'enqueue_tpu_embedding_integer_batch' Op, not %r." % batch) _attr_N = len(batch) if device_ordinal is None: device_ordinal = -1 device_ordinal = _execute.make_int(device_ordinal, "device_ordinal") batch = _ops.convert_n_to_tensor(batch, _dtypes.int32) mode_override = _ops.convert_to_tensor(mode_override, _dtypes.string) _inputs_flat = list(batch) + [mode_override] _attrs = ("N", _attr_N, "device_ordinal", device_ordinal) _result = _execute.execute(b"EnqueueTPUEmbeddingIntegerBatch", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result TV_EnqueueTPUEmbeddingRaggedTensorBatch_T1 = TypeVar("TV_EnqueueTPUEmbeddingRaggedTensorBatch_T1", _atypes.Int32, _atypes.Int64) TV_EnqueueTPUEmbeddingRaggedTensorBatch_T2 = TypeVar("TV_EnqueueTPUEmbeddingRaggedTensorBatch_T2", _atypes.Int32, _atypes.Int64) TV_EnqueueTPUEmbeddingRaggedTensorBatch_T3 = TypeVar("TV_EnqueueTPUEmbeddingRaggedTensorBatch_T3", _atypes.Float32, _atypes.Float64) def enqueue_tpu_embedding_ragged_tensor_batch(sample_splits: Annotated[List[Any], TV_EnqueueTPUEmbeddingRaggedTensorBatch_T1], embedding_indices: Annotated[List[Any], TV_EnqueueTPUEmbeddingRaggedTensorBatch_T2], aggregation_weights: Annotated[List[Any], TV_EnqueueTPUEmbeddingRaggedTensorBatch_T3], mode_override: Annotated[Any, _atypes.String], table_ids, device_ordinal:int=-1, combiners=[], max_sequence_lengths=[], num_features=[], name=None): r"""Eases the porting of code that uses tf.nn.embedding_lookup(). sample_splits[i], embedding_indices[i] and aggregation_weights[i] correspond to the ith feature. table_ids[i] indicates which embedding table to look up ith feature. The tensors at corresponding positions in two of the input lists, embedding_indices and aggregation_weights, must have the same shape, i.e. rank 1 with dim_size() equal to the total number of lookups into the table described by the corresponding feature. Args: sample_splits: A list of at least 1 `Tensor` objects with the same type in: `int32`, `int64`. A list of rank 1 Tensors specifying the break points for splitting embedding_indices and aggregation_weights into rows. It corresponds to ids.row_splits in embedding_lookup(), when ids is a RaggedTensor. embedding_indices: A list with the same length as `sample_splits` of `Tensor` objects with the same type in: `int32`, `int64`. A list of rank 1 Tensors, indices into the embedding tables. It corresponds to ids.values in embedding_lookup(), when ids is a RaggedTensor. aggregation_weights: A list with the same length as `sample_splits` of `Tensor` objects with the same type in: `float32`, `float64`. A list of rank 1 Tensors containing per training example aggregation weights. It corresponds to the values field of a RaggedTensor with the same row_splits as ids in embedding_lookup(), when ids is a RaggedTensor. mode_override: A `Tensor` of type `string`. A string input that overrides the mode specified in the TPUEmbeddingConfiguration. Supported values are {'unspecified', 'inference', 'training', 'backward_pass_only'}. When set to 'unspecified', the mode set in TPUEmbeddingConfiguration is used, otherwise mode_override is used. table_ids: A list of `ints`. A list of integers specifying the identifier of the embedding table (offset of TableDescriptor in the TPUEmbeddingConfiguration) to lookup the corresponding input. The ith input is looked up using table_ids[i]. The size of the table_ids list must be equal to that of sample_indices, embedding_indices and aggregation_weights. device_ordinal: An optional `int`. Defaults to `-1`. The TPU device to use. Should be >= 0 and less than the number of TPU cores in the task on which the node is placed. combiners: An optional list of `strings`. Defaults to `[]`. A list of string scalars, one for each embedding table that specify how to normalize the embedding activations after weighted summation. Supported combiners are 'mean', 'sum', or 'sqrtn'. It is invalid to have the sum of the weights be 0 for 'mean' or the sum of the squared weights be 0 for 'sqrtn'. If combiners isn't passed, the default is to use 'sum' for all tables. max_sequence_lengths: An optional list of `ints`. Defaults to `[]`. num_features: An optional list of `ints`. Defaults to `[]`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "EnqueueTPUEmbeddingRaggedTensorBatch", name, sample_splits, embedding_indices, aggregation_weights, mode_override, "device_ordinal", device_ordinal, "combiners", combiners, "table_ids", table_ids, "max_sequence_lengths", max_sequence_lengths, "num_features", num_features) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return enqueue_tpu_embedding_ragged_tensor_batch_eager_fallback( sample_splits, embedding_indices, aggregation_weights, mode_override, device_ordinal=device_ordinal, combiners=combiners, table_ids=table_ids, max_sequence_lengths=max_sequence_lengths, num_features=num_features, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(sample_splits, (list, tuple)): raise TypeError( "Expected list for 'sample_splits' argument to " "'enqueue_tpu_embedding_ragged_tensor_batch' Op, not %r." % sample_splits) _attr_N = len(sample_splits) if not isinstance(embedding_indices, (list, tuple)): raise TypeError( "Expected list for 'embedding_indices' argument to " "'enqueue_tpu_embedding_ragged_tensor_batch' Op, not %r." % embedding_indices) if len(embedding_indices) != _attr_N: raise ValueError( "List argument 'embedding_indices' to 'enqueue_tpu_embedding_ragged_tensor_batch' Op with length %d " "must match length %d of argument 'sample_splits'." % (len(embedding_indices), _attr_N)) if not isinstance(aggregation_weights, (list, tuple)): raise TypeError( "Expected list for 'aggregation_weights' argument to " "'enqueue_tpu_embedding_ragged_tensor_batch' Op, not %r." % aggregation_weights) if len(aggregation_weights) != _attr_N: raise ValueError( "List argument 'aggregation_weights' to 'enqueue_tpu_embedding_ragged_tensor_batch' Op with length %d " "must match length %d of argument 'sample_splits'." % (len(aggregation_weights), _attr_N)) if not isinstance(table_ids, (list, tuple)): raise TypeError( "Expected list for 'table_ids' argument to " "'enqueue_tpu_embedding_ragged_tensor_batch' Op, not %r." % table_ids) table_ids = [_execute.make_int(_i, "table_ids") for _i in table_ids] if device_ordinal is None: device_ordinal = -1 device_ordinal = _execute.make_int(device_ordinal, "device_ordinal") if combiners is None: combiners = [] if not isinstance(combiners, (list, tuple)): raise TypeError( "Expected list for 'combiners' argument to " "'enqueue_tpu_embedding_ragged_tensor_batch' Op, not %r." % combiners) combiners = [_execute.make_str(_s, "combiners") for _s in combiners] if max_sequence_lengths is None: max_sequence_lengths = [] if not isinstance(max_sequence_lengths, (list, tuple)): raise TypeError( "Expected list for 'max_sequence_lengths' argument to " "'enqueue_tpu_embedding_ragged_tensor_batch' Op, not %r." % max_sequence_lengths) max_sequence_lengths = [_execute.make_int(_i, "max_sequence_lengths") for _i in max_sequence_lengths] if num_features is None: num_features = [] if not isinstance(num_features, (list, tuple)): raise TypeError( "Expected list for 'num_features' argument to " "'enqueue_tpu_embedding_ragged_tensor_batch' Op, not %r." % num_features) num_features = [_execute.make_int(_i, "num_features") for _i in num_features] _, _, _op, _outputs = _op_def_library._apply_op_helper( "EnqueueTPUEmbeddingRaggedTensorBatch", sample_splits=sample_splits, embedding_indices=embedding_indices, aggregation_weights=aggregation_weights, mode_override=mode_override, table_ids=table_ids, device_ordinal=device_ordinal, combiners=combiners, max_sequence_lengths=max_sequence_lengths, num_features=num_features, name=name) return _op EnqueueTPUEmbeddingRaggedTensorBatch = tf_export("raw_ops.EnqueueTPUEmbeddingRaggedTensorBatch")(_ops.to_raw_op(enqueue_tpu_embedding_ragged_tensor_batch)) def enqueue_tpu_embedding_ragged_tensor_batch_eager_fallback(sample_splits: Annotated[List[Any], TV_EnqueueTPUEmbeddingRaggedTensorBatch_T1], embedding_indices: Annotated[List[Any], TV_EnqueueTPUEmbeddingRaggedTensorBatch_T2], aggregation_weights: Annotated[List[Any], TV_EnqueueTPUEmbeddingRaggedTensorBatch_T3], mode_override: Annotated[Any, _atypes.String], table_ids, device_ordinal: int, combiners, max_sequence_lengths, num_features, name, ctx): if not isinstance(sample_splits, (list, tuple)): raise TypeError( "Expected list for 'sample_splits' argument to " "'enqueue_tpu_embedding_ragged_tensor_batch' Op, not %r." % sample_splits) _attr_N = len(sample_splits) if not isinstance(embedding_indices, (list, tuple)): raise TypeError( "Expected list for 'embedding_indices' argument to " "'enqueue_tpu_embedding_ragged_tensor_batch' Op, not %r." % embedding_indices) if len(embedding_indices) != _attr_N: raise ValueError( "List argument 'embedding_indices' to 'enqueue_tpu_embedding_ragged_tensor_batch' Op with length %d " "must match length %d of argument 'sample_splits'." % (len(embedding_indices), _attr_N)) if not isinstance(aggregation_weights, (list, tuple)): raise TypeError( "Expected list for 'aggregation_weights' argument to " "'enqueue_tpu_embedding_ragged_tensor_batch' Op, not %r." % aggregation_weights) if len(aggregation_weights) != _attr_N: raise ValueError( "List argument 'aggregation_weights' to 'enqueue_tpu_embedding_ragged_tensor_batch' Op with length %d " "must match length %d of argument 'sample_splits'." % (len(aggregation_weights), _attr_N)) if not isinstance(table_ids, (list, tuple)): raise TypeError( "Expected list for 'table_ids' argument to " "'enqueue_tpu_embedding_ragged_tensor_batch' Op, not %r." % table_ids) table_ids = [_execute.make_int(_i, "table_ids") for _i in table_ids] if device_ordinal is None: device_ordinal = -1 device_ordinal = _execute.make_int(device_ordinal, "device_ordinal") if combiners is None: combiners = [] if not isinstance(combiners, (list, tuple)): raise TypeError( "Expected list for 'combiners' argument to " "'enqueue_tpu_embedding_ragged_tensor_batch' Op, not %r." % combiners) combiners = [_execute.make_str(_s, "combiners") for _s in combiners] if max_sequence_lengths is None: max_sequence_lengths = [] if not isinstance(max_sequence_lengths, (list, tuple)): raise TypeError( "Expected list for 'max_sequence_lengths' argument to " "'enqueue_tpu_embedding_ragged_tensor_batch' Op, not %r." % max_sequence_lengths) max_sequence_lengths = [_execute.make_int(_i, "max_sequence_lengths") for _i in max_sequence_lengths] if num_features is None: num_features = [] if not isinstance(num_features, (list, tuple)): raise TypeError( "Expected list for 'num_features' argument to " "'enqueue_tpu_embedding_ragged_tensor_batch' Op, not %r." % num_features) num_features = [_execute.make_int(_i, "num_features") for _i in num_features] _attr_T1, sample_splits = _execute.args_to_matching_eager(list(sample_splits), ctx, [_dtypes.int32, _dtypes.int64, ], _dtypes.int32) _attr_T2, embedding_indices = _execute.args_to_matching_eager(list(embedding_indices), ctx, [_dtypes.int32, _dtypes.int64, ], _dtypes.int32) _attr_T3, aggregation_weights = _execute.args_to_matching_eager(list(aggregation_weights), ctx, [_dtypes.float32, _dtypes.float64, ], _dtypes.float32) mode_override = _ops.convert_to_tensor(mode_override, _dtypes.string) _inputs_flat = list(sample_splits) + list(embedding_indices) + list(aggregation_weights) + [mode_override] _attrs = ("T1", _attr_T1, "T2", _attr_T2, "T3", _attr_T3, "N", _attr_N, "device_ordinal", device_ordinal, "combiners", combiners, "table_ids", table_ids, "max_sequence_lengths", max_sequence_lengths, "num_features", num_features) _result = _execute.execute(b"EnqueueTPUEmbeddingRaggedTensorBatch", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result TV_EnqueueTPUEmbeddingSparseBatch_T1 = TypeVar("TV_EnqueueTPUEmbeddingSparseBatch_T1", _atypes.Int32, _atypes.Int64) TV_EnqueueTPUEmbeddingSparseBatch_T2 = TypeVar("TV_EnqueueTPUEmbeddingSparseBatch_T2", _atypes.Int32, _atypes.Int64) TV_EnqueueTPUEmbeddingSparseBatch_T3 = TypeVar("TV_EnqueueTPUEmbeddingSparseBatch_T3", _atypes.Float32, _atypes.Float64) def enqueue_tpu_embedding_sparse_batch(sample_indices: Annotated[List[Any], TV_EnqueueTPUEmbeddingSparseBatch_T1], embedding_indices: Annotated[List[Any], TV_EnqueueTPUEmbeddingSparseBatch_T2], aggregation_weights: Annotated[List[Any], TV_EnqueueTPUEmbeddingSparseBatch_T3], mode_override: Annotated[Any, _atypes.String], device_ordinal:int=-1, combiners=[], name=None): r"""An op that enqueues TPUEmbedding input indices from a SparseTensor. This Op eases the porting of code that uses embedding_lookup_sparse(), although some Python preprocessing of the SparseTensor arguments to embedding_lookup_sparse() is required to produce the arguments to this Op, since only a single EnqueueTPUEmbeddingSparseBatch Op is allowed per training step. The tensors at corresponding positions in the three input lists must have the same shape, i.e. rank 1 with dim_size() equal to the total number of lookups into the table described by the corresponding table_id. Args: sample_indices: A list of at least 1 `Tensor` objects with the same type in: `int32`, `int64`. A list of rank 1 Tensors specifying the training example and feature to which the corresponding embedding_indices and aggregation_weights values belong. sample_indices[i] must equal b * nf + f, where nf is the number of features from the corresponding table, f is in [0, nf), and b is in [0, batch size). embedding_indices: A list with the same length as `sample_indices` of `Tensor` objects with the same type in: `int32`, `int64`. A list of rank 1 Tensors, indices into the embedding tables. aggregation_weights: A list with the same length as `sample_indices` of `Tensor` objects with the same type in: `float32`, `float64`. A list of rank 1 Tensors containing per sample -- i.e. per (training example, feature) -- aggregation weights. mode_override: A `Tensor` of type `string`. A string input that overrides the mode specified in the TPUEmbeddingConfiguration. Supported values are {'unspecified', 'inference', 'training', 'backward_pass_only'}. When set to 'unspecified', the mode set in TPUEmbeddingConfiguration is used, otherwise mode_override is used. device_ordinal: An optional `int`. Defaults to `-1`. The TPU device to use. Should be >= 0 and less than the number of TPU cores in the task on which the node is placed. combiners: An optional list of `strings`. Defaults to `[]`. A list of string scalars, one for each embedding table that specify how to normalize the embedding activations after weighted summation. Supported combiners are 'mean', 'sum', or 'sqrtn'. It is invalid to have the sum of the weights be 0 for 'mean' or the sum of the squared weights be 0 for 'sqrtn'. If combiners isn't passed, the default is to use 'sum' for all tables. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "EnqueueTPUEmbeddingSparseBatch", name, sample_indices, embedding_indices, aggregation_weights, mode_override, "device_ordinal", device_ordinal, "combiners", combiners) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return enqueue_tpu_embedding_sparse_batch_eager_fallback( sample_indices, embedding_indices, aggregation_weights, mode_override, device_ordinal=device_ordinal, combiners=combiners, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(sample_indices, (list, tuple)): raise TypeError( "Expected list for 'sample_indices' argument to " "'enqueue_tpu_embedding_sparse_batch' Op, not %r." % sample_indices) _attr_N = len(sample_indices) if not isinstance(embedding_indices, (list, tuple)): raise TypeError( "Expected list for 'embedding_indices' argument to " "'enqueue_tpu_embedding_sparse_batch' Op, not %r." % embedding_indices) if len(embedding_indices) != _attr_N: raise ValueError( "List argument 'embedding_indices' to 'enqueue_tpu_embedding_sparse_batch' Op with length %d " "must match length %d of argument 'sample_indices'." % (len(embedding_indices), _attr_N)) if not isinstance(aggregation_weights, (list, tuple)): raise TypeError( "Expected list for 'aggregation_weights' argument to " "'enqueue_tpu_embedding_sparse_batch' Op, not %r." % aggregation_weights) if len(aggregation_weights) != _attr_N: raise ValueError( "List argument 'aggregation_weights' to 'enqueue_tpu_embedding_sparse_batch' Op with length %d " "must match length %d of argument 'sample_indices'." % (len(aggregation_weights), _attr_N)) if device_ordinal is None: device_ordinal = -1 device_ordinal = _execute.make_int(device_ordinal, "device_ordinal") if combiners is None: combiners = [] if not isinstance(combiners, (list, tuple)): raise TypeError( "Expected list for 'combiners' argument to " "'enqueue_tpu_embedding_sparse_batch' Op, not %r." % combiners) combiners = [_execute.make_str(_s, "combiners") for _s in combiners] _, _, _op, _outputs = _op_def_library._apply_op_helper( "EnqueueTPUEmbeddingSparseBatch", sample_indices=sample_indices, embedding_indices=embedding_indices, aggregation_weights=aggregation_weights, mode_override=mode_override, device_ordinal=device_ordinal, combiners=combiners, name=name) return _op EnqueueTPUEmbeddingSparseBatch = tf_export("raw_ops.EnqueueTPUEmbeddingSparseBatch")(_ops.to_raw_op(enqueue_tpu_embedding_sparse_batch)) def enqueue_tpu_embedding_sparse_batch_eager_fallback(sample_indices: Annotated[List[Any], TV_EnqueueTPUEmbeddingSparseBatch_T1], embedding_indices: Annotated[List[Any], TV_EnqueueTPUEmbeddingSparseBatch_T2], aggregation_weights: Annotated[List[Any], TV_EnqueueTPUEmbeddingSparseBatch_T3], mode_override: Annotated[Any, _atypes.String], device_ordinal: int, combiners, name, ctx): if not isinstance(sample_indices, (list, tuple)): raise TypeError( "Expected list for 'sample_indices' argument to " "'enqueue_tpu_embedding_sparse_batch' Op, not %r." % sample_indices) _attr_N = len(sample_indices) if not isinstance(embedding_indices, (list, tuple)): raise TypeError( "Expected list for 'embedding_indices' argument to " "'enqueue_tpu_embedding_sparse_batch' Op, not %r." % embedding_indices) if len(embedding_indices) != _attr_N: raise ValueError( "List argument 'embedding_indices' to 'enqueue_tpu_embedding_sparse_batch' Op with length %d " "must match length %d of argument 'sample_indices'." % (len(embedding_indices), _attr_N)) if not isinstance(aggregation_weights, (list, tuple)): raise TypeError( "Expected list for 'aggregation_weights' argument to " "'enqueue_tpu_embedding_sparse_batch' Op, not %r." % aggregation_weights) if len(aggregation_weights) != _attr_N: raise ValueError( "List argument 'aggregation_weights' to 'enqueue_tpu_embedding_sparse_batch' Op with length %d " "must match length %d of argument 'sample_indices'." % (len(aggregation_weights), _attr_N)) if device_ordinal is None: device_ordinal = -1 device_ordinal = _execute.make_int(device_ordinal, "device_ordinal") if combiners is None: combiners = [] if not isinstance(combiners, (list, tuple)): raise TypeError( "Expected list for 'combiners' argument to " "'enqueue_tpu_embedding_sparse_batch' Op, not %r." % combiners) combiners = [_execute.make_str(_s, "combiners") for _s in combiners] _attr_T1, sample_indices = _execute.args_to_matching_eager(list(sample_indices), ctx, [_dtypes.int32, _dtypes.int64, ], _dtypes.int32) _attr_T2, embedding_indices = _execute.args_to_matching_eager(list(embedding_indices), ctx, [_dtypes.int32, _dtypes.int64, ], _dtypes.int32) _attr_T3, aggregation_weights = _execute.args_to_matching_eager(list(aggregation_weights), ctx, [_dtypes.float32, _dtypes.float64, ], _dtypes.float32) mode_override = _ops.convert_to_tensor(mode_override, _dtypes.string) _inputs_flat = list(sample_indices) + list(embedding_indices) + list(aggregation_weights) + [mode_override] _attrs = ("T1", _attr_T1, "T2", _attr_T2, "T3", _attr_T3, "N", _attr_N, "device_ordinal", device_ordinal, "combiners", combiners) _result = _execute.execute(b"EnqueueTPUEmbeddingSparseBatch", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result TV_EnqueueTPUEmbeddingSparseTensorBatch_T1 = TypeVar("TV_EnqueueTPUEmbeddingSparseTensorBatch_T1", _atypes.Int32, _atypes.Int64) TV_EnqueueTPUEmbeddingSparseTensorBatch_T2 = TypeVar("TV_EnqueueTPUEmbeddingSparseTensorBatch_T2", _atypes.Int32, _atypes.Int64) TV_EnqueueTPUEmbeddingSparseTensorBatch_T3 = TypeVar("TV_EnqueueTPUEmbeddingSparseTensorBatch_T3", _atypes.Float32, _atypes.Float64) def enqueue_tpu_embedding_sparse_tensor_batch(sample_indices: Annotated[List[Any], TV_EnqueueTPUEmbeddingSparseTensorBatch_T1], embedding_indices: Annotated[List[Any], TV_EnqueueTPUEmbeddingSparseTensorBatch_T2], aggregation_weights: Annotated[List[Any], TV_EnqueueTPUEmbeddingSparseTensorBatch_T3], mode_override: Annotated[Any, _atypes.String], table_ids, device_ordinal:int=-1, combiners=[], max_sequence_lengths=[], num_features=[], name=None): r"""Eases the porting of code that uses tf.nn.embedding_lookup_sparse(). sample_indices[i], embedding_indices[i] and aggregation_weights[i] correspond to the ith feature. table_ids[i] indicates which embedding table to look up ith feature. The tensors at corresponding positions in the three input lists (sample_indices, embedding_indices and aggregation_weights) must have the same shape, i.e. rank 1 with dim_size() equal to the total number of lookups into the table described by the corresponding feature. Args: sample_indices: A list of at least 1 `Tensor` objects with the same type in: `int32`, `int64`. A list of rank 1 Tensors specifying the training example to which the corresponding embedding_indices and aggregation_weights values belong. It corresponds to sp_ids.indices[:,0] in embedding_lookup_sparse(). embedding_indices: A list with the same length as `sample_indices` of `Tensor` objects with the same type in: `int32`, `int64`. A list of rank 1 Tensors, indices into the embedding tables. It corresponds to sp_ids.values in embedding_lookup_sparse(). aggregation_weights: A list with the same length as `sample_indices` of `Tensor` objects with the same type in: `float32`, `float64`. A list of rank 1 Tensors containing per training example aggregation weights. It corresponds to sp_weights.values in embedding_lookup_sparse(). mode_override: A `Tensor` of type `string`. A string input that overrides the mode specified in the TPUEmbeddingConfiguration. Supported values are {'unspecified', 'inference', 'training', 'backward_pass_only'}. When set to 'unspecified', the mode set in TPUEmbeddingConfiguration is used, otherwise mode_override is used. table_ids: A list of `ints`. A list of integers specifying the identifier of the embedding table (offset of TableDescriptor in the TPUEmbeddingConfiguration) to lookup the corresponding input. The ith input is looked up using table_ids[i]. The size of the table_ids list must be equal to that of sample_indices, embedding_indices and aggregation_weights. device_ordinal: An optional `int`. Defaults to `-1`. The TPU device to use. Should be >= 0 and less than the number of TPU cores in the task on which the node is placed. combiners: An optional list of `strings`. Defaults to `[]`. A list of string scalars, one for each embedding table that specify how to normalize the embedding activations after weighted summation. Supported combiners are 'mean', 'sum', or 'sqrtn'. It is invalid to have the sum of the weights be 0 for 'mean' or the sum of the squared weights be 0 for 'sqrtn'. If combiners isn't passed, the default is to use 'sum' for all tables. max_sequence_lengths: An optional list of `ints`. Defaults to `[]`. num_features: An optional list of `ints`. Defaults to `[]`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "EnqueueTPUEmbeddingSparseTensorBatch", name, sample_indices, embedding_indices, aggregation_weights, mode_override, "device_ordinal", device_ordinal, "combiners", combiners, "table_ids", table_ids, "max_sequence_lengths", max_sequence_lengths, "num_features", num_features) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return enqueue_tpu_embedding_sparse_tensor_batch_eager_fallback( sample_indices, embedding_indices, aggregation_weights, mode_override, device_ordinal=device_ordinal, combiners=combiners, table_ids=table_ids, max_sequence_lengths=max_sequence_lengths, num_features=num_features, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(sample_indices, (list, tuple)): raise TypeError( "Expected list for 'sample_indices' argument to " "'enqueue_tpu_embedding_sparse_tensor_batch' Op, not %r." % sample_indices) _attr_N = len(sample_indices) if not isinstance(embedding_indices, (list, tuple)): raise TypeError( "Expected list for 'embedding_indices' argument to " "'enqueue_tpu_embedding_sparse_tensor_batch' Op, not %r." % embedding_indices) if len(embedding_indices) != _attr_N: raise ValueError( "List argument 'embedding_indices' to 'enqueue_tpu_embedding_sparse_tensor_batch' Op with length %d " "must match length %d of argument 'sample_indices'." % (len(embedding_indices), _attr_N)) if not isinstance(aggregation_weights, (list, tuple)): raise TypeError( "Expected list for 'aggregation_weights' argument to " "'enqueue_tpu_embedding_sparse_tensor_batch' Op, not %r." % aggregation_weights) if len(aggregation_weights) != _attr_N: raise ValueError( "List argument 'aggregation_weights' to 'enqueue_tpu_embedding_sparse_tensor_batch' Op with length %d " "must match length %d of argument 'sample_indices'." % (len(aggregation_weights), _attr_N)) if not isinstance(table_ids, (list, tuple)): raise TypeError( "Expected list for 'table_ids' argument to " "'enqueue_tpu_embedding_sparse_tensor_batch' Op, not %r." % table_ids) table_ids = [_execute.make_int(_i, "table_ids") for _i in table_ids] if device_ordinal is None: device_ordinal = -1 device_ordinal = _execute.make_int(device_ordinal, "device_ordinal") if combiners is None: combiners = [] if not isinstance(combiners, (list, tuple)): raise TypeError( "Expected list for 'combiners' argument to " "'enqueue_tpu_embedding_sparse_tensor_batch' Op, not %r." % combiners) combiners = [_execute.make_str(_s, "combiners") for _s in combiners] if max_sequence_lengths is None: max_sequence_lengths = [] if not isinstance(max_sequence_lengths, (list, tuple)): raise TypeError( "Expected list for 'max_sequence_lengths' argument to " "'enqueue_tpu_embedding_sparse_tensor_batch' Op, not %r." % max_sequence_lengths) max_sequence_lengths = [_execute.make_int(_i, "max_sequence_lengths") for _i in max_sequence_lengths] if num_features is None: num_features = [] if not isinstance(num_features, (list, tuple)): raise TypeError( "Expected list for 'num_features' argument to " "'enqueue_tpu_embedding_sparse_tensor_batch' Op, not %r." % num_features) num_features = [_execute.make_int(_i, "num_features") for _i in num_features] _, _, _op, _outputs = _op_def_library._apply_op_helper( "EnqueueTPUEmbeddingSparseTensorBatch", sample_indices=sample_indices, embedding_indices=embedding_indices, aggregation_weights=aggregation_weights, mode_override=mode_override, table_ids=table_ids, device_ordinal=device_ordinal, combiners=combiners, max_sequence_lengths=max_sequence_lengths, num_features=num_features, name=name) return _op EnqueueTPUEmbeddingSparseTensorBatch = tf_export("raw_ops.EnqueueTPUEmbeddingSparseTensorBatch")(_ops.to_raw_op(enqueue_tpu_embedding_sparse_tensor_batch)) def enqueue_tpu_embedding_sparse_tensor_batch_eager_fallback(sample_indices: Annotated[List[Any], TV_EnqueueTPUEmbeddingSparseTensorBatch_T1], embedding_indices: Annotated[List[Any], TV_EnqueueTPUEmbeddingSparseTensorBatch_T2], aggregation_weights: Annotated[List[Any], TV_EnqueueTPUEmbeddingSparseTensorBatch_T3], mode_override: Annotated[Any, _atypes.String], table_ids, device_ordinal: int, combiners, max_sequence_lengths, num_features, name, ctx): if not isinstance(sample_indices, (list, tuple)): raise TypeError( "Expected list for 'sample_indices' argument to " "'enqueue_tpu_embedding_sparse_tensor_batch' Op, not %r." % sample_indices) _attr_N = len(sample_indices) if not isinstance(embedding_indices, (list, tuple)): raise TypeError( "Expected list for 'embedding_indices' argument to " "'enqueue_tpu_embedding_sparse_tensor_batch' Op, not %r." % embedding_indices) if len(embedding_indices) != _attr_N: raise ValueError( "List argument 'embedding_indices' to 'enqueue_tpu_embedding_sparse_tensor_batch' Op with length %d " "must match length %d of argument 'sample_indices'." % (len(embedding_indices), _attr_N)) if not isinstance(aggregation_weights, (list, tuple)): raise TypeError( "Expected list for 'aggregation_weights' argument to " "'enqueue_tpu_embedding_sparse_tensor_batch' Op, not %r." % aggregation_weights) if len(aggregation_weights) != _attr_N: raise ValueError( "List argument 'aggregation_weights' to 'enqueue_tpu_embedding_sparse_tensor_batch' Op with length %d " "must match length %d of argument 'sample_indices'." % (len(aggregation_weights), _attr_N)) if not isinstance(table_ids, (list, tuple)): raise TypeError( "Expected list for 'table_ids' argument to " "'enqueue_tpu_embedding_sparse_tensor_batch' Op, not %r." % table_ids) table_ids = [_execute.make_int(_i, "table_ids") for _i in table_ids] if device_ordinal is None: device_ordinal = -1 device_ordinal = _execute.make_int(device_ordinal, "device_ordinal") if combiners is None: combiners = [] if not isinstance(combiners, (list, tuple)): raise TypeError( "Expected list for 'combiners' argument to " "'enqueue_tpu_embedding_sparse_tensor_batch' Op, not %r." % combiners) combiners = [_execute.make_str(_s, "combiners") for _s in combiners] if max_sequence_lengths is None: max_sequence_lengths = [] if not isinstance(max_sequence_lengths, (list, tuple)): raise TypeError( "Expected list for 'max_sequence_lengths' argument to " "'enqueue_tpu_embedding_sparse_tensor_batch' Op, not %r." % max_sequence_lengths) max_sequence_lengths = [_execute.make_int(_i, "max_sequence_lengths") for _i in max_sequence_lengths] if num_features is None: num_features = [] if not isinstance(num_features, (list, tuple)): raise TypeError( "Expected list for 'num_features' argument to " "'enqueue_tpu_embedding_sparse_tensor_batch' Op, not %r." % num_features) num_features = [_execute.make_int(_i, "num_features") for _i in num_features] _attr_T1, sample_indices = _execute.args_to_matching_eager(list(sample_indices), ctx, [_dtypes.int32, _dtypes.int64, ], _dtypes.int32) _attr_T2, embedding_indices = _execute.args_to_matching_eager(list(embedding_indices), ctx, [_dtypes.int32, _dtypes.int64, ], _dtypes.int32) _attr_T3, aggregation_weights = _execute.args_to_matching_eager(list(aggregation_weights), ctx, [_dtypes.float32, _dtypes.float64, ], _dtypes.float32) mode_override = _ops.convert_to_tensor(mode_override, _dtypes.string) _inputs_flat = list(sample_indices) + list(embedding_indices) + list(aggregation_weights) + [mode_override] _attrs = ("T1", _attr_T1, "T2", _attr_T2, "T3", _attr_T3, "N", _attr_N, "device_ordinal", device_ordinal, "combiners", combiners, "table_ids", table_ids, "max_sequence_lengths", max_sequence_lengths, "num_features", num_features) _result = _execute.execute(b"EnqueueTPUEmbeddingSparseTensorBatch", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result TV_InfeedDequeue_dtype = TypeVar("TV_InfeedDequeue_dtype", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def infeed_dequeue(dtype: TV_InfeedDequeue_dtype, shape, name=None) -> Annotated[Any, TV_InfeedDequeue_dtype]: r"""A placeholder op for a value that will be fed into the computation. Args: dtype: A `tf.DType`. The type of elements in the tensor. shape: A `tf.TensorShape` or list of `ints`. The shape of the tensor. name: A name for the operation (optional). Returns: A `Tensor` of type `dtype`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "InfeedDequeue", name, "dtype", dtype, "shape", shape) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return infeed_dequeue_eager_fallback( dtype=dtype, shape=shape, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. dtype = _execute.make_type(dtype, "dtype") shape = _execute.make_shape(shape, "shape") _, _, _op, _outputs = _op_def_library._apply_op_helper( "InfeedDequeue", dtype=dtype, shape=shape, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("dtype", _op._get_attr_type("dtype"), "shape", _op.get_attr("shape")) _inputs_flat = _op.inputs _execute.record_gradient( "InfeedDequeue", _inputs_flat, _attrs, _result) _result, = _result return _result InfeedDequeue = tf_export("raw_ops.InfeedDequeue")(_ops.to_raw_op(infeed_dequeue)) def infeed_dequeue_eager_fallback(dtype: TV_InfeedDequeue_dtype, shape, name, ctx) -> Annotated[Any, TV_InfeedDequeue_dtype]: dtype = _execute.make_type(dtype, "dtype") shape = _execute.make_shape(shape, "shape") _inputs_flat = [] _attrs = ("dtype", dtype, "shape", shape) _result = _execute.execute(b"InfeedDequeue", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "InfeedDequeue", _inputs_flat, _attrs, _result) _result, = _result return _result def infeed_dequeue_tuple(dtypes, shapes, name=None): r"""Fetches multiple values from infeed as an XLA tuple. Args: dtypes: A list of `tf.DTypes` that has length `>= 1`. The element types of each element in `outputs`. shapes: A list of shapes (each a `tf.TensorShape` or list of `ints`). The shapes of each tensor in `outputs`. name: A name for the operation (optional). Returns: A list of `Tensor` objects of type `dtypes`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "InfeedDequeueTuple", name, "dtypes", dtypes, "shapes", shapes) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return infeed_dequeue_tuple_eager_fallback( dtypes=dtypes, shapes=shapes, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'infeed_dequeue_tuple' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if not isinstance(shapes, (list, tuple)): raise TypeError( "Expected list for 'shapes' argument to " "'infeed_dequeue_tuple' Op, not %r." % shapes) shapes = [_execute.make_shape(_s, "shapes") for _s in shapes] _, _, _op, _outputs = _op_def_library._apply_op_helper( "InfeedDequeueTuple", dtypes=dtypes, shapes=shapes, name=name) _result = _outputs[:] if not _result: return _op if _execute.must_record_gradient(): _attrs = ("dtypes", _op.get_attr("dtypes"), "shapes", _op.get_attr("shapes")) _inputs_flat = _op.inputs _execute.record_gradient( "InfeedDequeueTuple", _inputs_flat, _attrs, _result) return _result InfeedDequeueTuple = tf_export("raw_ops.InfeedDequeueTuple")(_ops.to_raw_op(infeed_dequeue_tuple)) def infeed_dequeue_tuple_eager_fallback(dtypes, shapes, name, ctx): if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'infeed_dequeue_tuple' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if not isinstance(shapes, (list, tuple)): raise TypeError( "Expected list for 'shapes' argument to " "'infeed_dequeue_tuple' Op, not %r." % shapes) shapes = [_execute.make_shape(_s, "shapes") for _s in shapes] _inputs_flat = [] _attrs = ("dtypes", dtypes, "shapes", shapes) _result = _execute.execute(b"InfeedDequeueTuple", len(dtypes), inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "InfeedDequeueTuple", _inputs_flat, _attrs, _result) return _result TV_InfeedEnqueue_dtype = TypeVar("TV_InfeedEnqueue_dtype", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def infeed_enqueue(input: Annotated[Any, TV_InfeedEnqueue_dtype], shape=[], layout=[], device_ordinal:int=-1, name=None): r"""An op which feeds a single Tensor value into the computation. Args: input: A `Tensor`. A tensor that will be provided using the infeed mechanism. shape: An optional `tf.TensorShape` or list of `ints`. Defaults to `[]`. The shape of the tensor. layout: An optional list of `ints`. Defaults to `[]`. A vector holding the requested layout in minor-to-major sequence. If a layout attribute is passed, but its values are all -1, the layout will be computed by the infeed operation. device_ordinal: An optional `int`. Defaults to `-1`. The TPU device to use. This should be -1 when the Op is running on a TPU device, and >= 0 when the Op is running on the CPU device. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "InfeedEnqueue", name, input, "shape", shape, "layout", layout, "device_ordinal", device_ordinal) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return infeed_enqueue_eager_fallback( input, shape=shape, layout=layout, device_ordinal=device_ordinal, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if shape is None: shape = [] shape = _execute.make_shape(shape, "shape") if layout is None: layout = [] if not isinstance(layout, (list, tuple)): raise TypeError( "Expected list for 'layout' argument to " "'infeed_enqueue' Op, not %r." % layout) layout = [_execute.make_int(_i, "layout") for _i in layout] if device_ordinal is None: device_ordinal = -1 device_ordinal = _execute.make_int(device_ordinal, "device_ordinal") _, _, _op, _outputs = _op_def_library._apply_op_helper( "InfeedEnqueue", input=input, shape=shape, layout=layout, device_ordinal=device_ordinal, name=name) return _op InfeedEnqueue = tf_export("raw_ops.InfeedEnqueue")(_ops.to_raw_op(infeed_enqueue)) def infeed_enqueue_eager_fallback(input: Annotated[Any, TV_InfeedEnqueue_dtype], shape, layout, device_ordinal: int, name, ctx): if shape is None: shape = [] shape = _execute.make_shape(shape, "shape") if layout is None: layout = [] if not isinstance(layout, (list, tuple)): raise TypeError( "Expected list for 'layout' argument to " "'infeed_enqueue' Op, not %r." % layout) layout = [_execute.make_int(_i, "layout") for _i in layout] if device_ordinal is None: device_ordinal = -1 device_ordinal = _execute.make_int(device_ordinal, "device_ordinal") _attr_dtype, (input,) = _execute.args_to_matching_eager([input], ctx, []) _inputs_flat = [input] _attrs = ("dtype", _attr_dtype, "shape", shape, "layout", layout, "device_ordinal", device_ordinal) _result = _execute.execute(b"InfeedEnqueue", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result def infeed_enqueue_prelinearized_buffer(input: Annotated[Any, _atypes.Variant], device_ordinal:int=-1, name=None): r"""An op which enqueues prelinearized buffer into TPU infeed. Args: input: A `Tensor` of type `variant`. A variant tensor representing linearized output. device_ordinal: An optional `int`. Defaults to `-1`. The TPU device to use. This should be -1 when the Op is running on a TPU device and = 0 when the Op is running on the CPU device. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "InfeedEnqueuePrelinearizedBuffer", name, input, "device_ordinal", device_ordinal) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return infeed_enqueue_prelinearized_buffer_eager_fallback( input, device_ordinal=device_ordinal, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if device_ordinal is None: device_ordinal = -1 device_ordinal = _execute.make_int(device_ordinal, "device_ordinal") _, _, _op, _outputs = _op_def_library._apply_op_helper( "InfeedEnqueuePrelinearizedBuffer", input=input, device_ordinal=device_ordinal, name=name) return _op InfeedEnqueuePrelinearizedBuffer = tf_export("raw_ops.InfeedEnqueuePrelinearizedBuffer")(_ops.to_raw_op(infeed_enqueue_prelinearized_buffer)) def infeed_enqueue_prelinearized_buffer_eager_fallback(input: Annotated[Any, _atypes.Variant], device_ordinal: int, name, ctx): if device_ordinal is None: device_ordinal = -1 device_ordinal = _execute.make_int(device_ordinal, "device_ordinal") input = _ops.convert_to_tensor(input, _dtypes.variant) _inputs_flat = [input] _attrs = ("device_ordinal", device_ordinal) _result = _execute.execute(b"InfeedEnqueuePrelinearizedBuffer", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result def infeed_enqueue_tuple(inputs, shapes, layouts=[], device_ordinal:int=-1, name=None): r"""Feeds multiple Tensor values into the computation as an XLA tuple. Args: inputs: A list of `Tensor` objects. A list of tensors that will be provided using the infeed mechanism. shapes: A list of shapes (each a `tf.TensorShape` or list of `ints`). The shapes of each tensor in `inputs`. layouts: An optional list of `ints`. Defaults to `[]`. A vector holding the requested layout in minor-to-major sequence for all the tuple shapes, in the order the shapes appear in the "shapes" input. The layout elements for a sub-shape can be set to -1, in which case the corresponding layout will be computed by the infeed operation. device_ordinal: An optional `int`. Defaults to `-1`. The TPU device to use. This should be -1 when the Op is running on a TPU device, and >= 0 when the Op is running on the CPU device. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "InfeedEnqueueTuple", name, inputs, "shapes", shapes, "layouts", layouts, "device_ordinal", device_ordinal) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return infeed_enqueue_tuple_eager_fallback( inputs, shapes=shapes, layouts=layouts, device_ordinal=device_ordinal, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(shapes, (list, tuple)): raise TypeError( "Expected list for 'shapes' argument to " "'infeed_enqueue_tuple' Op, not %r." % shapes) shapes = [_execute.make_shape(_s, "shapes") for _s in shapes] if layouts is None: layouts = [] if not isinstance(layouts, (list, tuple)): raise TypeError( "Expected list for 'layouts' argument to " "'infeed_enqueue_tuple' Op, not %r." % layouts) layouts = [_execute.make_int(_i, "layouts") for _i in layouts] if device_ordinal is None: device_ordinal = -1 device_ordinal = _execute.make_int(device_ordinal, "device_ordinal") _, _, _op, _outputs = _op_def_library._apply_op_helper( "InfeedEnqueueTuple", inputs=inputs, shapes=shapes, layouts=layouts, device_ordinal=device_ordinal, name=name) return _op InfeedEnqueueTuple = tf_export("raw_ops.InfeedEnqueueTuple")(_ops.to_raw_op(infeed_enqueue_tuple)) def infeed_enqueue_tuple_eager_fallback(inputs, shapes, layouts, device_ordinal: int, name, ctx): if not isinstance(shapes, (list, tuple)): raise TypeError( "Expected list for 'shapes' argument to " "'infeed_enqueue_tuple' Op, not %r." % shapes) shapes = [_execute.make_shape(_s, "shapes") for _s in shapes] if layouts is None: layouts = [] if not isinstance(layouts, (list, tuple)): raise TypeError( "Expected list for 'layouts' argument to " "'infeed_enqueue_tuple' Op, not %r." % layouts) layouts = [_execute.make_int(_i, "layouts") for _i in layouts] if device_ordinal is None: device_ordinal = -1 device_ordinal = _execute.make_int(device_ordinal, "device_ordinal") _attr_dtypes, inputs = _execute.convert_to_mixed_eager_tensors(inputs, ctx) _inputs_flat = list(inputs) _attrs = ("dtypes", _attr_dtypes, "shapes", shapes, "layouts", layouts, "device_ordinal", device_ordinal) _result = _execute.execute(b"InfeedEnqueueTuple", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result def is_tpu_embedding_initialized(config:str="", name=None) -> Annotated[Any, _atypes.Bool]: r"""Whether TPU Embedding is initialized in a distributed TPU system. Args: config: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: A `Tensor` of type `bool`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "IsTPUEmbeddingInitialized", name, "config", config) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return is_tpu_embedding_initialized_eager_fallback( config=config, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if config is None: config = "" config = _execute.make_str(config, "config") _, _, _op, _outputs = _op_def_library._apply_op_helper( "IsTPUEmbeddingInitialized", config=config, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("config", _op.get_attr("config")) _inputs_flat = _op.inputs _execute.record_gradient( "IsTPUEmbeddingInitialized", _inputs_flat, _attrs, _result) _result, = _result return _result IsTPUEmbeddingInitialized = tf_export("raw_ops.IsTPUEmbeddingInitialized")(_ops.to_raw_op(is_tpu_embedding_initialized)) def is_tpu_embedding_initialized_eager_fallback(config: str, name, ctx) -> Annotated[Any, _atypes.Bool]: if config is None: config = "" config = _execute.make_str(config, "config") _inputs_flat = [] _attrs = ("config", config) _result = _execute.execute(b"IsTPUEmbeddingInitialized", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "IsTPUEmbeddingInitialized", _inputs_flat, _attrs, _result) _result, = _result return _result def load_tpu_embedding_adam_parameters(parameters: Annotated[Any, _atypes.Float32], momenta: Annotated[Any, _atypes.Float32], velocities: Annotated[Any, _atypes.Float32], num_shards: int, shard_id: int, table_id:int=-1, table_name:str="", config:str="", name=None): r"""Load ADAM embedding parameters. An op that loads optimization parameters into HBM for embedding. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to install parameters that are loaded from a checkpoint before a training loop is executed. Args: parameters: A `Tensor` of type `float32`. Value of parameters used in the ADAM optimization algorithm. momenta: A `Tensor` of type `float32`. Value of momenta used in the ADAM optimization algorithm. velocities: A `Tensor` of type `float32`. Value of velocities used in the ADAM optimization algorithm. num_shards: An `int`. shard_id: An `int`. table_id: An optional `int`. Defaults to `-1`. table_name: An optional `string`. Defaults to `""`. config: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "LoadTPUEmbeddingADAMParameters", name, parameters, momenta, velocities, "table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return load_tpu_embedding_adam_parameters_eager_fallback( parameters, momenta, velocities, table_id=table_id, table_name=table_name, num_shards=num_shards, shard_id=shard_id, config=config, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") _, _, _op, _outputs = _op_def_library._apply_op_helper( "LoadTPUEmbeddingADAMParameters", parameters=parameters, momenta=momenta, velocities=velocities, num_shards=num_shards, shard_id=shard_id, table_id=table_id, table_name=table_name, config=config, name=name) return _op LoadTPUEmbeddingADAMParameters = tf_export("raw_ops.LoadTPUEmbeddingADAMParameters")(_ops.to_raw_op(load_tpu_embedding_adam_parameters)) def load_tpu_embedding_adam_parameters_eager_fallback(parameters: Annotated[Any, _atypes.Float32], momenta: Annotated[Any, _atypes.Float32], velocities: Annotated[Any, _atypes.Float32], num_shards: int, shard_id: int, table_id: int, table_name: str, config: str, name, ctx): num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") parameters = _ops.convert_to_tensor(parameters, _dtypes.float32) momenta = _ops.convert_to_tensor(momenta, _dtypes.float32) velocities = _ops.convert_to_tensor(velocities, _dtypes.float32) _inputs_flat = [parameters, momenta, velocities] _attrs = ("table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) _result = _execute.execute(b"LoadTPUEmbeddingADAMParameters", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result def load_tpu_embedding_adadelta_parameters(parameters: Annotated[Any, _atypes.Float32], accumulators: Annotated[Any, _atypes.Float32], updates: Annotated[Any, _atypes.Float32], num_shards: int, shard_id: int, table_id:int=-1, table_name:str="", config:str="", name=None): r"""Load Adadelta embedding parameters. An op that loads optimization parameters into HBM for embedding. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to install parameters that are loaded from a checkpoint before a training loop is executed. Args: parameters: A `Tensor` of type `float32`. Value of parameters used in the Adadelta optimization algorithm. accumulators: A `Tensor` of type `float32`. Value of accumulators used in the Adadelta optimization algorithm. updates: A `Tensor` of type `float32`. Value of updates used in the Adadelta optimization algorithm. num_shards: An `int`. shard_id: An `int`. table_id: An optional `int`. Defaults to `-1`. table_name: An optional `string`. Defaults to `""`. config: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "LoadTPUEmbeddingAdadeltaParameters", name, parameters, accumulators, updates, "table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return load_tpu_embedding_adadelta_parameters_eager_fallback( parameters, accumulators, updates, table_id=table_id, table_name=table_name, num_shards=num_shards, shard_id=shard_id, config=config, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") _, _, _op, _outputs = _op_def_library._apply_op_helper( "LoadTPUEmbeddingAdadeltaParameters", parameters=parameters, accumulators=accumulators, updates=updates, num_shards=num_shards, shard_id=shard_id, table_id=table_id, table_name=table_name, config=config, name=name) return _op LoadTPUEmbeddingAdadeltaParameters = tf_export("raw_ops.LoadTPUEmbeddingAdadeltaParameters")(_ops.to_raw_op(load_tpu_embedding_adadelta_parameters)) def load_tpu_embedding_adadelta_parameters_eager_fallback(parameters: Annotated[Any, _atypes.Float32], accumulators: Annotated[Any, _atypes.Float32], updates: Annotated[Any, _atypes.Float32], num_shards: int, shard_id: int, table_id: int, table_name: str, config: str, name, ctx): num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") parameters = _ops.convert_to_tensor(parameters, _dtypes.float32) accumulators = _ops.convert_to_tensor(accumulators, _dtypes.float32) updates = _ops.convert_to_tensor(updates, _dtypes.float32) _inputs_flat = [parameters, accumulators, updates] _attrs = ("table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) _result = _execute.execute(b"LoadTPUEmbeddingAdadeltaParameters", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result def load_tpu_embedding_adagrad_momentum_parameters(parameters: Annotated[Any, _atypes.Float32], accumulators: Annotated[Any, _atypes.Float32], momenta: Annotated[Any, _atypes.Float32], num_shards: int, shard_id: int, table_id:int=-1, table_name:str="", config:str="", name=None): r"""Load Adagrad Momentum embedding parameters. An op that loads optimization parameters into HBM for embedding. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to install parameters that are loaded from a checkpoint before a training loop is executed. Args: parameters: A `Tensor` of type `float32`. Value of parameters used in the Adagrad Momentum optimization algorithm. accumulators: A `Tensor` of type `float32`. Value of accumulators used in the Adagrad Momentum optimization algorithm. momenta: A `Tensor` of type `float32`. Value of momenta used in the Adagrad Momentum optimization algorithm. num_shards: An `int`. shard_id: An `int`. table_id: An optional `int`. Defaults to `-1`. table_name: An optional `string`. Defaults to `""`. config: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "LoadTPUEmbeddingAdagradMomentumParameters", name, parameters, accumulators, momenta, "table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return load_tpu_embedding_adagrad_momentum_parameters_eager_fallback( parameters, accumulators, momenta, table_id=table_id, table_name=table_name, num_shards=num_shards, shard_id=shard_id, config=config, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") _, _, _op, _outputs = _op_def_library._apply_op_helper( "LoadTPUEmbeddingAdagradMomentumParameters", parameters=parameters, accumulators=accumulators, momenta=momenta, num_shards=num_shards, shard_id=shard_id, table_id=table_id, table_name=table_name, config=config, name=name) return _op LoadTPUEmbeddingAdagradMomentumParameters = tf_export("raw_ops.LoadTPUEmbeddingAdagradMomentumParameters")(_ops.to_raw_op(load_tpu_embedding_adagrad_momentum_parameters)) def load_tpu_embedding_adagrad_momentum_parameters_eager_fallback(parameters: Annotated[Any, _atypes.Float32], accumulators: Annotated[Any, _atypes.Float32], momenta: Annotated[Any, _atypes.Float32], num_shards: int, shard_id: int, table_id: int, table_name: str, config: str, name, ctx): num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") parameters = _ops.convert_to_tensor(parameters, _dtypes.float32) accumulators = _ops.convert_to_tensor(accumulators, _dtypes.float32) momenta = _ops.convert_to_tensor(momenta, _dtypes.float32) _inputs_flat = [parameters, accumulators, momenta] _attrs = ("table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) _result = _execute.execute(b"LoadTPUEmbeddingAdagradMomentumParameters", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result def load_tpu_embedding_adagrad_parameters(parameters: Annotated[Any, _atypes.Float32], accumulators: Annotated[Any, _atypes.Float32], num_shards: int, shard_id: int, table_id:int=-1, table_name:str="", config:str="", name=None): r"""Load Adagrad embedding parameters. An op that loads optimization parameters into HBM for embedding. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to install parameters that are loaded from a checkpoint before a training loop is executed. Args: parameters: A `Tensor` of type `float32`. Value of parameters used in the Adagrad optimization algorithm. accumulators: A `Tensor` of type `float32`. Value of accumulators used in the Adagrad optimization algorithm. num_shards: An `int`. shard_id: An `int`. table_id: An optional `int`. Defaults to `-1`. table_name: An optional `string`. Defaults to `""`. config: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "LoadTPUEmbeddingAdagradParameters", name, parameters, accumulators, "table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return load_tpu_embedding_adagrad_parameters_eager_fallback( parameters, accumulators, table_id=table_id, table_name=table_name, num_shards=num_shards, shard_id=shard_id, config=config, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") _, _, _op, _outputs = _op_def_library._apply_op_helper( "LoadTPUEmbeddingAdagradParameters", parameters=parameters, accumulators=accumulators, num_shards=num_shards, shard_id=shard_id, table_id=table_id, table_name=table_name, config=config, name=name) return _op LoadTPUEmbeddingAdagradParameters = tf_export("raw_ops.LoadTPUEmbeddingAdagradParameters")(_ops.to_raw_op(load_tpu_embedding_adagrad_parameters)) def load_tpu_embedding_adagrad_parameters_eager_fallback(parameters: Annotated[Any, _atypes.Float32], accumulators: Annotated[Any, _atypes.Float32], num_shards: int, shard_id: int, table_id: int, table_name: str, config: str, name, ctx): num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") parameters = _ops.convert_to_tensor(parameters, _dtypes.float32) accumulators = _ops.convert_to_tensor(accumulators, _dtypes.float32) _inputs_flat = [parameters, accumulators] _attrs = ("table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) _result = _execute.execute(b"LoadTPUEmbeddingAdagradParameters", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result def load_tpu_embedding_centered_rms_prop_parameters(parameters: Annotated[Any, _atypes.Float32], ms: Annotated[Any, _atypes.Float32], mom: Annotated[Any, _atypes.Float32], mg: Annotated[Any, _atypes.Float32], num_shards: int, shard_id: int, table_id:int=-1, table_name:str="", config:str="", name=None): r"""Load centered RMSProp embedding parameters. An op that loads optimization parameters into HBM for embedding. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to install parameters that are loaded from a checkpoint before a training loop is executed. Args: parameters: A `Tensor` of type `float32`. Value of parameters used in the centered RMSProp optimization algorithm. ms: A `Tensor` of type `float32`. Value of ms used in the centered RMSProp optimization algorithm. mom: A `Tensor` of type `float32`. Value of mom used in the centered RMSProp optimization algorithm. mg: A `Tensor` of type `float32`. Value of mg used in the centered RMSProp optimization algorithm. num_shards: An `int`. shard_id: An `int`. table_id: An optional `int`. Defaults to `-1`. table_name: An optional `string`. Defaults to `""`. config: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "LoadTPUEmbeddingCenteredRMSPropParameters", name, parameters, ms, mom, mg, "table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return load_tpu_embedding_centered_rms_prop_parameters_eager_fallback( parameters, ms, mom, mg, table_id=table_id, table_name=table_name, num_shards=num_shards, shard_id=shard_id, config=config, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") _, _, _op, _outputs = _op_def_library._apply_op_helper( "LoadTPUEmbeddingCenteredRMSPropParameters", parameters=parameters, ms=ms, mom=mom, mg=mg, num_shards=num_shards, shard_id=shard_id, table_id=table_id, table_name=table_name, config=config, name=name) return _op LoadTPUEmbeddingCenteredRMSPropParameters = tf_export("raw_ops.LoadTPUEmbeddingCenteredRMSPropParameters")(_ops.to_raw_op(load_tpu_embedding_centered_rms_prop_parameters)) def load_tpu_embedding_centered_rms_prop_parameters_eager_fallback(parameters: Annotated[Any, _atypes.Float32], ms: Annotated[Any, _atypes.Float32], mom: Annotated[Any, _atypes.Float32], mg: Annotated[Any, _atypes.Float32], num_shards: int, shard_id: int, table_id: int, table_name: str, config: str, name, ctx): num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") parameters = _ops.convert_to_tensor(parameters, _dtypes.float32) ms = _ops.convert_to_tensor(ms, _dtypes.float32) mom = _ops.convert_to_tensor(mom, _dtypes.float32) mg = _ops.convert_to_tensor(mg, _dtypes.float32) _inputs_flat = [parameters, ms, mom, mg] _attrs = ("table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) _result = _execute.execute(b"LoadTPUEmbeddingCenteredRMSPropParameters", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result def load_tpu_embedding_ftrl_parameters(parameters: Annotated[Any, _atypes.Float32], accumulators: Annotated[Any, _atypes.Float32], linears: Annotated[Any, _atypes.Float32], num_shards: int, shard_id: int, table_id:int=-1, table_name:str="", config:str="", name=None): r"""Load FTRL embedding parameters. An op that loads optimization parameters into HBM for embedding. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to install parameters that are loaded from a checkpoint before a training loop is executed. Args: parameters: A `Tensor` of type `float32`. Value of parameters used in the FTRL optimization algorithm. accumulators: A `Tensor` of type `float32`. Value of accumulators used in the FTRL optimization algorithm. linears: A `Tensor` of type `float32`. Value of linears used in the FTRL optimization algorithm. num_shards: An `int`. shard_id: An `int`. table_id: An optional `int`. Defaults to `-1`. table_name: An optional `string`. Defaults to `""`. config: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "LoadTPUEmbeddingFTRLParameters", name, parameters, accumulators, linears, "table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return load_tpu_embedding_ftrl_parameters_eager_fallback( parameters, accumulators, linears, table_id=table_id, table_name=table_name, num_shards=num_shards, shard_id=shard_id, config=config, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") _, _, _op, _outputs = _op_def_library._apply_op_helper( "LoadTPUEmbeddingFTRLParameters", parameters=parameters, accumulators=accumulators, linears=linears, num_shards=num_shards, shard_id=shard_id, table_id=table_id, table_name=table_name, config=config, name=name) return _op LoadTPUEmbeddingFTRLParameters = tf_export("raw_ops.LoadTPUEmbeddingFTRLParameters")(_ops.to_raw_op(load_tpu_embedding_ftrl_parameters)) def load_tpu_embedding_ftrl_parameters_eager_fallback(parameters: Annotated[Any, _atypes.Float32], accumulators: Annotated[Any, _atypes.Float32], linears: Annotated[Any, _atypes.Float32], num_shards: int, shard_id: int, table_id: int, table_name: str, config: str, name, ctx): num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") parameters = _ops.convert_to_tensor(parameters, _dtypes.float32) accumulators = _ops.convert_to_tensor(accumulators, _dtypes.float32) linears = _ops.convert_to_tensor(linears, _dtypes.float32) _inputs_flat = [parameters, accumulators, linears] _attrs = ("table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) _result = _execute.execute(b"LoadTPUEmbeddingFTRLParameters", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result def load_tpu_embedding_frequency_estimator_parameters(parameters: Annotated[Any, _atypes.Float32], last_hit_step: Annotated[Any, _atypes.Float32], num_shards: int, shard_id: int, table_id:int=-1, table_name:str="", config:str="", name=None): r"""Load frequency estimator embedding parameters. An op that loads optimization parameters into HBM for embedding. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to install parameters that are loaded from a checkpoint before a training loop is executed. Args: parameters: A `Tensor` of type `float32`. Value of parameters used in the frequency estimator optimization algorithm. last_hit_step: A `Tensor` of type `float32`. Value of last_hit_step used in the frequency estimator optimization algorithm. num_shards: An `int`. shard_id: An `int`. table_id: An optional `int`. Defaults to `-1`. table_name: An optional `string`. Defaults to `""`. config: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "LoadTPUEmbeddingFrequencyEstimatorParameters", name, parameters, last_hit_step, "table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return load_tpu_embedding_frequency_estimator_parameters_eager_fallback( parameters, last_hit_step, table_id=table_id, table_name=table_name, num_shards=num_shards, shard_id=shard_id, config=config, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") _, _, _op, _outputs = _op_def_library._apply_op_helper( "LoadTPUEmbeddingFrequencyEstimatorParameters", parameters=parameters, last_hit_step=last_hit_step, num_shards=num_shards, shard_id=shard_id, table_id=table_id, table_name=table_name, config=config, name=name) return _op LoadTPUEmbeddingFrequencyEstimatorParameters = tf_export("raw_ops.LoadTPUEmbeddingFrequencyEstimatorParameters")(_ops.to_raw_op(load_tpu_embedding_frequency_estimator_parameters)) def load_tpu_embedding_frequency_estimator_parameters_eager_fallback(parameters: Annotated[Any, _atypes.Float32], last_hit_step: Annotated[Any, _atypes.Float32], num_shards: int, shard_id: int, table_id: int, table_name: str, config: str, name, ctx): num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") parameters = _ops.convert_to_tensor(parameters, _dtypes.float32) last_hit_step = _ops.convert_to_tensor(last_hit_step, _dtypes.float32) _inputs_flat = [parameters, last_hit_step] _attrs = ("table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) _result = _execute.execute(b"LoadTPUEmbeddingFrequencyEstimatorParameters", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result def load_tpu_embedding_mdl_adagrad_light_parameters(parameters: Annotated[Any, _atypes.Float32], accumulators: Annotated[Any, _atypes.Float32], weights: Annotated[Any, _atypes.Float32], benefits: Annotated[Any, _atypes.Float32], num_shards: int, shard_id: int, table_id:int=-1, table_name:str="", config:str="", name=None): r"""Load MDL Adagrad Light embedding parameters. An op that loads optimization parameters into HBM for embedding. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to install parameters that are loaded from a checkpoint before a training loop is executed. Args: parameters: A `Tensor` of type `float32`. Value of parameters used in the MDL Adagrad Light optimization algorithm. accumulators: A `Tensor` of type `float32`. Value of accumulators used in the MDL Adagrad Light optimization algorithm. weights: A `Tensor` of type `float32`. Value of weights used in the MDL Adagrad Light optimization algorithm. benefits: A `Tensor` of type `float32`. Value of benefits used in the MDL Adagrad Light optimization algorithm. num_shards: An `int`. shard_id: An `int`. table_id: An optional `int`. Defaults to `-1`. table_name: An optional `string`. Defaults to `""`. config: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "LoadTPUEmbeddingMDLAdagradLightParameters", name, parameters, accumulators, weights, benefits, "table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return load_tpu_embedding_mdl_adagrad_light_parameters_eager_fallback( parameters, accumulators, weights, benefits, table_id=table_id, table_name=table_name, num_shards=num_shards, shard_id=shard_id, config=config, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") _, _, _op, _outputs = _op_def_library._apply_op_helper( "LoadTPUEmbeddingMDLAdagradLightParameters", parameters=parameters, accumulators=accumulators, weights=weights, benefits=benefits, num_shards=num_shards, shard_id=shard_id, table_id=table_id, table_name=table_name, config=config, name=name) return _op LoadTPUEmbeddingMDLAdagradLightParameters = tf_export("raw_ops.LoadTPUEmbeddingMDLAdagradLightParameters")(_ops.to_raw_op(load_tpu_embedding_mdl_adagrad_light_parameters)) def load_tpu_embedding_mdl_adagrad_light_parameters_eager_fallback(parameters: Annotated[Any, _atypes.Float32], accumulators: Annotated[Any, _atypes.Float32], weights: Annotated[Any, _atypes.Float32], benefits: Annotated[Any, _atypes.Float32], num_shards: int, shard_id: int, table_id: int, table_name: str, config: str, name, ctx): num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") parameters = _ops.convert_to_tensor(parameters, _dtypes.float32) accumulators = _ops.convert_to_tensor(accumulators, _dtypes.float32) weights = _ops.convert_to_tensor(weights, _dtypes.float32) benefits = _ops.convert_to_tensor(benefits, _dtypes.float32) _inputs_flat = [parameters, accumulators, weights, benefits] _attrs = ("table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) _result = _execute.execute(b"LoadTPUEmbeddingMDLAdagradLightParameters", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result def load_tpu_embedding_momentum_parameters(parameters: Annotated[Any, _atypes.Float32], momenta: Annotated[Any, _atypes.Float32], num_shards: int, shard_id: int, table_id:int=-1, table_name:str="", config:str="", name=None): r"""Load Momentum embedding parameters. An op that loads optimization parameters into HBM for embedding. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to install parameters that are loaded from a checkpoint before a training loop is executed. Args: parameters: A `Tensor` of type `float32`. Value of parameters used in the Momentum optimization algorithm. momenta: A `Tensor` of type `float32`. Value of momenta used in the Momentum optimization algorithm. num_shards: An `int`. shard_id: An `int`. table_id: An optional `int`. Defaults to `-1`. table_name: An optional `string`. Defaults to `""`. config: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "LoadTPUEmbeddingMomentumParameters", name, parameters, momenta, "table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return load_tpu_embedding_momentum_parameters_eager_fallback( parameters, momenta, table_id=table_id, table_name=table_name, num_shards=num_shards, shard_id=shard_id, config=config, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") _, _, _op, _outputs = _op_def_library._apply_op_helper( "LoadTPUEmbeddingMomentumParameters", parameters=parameters, momenta=momenta, num_shards=num_shards, shard_id=shard_id, table_id=table_id, table_name=table_name, config=config, name=name) return _op LoadTPUEmbeddingMomentumParameters = tf_export("raw_ops.LoadTPUEmbeddingMomentumParameters")(_ops.to_raw_op(load_tpu_embedding_momentum_parameters)) def load_tpu_embedding_momentum_parameters_eager_fallback(parameters: Annotated[Any, _atypes.Float32], momenta: Annotated[Any, _atypes.Float32], num_shards: int, shard_id: int, table_id: int, table_name: str, config: str, name, ctx): num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") parameters = _ops.convert_to_tensor(parameters, _dtypes.float32) momenta = _ops.convert_to_tensor(momenta, _dtypes.float32) _inputs_flat = [parameters, momenta] _attrs = ("table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) _result = _execute.execute(b"LoadTPUEmbeddingMomentumParameters", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result def load_tpu_embedding_proximal_adagrad_parameters(parameters: Annotated[Any, _atypes.Float32], accumulators: Annotated[Any, _atypes.Float32], num_shards: int, shard_id: int, table_id:int=-1, table_name:str="", config:str="", name=None): r"""Load proximal Adagrad embedding parameters. An op that loads optimization parameters into HBM for embedding. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to install parameters that are loaded from a checkpoint before a training loop is executed. Args: parameters: A `Tensor` of type `float32`. Value of parameters used in the proximal Adagrad optimization algorithm. accumulators: A `Tensor` of type `float32`. Value of accumulators used in the proximal Adagrad optimization algorithm. num_shards: An `int`. shard_id: An `int`. table_id: An optional `int`. Defaults to `-1`. table_name: An optional `string`. Defaults to `""`. config: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "LoadTPUEmbeddingProximalAdagradParameters", name, parameters, accumulators, "table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return load_tpu_embedding_proximal_adagrad_parameters_eager_fallback( parameters, accumulators, table_id=table_id, table_name=table_name, num_shards=num_shards, shard_id=shard_id, config=config, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") _, _, _op, _outputs = _op_def_library._apply_op_helper( "LoadTPUEmbeddingProximalAdagradParameters", parameters=parameters, accumulators=accumulators, num_shards=num_shards, shard_id=shard_id, table_id=table_id, table_name=table_name, config=config, name=name) return _op LoadTPUEmbeddingProximalAdagradParameters = tf_export("raw_ops.LoadTPUEmbeddingProximalAdagradParameters")(_ops.to_raw_op(load_tpu_embedding_proximal_adagrad_parameters)) def load_tpu_embedding_proximal_adagrad_parameters_eager_fallback(parameters: Annotated[Any, _atypes.Float32], accumulators: Annotated[Any, _atypes.Float32], num_shards: int, shard_id: int, table_id: int, table_name: str, config: str, name, ctx): num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") parameters = _ops.convert_to_tensor(parameters, _dtypes.float32) accumulators = _ops.convert_to_tensor(accumulators, _dtypes.float32) _inputs_flat = [parameters, accumulators] _attrs = ("table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) _result = _execute.execute(b"LoadTPUEmbeddingProximalAdagradParameters", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result def load_tpu_embedding_proximal_yogi_parameters(parameters: Annotated[Any, _atypes.Float32], v: Annotated[Any, _atypes.Float32], m: Annotated[Any, _atypes.Float32], num_shards: int, shard_id: int, table_id:int=-1, table_name:str="", config:str="", name=None): r"""TODO: add doc. Args: parameters: A `Tensor` of type `float32`. v: A `Tensor` of type `float32`. m: A `Tensor` of type `float32`. num_shards: An `int`. shard_id: An `int`. table_id: An optional `int`. Defaults to `-1`. table_name: An optional `string`. Defaults to `""`. config: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "LoadTPUEmbeddingProximalYogiParameters", name, parameters, v, m, "table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return load_tpu_embedding_proximal_yogi_parameters_eager_fallback( parameters, v, m, table_id=table_id, table_name=table_name, num_shards=num_shards, shard_id=shard_id, config=config, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") _, _, _op, _outputs = _op_def_library._apply_op_helper( "LoadTPUEmbeddingProximalYogiParameters", parameters=parameters, v=v, m=m, num_shards=num_shards, shard_id=shard_id, table_id=table_id, table_name=table_name, config=config, name=name) return _op LoadTPUEmbeddingProximalYogiParameters = tf_export("raw_ops.LoadTPUEmbeddingProximalYogiParameters")(_ops.to_raw_op(load_tpu_embedding_proximal_yogi_parameters)) def load_tpu_embedding_proximal_yogi_parameters_eager_fallback(parameters: Annotated[Any, _atypes.Float32], v: Annotated[Any, _atypes.Float32], m: Annotated[Any, _atypes.Float32], num_shards: int, shard_id: int, table_id: int, table_name: str, config: str, name, ctx): num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") parameters = _ops.convert_to_tensor(parameters, _dtypes.float32) v = _ops.convert_to_tensor(v, _dtypes.float32) m = _ops.convert_to_tensor(m, _dtypes.float32) _inputs_flat = [parameters, v, m] _attrs = ("table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) _result = _execute.execute(b"LoadTPUEmbeddingProximalYogiParameters", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result def load_tpu_embedding_rms_prop_parameters(parameters: Annotated[Any, _atypes.Float32], ms: Annotated[Any, _atypes.Float32], mom: Annotated[Any, _atypes.Float32], num_shards: int, shard_id: int, table_id:int=-1, table_name:str="", config:str="", name=None): r"""Load RMSProp embedding parameters. An op that loads optimization parameters into HBM for embedding. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to install parameters that are loaded from a checkpoint before a training loop is executed. Args: parameters: A `Tensor` of type `float32`. Value of parameters used in the RMSProp optimization algorithm. ms: A `Tensor` of type `float32`. Value of ms used in the RMSProp optimization algorithm. mom: A `Tensor` of type `float32`. Value of mom used in the RMSProp optimization algorithm. num_shards: An `int`. shard_id: An `int`. table_id: An optional `int`. Defaults to `-1`. table_name: An optional `string`. Defaults to `""`. config: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "LoadTPUEmbeddingRMSPropParameters", name, parameters, ms, mom, "table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return load_tpu_embedding_rms_prop_parameters_eager_fallback( parameters, ms, mom, table_id=table_id, table_name=table_name, num_shards=num_shards, shard_id=shard_id, config=config, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") _, _, _op, _outputs = _op_def_library._apply_op_helper( "LoadTPUEmbeddingRMSPropParameters", parameters=parameters, ms=ms, mom=mom, num_shards=num_shards, shard_id=shard_id, table_id=table_id, table_name=table_name, config=config, name=name) return _op LoadTPUEmbeddingRMSPropParameters = tf_export("raw_ops.LoadTPUEmbeddingRMSPropParameters")(_ops.to_raw_op(load_tpu_embedding_rms_prop_parameters)) def load_tpu_embedding_rms_prop_parameters_eager_fallback(parameters: Annotated[Any, _atypes.Float32], ms: Annotated[Any, _atypes.Float32], mom: Annotated[Any, _atypes.Float32], num_shards: int, shard_id: int, table_id: int, table_name: str, config: str, name, ctx): num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") parameters = _ops.convert_to_tensor(parameters, _dtypes.float32) ms = _ops.convert_to_tensor(ms, _dtypes.float32) mom = _ops.convert_to_tensor(mom, _dtypes.float32) _inputs_flat = [parameters, ms, mom] _attrs = ("table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) _result = _execute.execute(b"LoadTPUEmbeddingRMSPropParameters", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result def load_tpu_embedding_stochastic_gradient_descent_parameters(parameters: Annotated[Any, _atypes.Float32], num_shards: int, shard_id: int, table_id:int=-1, table_name:str="", config:str="", name=None): r"""Load SGD embedding parameters. An op that loads optimization parameters into HBM for embedding. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to install parameters that are loaded from a checkpoint before a training loop is executed. Args: parameters: A `Tensor` of type `float32`. Value of parameters used in the stochastic gradient descent optimization algorithm. num_shards: An `int`. shard_id: An `int`. table_id: An optional `int`. Defaults to `-1`. table_name: An optional `string`. Defaults to `""`. config: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "LoadTPUEmbeddingStochasticGradientDescentParameters", name, parameters, "table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return load_tpu_embedding_stochastic_gradient_descent_parameters_eager_fallback( parameters, table_id=table_id, table_name=table_name, num_shards=num_shards, shard_id=shard_id, config=config, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") _, _, _op, _outputs = _op_def_library._apply_op_helper( "LoadTPUEmbeddingStochasticGradientDescentParameters", parameters=parameters, num_shards=num_shards, shard_id=shard_id, table_id=table_id, table_name=table_name, config=config, name=name) return _op LoadTPUEmbeddingStochasticGradientDescentParameters = tf_export("raw_ops.LoadTPUEmbeddingStochasticGradientDescentParameters")(_ops.to_raw_op(load_tpu_embedding_stochastic_gradient_descent_parameters)) def load_tpu_embedding_stochastic_gradient_descent_parameters_eager_fallback(parameters: Annotated[Any, _atypes.Float32], num_shards: int, shard_id: int, table_id: int, table_name: str, config: str, name, ctx): num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") parameters = _ops.convert_to_tensor(parameters, _dtypes.float32) _inputs_flat = [parameters] _attrs = ("table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) _result = _execute.execute(b"LoadTPUEmbeddingStochasticGradientDescentParameters", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result TV_OutfeedDequeue_dtype = TypeVar("TV_OutfeedDequeue_dtype", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def outfeed_dequeue(dtype: TV_OutfeedDequeue_dtype, shape, device_ordinal:int=-1, name=None) -> Annotated[Any, TV_OutfeedDequeue_dtype]: r"""Retrieves a single tensor from the computation outfeed. This operation will block indefinitely until data is available. Args: dtype: A `tf.DType`. The type of elements in the tensor. shape: A `tf.TensorShape` or list of `ints`. The shape of the tensor. device_ordinal: An optional `int`. Defaults to `-1`. The TPU device to use. This should be -1 when the Op is running on a TPU device, and >= 0 when the Op is running on the CPU device. name: A name for the operation (optional). Returns: A `Tensor` of type `dtype`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "OutfeedDequeue", name, "dtype", dtype, "shape", shape, "device_ordinal", device_ordinal) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return outfeed_dequeue_eager_fallback( dtype=dtype, shape=shape, device_ordinal=device_ordinal, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. dtype = _execute.make_type(dtype, "dtype") shape = _execute.make_shape(shape, "shape") if device_ordinal is None: device_ordinal = -1 device_ordinal = _execute.make_int(device_ordinal, "device_ordinal") _, _, _op, _outputs = _op_def_library._apply_op_helper( "OutfeedDequeue", dtype=dtype, shape=shape, device_ordinal=device_ordinal, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("dtype", _op._get_attr_type("dtype"), "shape", _op.get_attr("shape"), "device_ordinal", _op._get_attr_int("device_ordinal")) _inputs_flat = _op.inputs _execute.record_gradient( "OutfeedDequeue", _inputs_flat, _attrs, _result) _result, = _result return _result OutfeedDequeue = tf_export("raw_ops.OutfeedDequeue")(_ops.to_raw_op(outfeed_dequeue)) def outfeed_dequeue_eager_fallback(dtype: TV_OutfeedDequeue_dtype, shape, device_ordinal: int, name, ctx) -> Annotated[Any, TV_OutfeedDequeue_dtype]: dtype = _execute.make_type(dtype, "dtype") shape = _execute.make_shape(shape, "shape") if device_ordinal is None: device_ordinal = -1 device_ordinal = _execute.make_int(device_ordinal, "device_ordinal") _inputs_flat = [] _attrs = ("dtype", dtype, "shape", shape, "device_ordinal", device_ordinal) _result = _execute.execute(b"OutfeedDequeue", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "OutfeedDequeue", _inputs_flat, _attrs, _result) _result, = _result return _result def outfeed_dequeue_tuple(dtypes, shapes, device_ordinal:int=-1, name=None): r"""Retrieve multiple values from the computation outfeed. This operation will block indefinitely until data is available. Output `i` corresponds to XLA tuple element `i`. Args: dtypes: A list of `tf.DTypes` that has length `>= 1`. The element types of each element in `outputs`. shapes: A list of shapes (each a `tf.TensorShape` or list of `ints`). The shapes of each tensor in `outputs`. device_ordinal: An optional `int`. Defaults to `-1`. The TPU device to use. This should be -1 when the Op is running on a TPU device, and >= 0 when the Op is running on the CPU device. name: A name for the operation (optional). Returns: A list of `Tensor` objects of type `dtypes`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "OutfeedDequeueTuple", name, "dtypes", dtypes, "shapes", shapes, "device_ordinal", device_ordinal) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return outfeed_dequeue_tuple_eager_fallback( dtypes=dtypes, shapes=shapes, device_ordinal=device_ordinal, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'outfeed_dequeue_tuple' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if not isinstance(shapes, (list, tuple)): raise TypeError( "Expected list for 'shapes' argument to " "'outfeed_dequeue_tuple' Op, not %r." % shapes) shapes = [_execute.make_shape(_s, "shapes") for _s in shapes] if device_ordinal is None: device_ordinal = -1 device_ordinal = _execute.make_int(device_ordinal, "device_ordinal") _, _, _op, _outputs = _op_def_library._apply_op_helper( "OutfeedDequeueTuple", dtypes=dtypes, shapes=shapes, device_ordinal=device_ordinal, name=name) _result = _outputs[:] if not _result: return _op if _execute.must_record_gradient(): _attrs = ("dtypes", _op.get_attr("dtypes"), "shapes", _op.get_attr("shapes"), "device_ordinal", _op._get_attr_int("device_ordinal")) _inputs_flat = _op.inputs _execute.record_gradient( "OutfeedDequeueTuple", _inputs_flat, _attrs, _result) return _result OutfeedDequeueTuple = tf_export("raw_ops.OutfeedDequeueTuple")(_ops.to_raw_op(outfeed_dequeue_tuple)) def outfeed_dequeue_tuple_eager_fallback(dtypes, shapes, device_ordinal: int, name, ctx): if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'outfeed_dequeue_tuple' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if not isinstance(shapes, (list, tuple)): raise TypeError( "Expected list for 'shapes' argument to " "'outfeed_dequeue_tuple' Op, not %r." % shapes) shapes = [_execute.make_shape(_s, "shapes") for _s in shapes] if device_ordinal is None: device_ordinal = -1 device_ordinal = _execute.make_int(device_ordinal, "device_ordinal") _inputs_flat = [] _attrs = ("dtypes", dtypes, "shapes", shapes, "device_ordinal", device_ordinal) _result = _execute.execute(b"OutfeedDequeueTuple", len(dtypes), inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "OutfeedDequeueTuple", _inputs_flat, _attrs, _result) return _result def outfeed_dequeue_tuple_v2(device_ordinal: Annotated[Any, _atypes.Int32], dtypes, shapes, name=None): r"""Retrieve multiple values from the computation outfeed. Device ordinal is a tensor allowing dynamic outfeed. This operation will block indefinitely until data is available. Output `i` corresponds to XLA tuple element `i`. Args: device_ordinal: A `Tensor` of type `int32`. An int scalar tensor, representing the TPU device to use. This should be -1 when the Op is running on a TPU device, and >= 0 when the Op is running on the CPU device. dtypes: A list of `tf.DTypes` that has length `>= 1`. The element types of each element in `outputs`. shapes: A list of shapes (each a `tf.TensorShape` or list of `ints`). The shapes of each tensor in `outputs`. name: A name for the operation (optional). Returns: A list of `Tensor` objects of type `dtypes`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "OutfeedDequeueTupleV2", name, device_ordinal, "dtypes", dtypes, "shapes", shapes) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return outfeed_dequeue_tuple_v2_eager_fallback( device_ordinal, dtypes=dtypes, shapes=shapes, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'outfeed_dequeue_tuple_v2' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if not isinstance(shapes, (list, tuple)): raise TypeError( "Expected list for 'shapes' argument to " "'outfeed_dequeue_tuple_v2' Op, not %r." % shapes) shapes = [_execute.make_shape(_s, "shapes") for _s in shapes] _, _, _op, _outputs = _op_def_library._apply_op_helper( "OutfeedDequeueTupleV2", device_ordinal=device_ordinal, dtypes=dtypes, shapes=shapes, name=name) _result = _outputs[:] if not _result: return _op if _execute.must_record_gradient(): _attrs = ("dtypes", _op.get_attr("dtypes"), "shapes", _op.get_attr("shapes")) _inputs_flat = _op.inputs _execute.record_gradient( "OutfeedDequeueTupleV2", _inputs_flat, _attrs, _result) return _result OutfeedDequeueTupleV2 = tf_export("raw_ops.OutfeedDequeueTupleV2")(_ops.to_raw_op(outfeed_dequeue_tuple_v2)) def outfeed_dequeue_tuple_v2_eager_fallback(device_ordinal: Annotated[Any, _atypes.Int32], dtypes, shapes, name, ctx): if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'outfeed_dequeue_tuple_v2' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if not isinstance(shapes, (list, tuple)): raise TypeError( "Expected list for 'shapes' argument to " "'outfeed_dequeue_tuple_v2' Op, not %r." % shapes) shapes = [_execute.make_shape(_s, "shapes") for _s in shapes] device_ordinal = _ops.convert_to_tensor(device_ordinal, _dtypes.int32) _inputs_flat = [device_ordinal] _attrs = ("dtypes", dtypes, "shapes", shapes) _result = _execute.execute(b"OutfeedDequeueTupleV2", len(dtypes), inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "OutfeedDequeueTupleV2", _inputs_flat, _attrs, _result) return _result TV_OutfeedDequeueV2_dtype = TypeVar("TV_OutfeedDequeueV2_dtype", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def outfeed_dequeue_v2(device_ordinal: Annotated[Any, _atypes.Int32], dtype: TV_OutfeedDequeueV2_dtype, shape, name=None) -> Annotated[Any, TV_OutfeedDequeueV2_dtype]: r"""Retrieves a single tensor from the computation outfeed. Device ordinal is a tensor allowing dynamic outfeed. This operation will block indefinitely until data is available. Args: device_ordinal: A `Tensor` of type `int32`. An int scalar tensor, representing the TPU device to use. This should be -1 when the Op is running on a TPU device, and >= 0 when the Op is running on the CPU device. dtype: A `tf.DType`. The type of elements in the tensor. shape: A `tf.TensorShape` or list of `ints`. The shape of the tensor. name: A name for the operation (optional). Returns: A `Tensor` of type `dtype`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "OutfeedDequeueV2", name, device_ordinal, "dtype", dtype, "shape", shape) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return outfeed_dequeue_v2_eager_fallback( device_ordinal, dtype=dtype, shape=shape, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. dtype = _execute.make_type(dtype, "dtype") shape = _execute.make_shape(shape, "shape") _, _, _op, _outputs = _op_def_library._apply_op_helper( "OutfeedDequeueV2", device_ordinal=device_ordinal, dtype=dtype, shape=shape, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("dtype", _op._get_attr_type("dtype"), "shape", _op.get_attr("shape")) _inputs_flat = _op.inputs _execute.record_gradient( "OutfeedDequeueV2", _inputs_flat, _attrs, _result) _result, = _result return _result OutfeedDequeueV2 = tf_export("raw_ops.OutfeedDequeueV2")(_ops.to_raw_op(outfeed_dequeue_v2)) def outfeed_dequeue_v2_eager_fallback(device_ordinal: Annotated[Any, _atypes.Int32], dtype: TV_OutfeedDequeueV2_dtype, shape, name, ctx) -> Annotated[Any, TV_OutfeedDequeueV2_dtype]: dtype = _execute.make_type(dtype, "dtype") shape = _execute.make_shape(shape, "shape") device_ordinal = _ops.convert_to_tensor(device_ordinal, _dtypes.int32) _inputs_flat = [device_ordinal] _attrs = ("dtype", dtype, "shape", shape) _result = _execute.execute(b"OutfeedDequeueV2", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "OutfeedDequeueV2", _inputs_flat, _attrs, _result) _result, = _result return _result TV_OutfeedEnqueue_dtype = TypeVar("TV_OutfeedEnqueue_dtype", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def outfeed_enqueue(input: Annotated[Any, TV_OutfeedEnqueue_dtype], name=None): r"""Enqueue a Tensor on the computation outfeed. Args: input: A `Tensor`. A tensor that will be inserted into the outfeed queue. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "OutfeedEnqueue", name, input) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return outfeed_enqueue_eager_fallback( input, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "OutfeedEnqueue", input=input, name=name) return _op OutfeedEnqueue = tf_export("raw_ops.OutfeedEnqueue")(_ops.to_raw_op(outfeed_enqueue)) def outfeed_enqueue_eager_fallback(input: Annotated[Any, TV_OutfeedEnqueue_dtype], name, ctx): _attr_dtype, (input,) = _execute.args_to_matching_eager([input], ctx, []) _inputs_flat = [input] _attrs = ("dtype", _attr_dtype) _result = _execute.execute(b"OutfeedEnqueue", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result def outfeed_enqueue_tuple(inputs, name=None): r"""Enqueue multiple Tensor values on the computation outfeed. Args: inputs: A list of `Tensor` objects. A list of tensors that will be inserted into the outfeed queue as an XLA tuple. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "OutfeedEnqueueTuple", name, inputs) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return outfeed_enqueue_tuple_eager_fallback( inputs, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "OutfeedEnqueueTuple", inputs=inputs, name=name) return _op OutfeedEnqueueTuple = tf_export("raw_ops.OutfeedEnqueueTuple")(_ops.to_raw_op(outfeed_enqueue_tuple)) def outfeed_enqueue_tuple_eager_fallback(inputs, name, ctx): _attr_dtypes, inputs = _execute.convert_to_mixed_eager_tensors(inputs, ctx) _inputs_flat = list(inputs) _attrs = ("dtypes", _attr_dtypes) _result = _execute.execute(b"OutfeedEnqueueTuple", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result TV_Prelinearize_dtype = TypeVar("TV_Prelinearize_dtype", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def prelinearize(input: Annotated[Any, TV_Prelinearize_dtype], shape=[], layout=[], name=None) -> Annotated[Any, _atypes.Variant]: r"""An op which linearizes one Tensor value to an opaque variant tensor. Args: input: A `Tensor`. A tensor that will be linearized. shape: An optional `tf.TensorShape` or list of `ints`. Defaults to `[]`. The shape of the tensor. layout: An optional list of `ints`. Defaults to `[]`. A vector holding the requested layout in minor-to-major sequence. If a layout attribute is passed but its values are all -1 the layout will be computed by the infeed operation. name: A name for the operation (optional). Returns: A `Tensor` of type `variant`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "Prelinearize", name, input, "shape", shape, "layout", layout) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return prelinearize_eager_fallback( input, shape=shape, layout=layout, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if shape is None: shape = [] shape = _execute.make_shape(shape, "shape") if layout is None: layout = [] if not isinstance(layout, (list, tuple)): raise TypeError( "Expected list for 'layout' argument to " "'prelinearize' Op, not %r." % layout) layout = [_execute.make_int(_i, "layout") for _i in layout] _, _, _op, _outputs = _op_def_library._apply_op_helper( "Prelinearize", input=input, shape=shape, layout=layout, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("dtype", _op._get_attr_type("dtype"), "shape", _op.get_attr("shape"), "layout", _op.get_attr("layout")) _inputs_flat = _op.inputs _execute.record_gradient( "Prelinearize", _inputs_flat, _attrs, _result) _result, = _result return _result Prelinearize = tf_export("raw_ops.Prelinearize")(_ops.to_raw_op(prelinearize)) def prelinearize_eager_fallback(input: Annotated[Any, TV_Prelinearize_dtype], shape, layout, name, ctx) -> Annotated[Any, _atypes.Variant]: if shape is None: shape = [] shape = _execute.make_shape(shape, "shape") if layout is None: layout = [] if not isinstance(layout, (list, tuple)): raise TypeError( "Expected list for 'layout' argument to " "'prelinearize' Op, not %r." % layout) layout = [_execute.make_int(_i, "layout") for _i in layout] _attr_dtype, (input,) = _execute.args_to_matching_eager([input], ctx, []) _inputs_flat = [input] _attrs = ("dtype", _attr_dtype, "shape", shape, "layout", layout) _result = _execute.execute(b"Prelinearize", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "Prelinearize", _inputs_flat, _attrs, _result) _result, = _result return _result def prelinearize_tuple(inputs, shapes, layouts=[], name=None) -> Annotated[Any, _atypes.Variant]: r"""An op which linearizes multiple Tensor values to an opaque variant tensor. Args: inputs: A list of `Tensor` objects. A list of tensors that will be provided using the infeed mechanism. shapes: A list of shapes (each a `tf.TensorShape` or list of `ints`). The shapes of each tensor in `inputs`. layouts: An optional list of `ints`. Defaults to `[]`. A vector holding the requested layout in minor-to-major sequence for all the tuple shapes in the order the shapes appear in the "shapes" input. The layout elements for a sub-shape can be set to -1 in which case the corresponding layout will be computed by the infeed operation. name: A name for the operation (optional). Returns: A `Tensor` of type `variant`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "PrelinearizeTuple", name, inputs, "shapes", shapes, "layouts", layouts) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return prelinearize_tuple_eager_fallback( inputs, shapes=shapes, layouts=layouts, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(shapes, (list, tuple)): raise TypeError( "Expected list for 'shapes' argument to " "'prelinearize_tuple' Op, not %r." % shapes) shapes = [_execute.make_shape(_s, "shapes") for _s in shapes] if layouts is None: layouts = [] if not isinstance(layouts, (list, tuple)): raise TypeError( "Expected list for 'layouts' argument to " "'prelinearize_tuple' Op, not %r." % layouts) layouts = [_execute.make_int(_i, "layouts") for _i in layouts] _, _, _op, _outputs = _op_def_library._apply_op_helper( "PrelinearizeTuple", inputs=inputs, shapes=shapes, layouts=layouts, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("dtypes", _op.get_attr("dtypes"), "shapes", _op.get_attr("shapes"), "layouts", _op.get_attr("layouts")) _inputs_flat = _op.inputs _execute.record_gradient( "PrelinearizeTuple", _inputs_flat, _attrs, _result) _result, = _result return _result PrelinearizeTuple = tf_export("raw_ops.PrelinearizeTuple")(_ops.to_raw_op(prelinearize_tuple)) def prelinearize_tuple_eager_fallback(inputs, shapes, layouts, name, ctx) -> Annotated[Any, _atypes.Variant]: if not isinstance(shapes, (list, tuple)): raise TypeError( "Expected list for 'shapes' argument to " "'prelinearize_tuple' Op, not %r." % shapes) shapes = [_execute.make_shape(_s, "shapes") for _s in shapes] if layouts is None: layouts = [] if not isinstance(layouts, (list, tuple)): raise TypeError( "Expected list for 'layouts' argument to " "'prelinearize_tuple' Op, not %r." % layouts) layouts = [_execute.make_int(_i, "layouts") for _i in layouts] _attr_dtypes, inputs = _execute.convert_to_mixed_eager_tensors(inputs, ctx) _inputs_flat = list(inputs) _attrs = ("dtypes", _attr_dtypes, "shapes", shapes, "layouts", layouts) _result = _execute.execute(b"PrelinearizeTuple", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "PrelinearizeTuple", _inputs_flat, _attrs, _result) _result, = _result return _result TV_ReadVariableXlaSplitND_T = TypeVar("TV_ReadVariableXlaSplitND_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def read_variable_xla_split_nd(resource: Annotated[Any, _atypes.Resource], T: TV_ReadVariableXlaSplitND_T, N: int, num_splits, paddings=[], name=None): r"""Splits resource variable input tensor across all dimensions. An op which splits the resource variable input tensor based on the given num_splits attribute, pads slices optionally, and returned the slices. Slices are returned in row-major order. This op may be generated via the TPU bridge. For example, with `input` tensor: ``` [[0, 1, 2], [3, 4, 5], [6, 7, 8]] ``` `num_splits`: ``` [2, 2] ``` and `paddings`: ``` [1, 1] ``` the expected `outputs` is: ``` [[0, 1], [3, 4]] [[2, 0], [5, 0]] [[6, 7], [0, 0]] [[8, 0], [0, 0]] ``` Args: resource: A `Tensor` of type `resource`. Resource variable of input tensor to split across all dimensions. } out_arg { name: "outputs" description: <= 1`. num_splits: A list of `ints`. Number of ways to split per dimension. Shape dimensions must be evenly divisible. paddings: An optional list of `ints`. Defaults to `[]`. Optional list of right paddings per dimension of input tensor to apply before splitting. This can be used to make a dimension evenly divisible. name: A name for the operation (optional). Returns: A list of `N` `Tensor` objects with type `T`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "ReadVariableXlaSplitND", name, resource, "T", T, "N", N, "num_splits", num_splits, "paddings", paddings) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return read_variable_xla_split_nd_eager_fallback( resource, T=T, N=N, num_splits=num_splits, paddings=paddings, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. T = _execute.make_type(T, "T") N = _execute.make_int(N, "N") if not isinstance(num_splits, (list, tuple)): raise TypeError( "Expected list for 'num_splits' argument to " "'read_variable_xla_split_nd' Op, not %r." % num_splits) num_splits = [_execute.make_int(_i, "num_splits") for _i in num_splits] if paddings is None: paddings = [] if not isinstance(paddings, (list, tuple)): raise TypeError( "Expected list for 'paddings' argument to " "'read_variable_xla_split_nd' Op, not %r." % paddings) paddings = [_execute.make_int(_i, "paddings") for _i in paddings] _, _, _op, _outputs = _op_def_library._apply_op_helper( "ReadVariableXlaSplitND", resource=resource, T=T, N=N, num_splits=num_splits, paddings=paddings, name=name) _result = _outputs[:] if not _result: return _op if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "N", _op._get_attr_int("N"), "num_splits", _op.get_attr("num_splits"), "paddings", _op.get_attr("paddings")) _inputs_flat = _op.inputs _execute.record_gradient( "ReadVariableXlaSplitND", _inputs_flat, _attrs, _result) return _result ReadVariableXlaSplitND = tf_export("raw_ops.ReadVariableXlaSplitND")(_ops.to_raw_op(read_variable_xla_split_nd)) def read_variable_xla_split_nd_eager_fallback(resource: Annotated[Any, _atypes.Resource], T: TV_ReadVariableXlaSplitND_T, N: int, num_splits, paddings, name, ctx): T = _execute.make_type(T, "T") N = _execute.make_int(N, "N") if not isinstance(num_splits, (list, tuple)): raise TypeError( "Expected list for 'num_splits' argument to " "'read_variable_xla_split_nd' Op, not %r." % num_splits) num_splits = [_execute.make_int(_i, "num_splits") for _i in num_splits] if paddings is None: paddings = [] if not isinstance(paddings, (list, tuple)): raise TypeError( "Expected list for 'paddings' argument to " "'read_variable_xla_split_nd' Op, not %r." % paddings) paddings = [_execute.make_int(_i, "paddings") for _i in paddings] resource = _ops.convert_to_tensor(resource, _dtypes.resource) _inputs_flat = [resource] _attrs = ("T", T, "N", N, "num_splits", num_splits, "paddings", paddings) _result = _execute.execute(b"ReadVariableXlaSplitND", N, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "ReadVariableXlaSplitND", _inputs_flat, _attrs, _result) return _result def recv_tpu_embedding_activations(num_outputs: int, config: str, name=None): r"""An op that receives embedding activations on the TPU. The TPU system performs the embedding lookups and aggregations specified by the arguments to TPUEmbeddingEnqueue(Integer/Sparse/SparseTensor)Batch. The results of these aggregations are visible to the Tensorflow Graph as the outputs of a RecvTPUEmbeddingActivations op. This op returns a list containing one Tensor of activations per table specified in the model. There can be at most one RecvTPUEmbeddingActivations op in the TPU graph. Args: num_outputs: An `int` that is `>= 1`. The number of output activation tensors, equal to the number of embedding tables in the model. config: A `string`. Serialized TPUEmbeddingConfiguration proto. name: A name for the operation (optional). Returns: A list of `num_outputs` `Tensor` objects with type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "RecvTPUEmbeddingActivations", name, "num_outputs", num_outputs, "config", config) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return recv_tpu_embedding_activations_eager_fallback( num_outputs=num_outputs, config=config, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. num_outputs = _execute.make_int(num_outputs, "num_outputs") config = _execute.make_str(config, "config") _, _, _op, _outputs = _op_def_library._apply_op_helper( "RecvTPUEmbeddingActivations", num_outputs=num_outputs, config=config, name=name) _result = _outputs[:] if not _result: return _op if _execute.must_record_gradient(): _attrs = ("num_outputs", _op._get_attr_int("num_outputs"), "config", _op.get_attr("config")) _inputs_flat = _op.inputs _execute.record_gradient( "RecvTPUEmbeddingActivations", _inputs_flat, _attrs, _result) return _result RecvTPUEmbeddingActivations = tf_export("raw_ops.RecvTPUEmbeddingActivations")(_ops.to_raw_op(recv_tpu_embedding_activations)) def recv_tpu_embedding_activations_eager_fallback(num_outputs: int, config: str, name, ctx): num_outputs = _execute.make_int(num_outputs, "num_outputs") config = _execute.make_str(config, "config") _inputs_flat = [] _attrs = ("num_outputs", num_outputs, "config", config) _result = _execute.execute(b"RecvTPUEmbeddingActivations", num_outputs, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "RecvTPUEmbeddingActivations", _inputs_flat, _attrs, _result) return _result _RetrieveTPUEmbeddingADAMParametersOutput = collections.namedtuple( "RetrieveTPUEmbeddingADAMParameters", ["parameters", "momenta", "velocities"]) def retrieve_tpu_embedding_adam_parameters(num_shards: int, shard_id: int, table_id:int=-1, table_name:str="", config:str="", name=None): r"""Retrieve ADAM embedding parameters. An op that retrieves optimization parameters from embedding to host memory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to retrieve updated parameters before saving a checkpoint. Args: num_shards: An `int`. shard_id: An `int`. table_id: An optional `int`. Defaults to `-1`. table_name: An optional `string`. Defaults to `""`. config: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (parameters, momenta, velocities). parameters: A `Tensor` of type `float32`. momenta: A `Tensor` of type `float32`. velocities: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "RetrieveTPUEmbeddingADAMParameters", name, "table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) _result = _RetrieveTPUEmbeddingADAMParametersOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return retrieve_tpu_embedding_adam_parameters_eager_fallback( table_id=table_id, table_name=table_name, num_shards=num_shards, shard_id=shard_id, config=config, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") _, _, _op, _outputs = _op_def_library._apply_op_helper( "RetrieveTPUEmbeddingADAMParameters", num_shards=num_shards, shard_id=shard_id, table_id=table_id, table_name=table_name, config=config, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("table_id", _op._get_attr_int("table_id"), "table_name", _op.get_attr("table_name"), "num_shards", _op._get_attr_int("num_shards"), "shard_id", _op._get_attr_int("shard_id"), "config", _op.get_attr("config")) _inputs_flat = _op.inputs _execute.record_gradient( "RetrieveTPUEmbeddingADAMParameters", _inputs_flat, _attrs, _result) _result = _RetrieveTPUEmbeddingADAMParametersOutput._make(_result) return _result RetrieveTPUEmbeddingADAMParameters = tf_export("raw_ops.RetrieveTPUEmbeddingADAMParameters")(_ops.to_raw_op(retrieve_tpu_embedding_adam_parameters)) def retrieve_tpu_embedding_adam_parameters_eager_fallback(num_shards: int, shard_id: int, table_id: int, table_name: str, config: str, name, ctx): num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") _inputs_flat = [] _attrs = ("table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) _result = _execute.execute(b"RetrieveTPUEmbeddingADAMParameters", 3, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "RetrieveTPUEmbeddingADAMParameters", _inputs_flat, _attrs, _result) _result = _RetrieveTPUEmbeddingADAMParametersOutput._make(_result) return _result _RetrieveTPUEmbeddingAdadeltaParametersOutput = collections.namedtuple( "RetrieveTPUEmbeddingAdadeltaParameters", ["parameters", "accumulators", "updates"]) def retrieve_tpu_embedding_adadelta_parameters(num_shards: int, shard_id: int, table_id:int=-1, table_name:str="", config:str="", name=None): r"""Retrieve Adadelta embedding parameters. An op that retrieves optimization parameters from embedding to host memory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to retrieve updated parameters before saving a checkpoint. Args: num_shards: An `int`. shard_id: An `int`. table_id: An optional `int`. Defaults to `-1`. table_name: An optional `string`. Defaults to `""`. config: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (parameters, accumulators, updates). parameters: A `Tensor` of type `float32`. accumulators: A `Tensor` of type `float32`. updates: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "RetrieveTPUEmbeddingAdadeltaParameters", name, "table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) _result = _RetrieveTPUEmbeddingAdadeltaParametersOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return retrieve_tpu_embedding_adadelta_parameters_eager_fallback( table_id=table_id, table_name=table_name, num_shards=num_shards, shard_id=shard_id, config=config, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") _, _, _op, _outputs = _op_def_library._apply_op_helper( "RetrieveTPUEmbeddingAdadeltaParameters", num_shards=num_shards, shard_id=shard_id, table_id=table_id, table_name=table_name, config=config, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("table_id", _op._get_attr_int("table_id"), "table_name", _op.get_attr("table_name"), "num_shards", _op._get_attr_int("num_shards"), "shard_id", _op._get_attr_int("shard_id"), "config", _op.get_attr("config")) _inputs_flat = _op.inputs _execute.record_gradient( "RetrieveTPUEmbeddingAdadeltaParameters", _inputs_flat, _attrs, _result) _result = _RetrieveTPUEmbeddingAdadeltaParametersOutput._make(_result) return _result RetrieveTPUEmbeddingAdadeltaParameters = tf_export("raw_ops.RetrieveTPUEmbeddingAdadeltaParameters")(_ops.to_raw_op(retrieve_tpu_embedding_adadelta_parameters)) def retrieve_tpu_embedding_adadelta_parameters_eager_fallback(num_shards: int, shard_id: int, table_id: int, table_name: str, config: str, name, ctx): num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") _inputs_flat = [] _attrs = ("table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) _result = _execute.execute(b"RetrieveTPUEmbeddingAdadeltaParameters", 3, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "RetrieveTPUEmbeddingAdadeltaParameters", _inputs_flat, _attrs, _result) _result = _RetrieveTPUEmbeddingAdadeltaParametersOutput._make(_result) return _result _RetrieveTPUEmbeddingAdagradMomentumParametersOutput = collections.namedtuple( "RetrieveTPUEmbeddingAdagradMomentumParameters", ["parameters", "accumulators", "momenta"]) def retrieve_tpu_embedding_adagrad_momentum_parameters(num_shards: int, shard_id: int, table_id:int=-1, table_name:str="", config:str="", name=None): r"""Retrieve Adagrad Momentum embedding parameters. An op that retrieves optimization parameters from embedding to host memory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to retrieve updated parameters before saving a checkpoint. Args: num_shards: An `int`. shard_id: An `int`. table_id: An optional `int`. Defaults to `-1`. table_name: An optional `string`. Defaults to `""`. config: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (parameters, accumulators, momenta). parameters: A `Tensor` of type `float32`. accumulators: A `Tensor` of type `float32`. momenta: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "RetrieveTPUEmbeddingAdagradMomentumParameters", name, "table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) _result = _RetrieveTPUEmbeddingAdagradMomentumParametersOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return retrieve_tpu_embedding_adagrad_momentum_parameters_eager_fallback( table_id=table_id, table_name=table_name, num_shards=num_shards, shard_id=shard_id, config=config, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") _, _, _op, _outputs = _op_def_library._apply_op_helper( "RetrieveTPUEmbeddingAdagradMomentumParameters", num_shards=num_shards, shard_id=shard_id, table_id=table_id, table_name=table_name, config=config, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("table_id", _op._get_attr_int("table_id"), "table_name", _op.get_attr("table_name"), "num_shards", _op._get_attr_int("num_shards"), "shard_id", _op._get_attr_int("shard_id"), "config", _op.get_attr("config")) _inputs_flat = _op.inputs _execute.record_gradient( "RetrieveTPUEmbeddingAdagradMomentumParameters", _inputs_flat, _attrs, _result) _result = _RetrieveTPUEmbeddingAdagradMomentumParametersOutput._make(_result) return _result RetrieveTPUEmbeddingAdagradMomentumParameters = tf_export("raw_ops.RetrieveTPUEmbeddingAdagradMomentumParameters")(_ops.to_raw_op(retrieve_tpu_embedding_adagrad_momentum_parameters)) def retrieve_tpu_embedding_adagrad_momentum_parameters_eager_fallback(num_shards: int, shard_id: int, table_id: int, table_name: str, config: str, name, ctx): num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") _inputs_flat = [] _attrs = ("table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) _result = _execute.execute(b"RetrieveTPUEmbeddingAdagradMomentumParameters", 3, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "RetrieveTPUEmbeddingAdagradMomentumParameters", _inputs_flat, _attrs, _result) _result = _RetrieveTPUEmbeddingAdagradMomentumParametersOutput._make(_result) return _result _RetrieveTPUEmbeddingAdagradParametersOutput = collections.namedtuple( "RetrieveTPUEmbeddingAdagradParameters", ["parameters", "accumulators"]) def retrieve_tpu_embedding_adagrad_parameters(num_shards: int, shard_id: int, table_id:int=-1, table_name:str="", config:str="", name=None): r"""Retrieve Adagrad embedding parameters. An op that retrieves optimization parameters from embedding to host memory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to retrieve updated parameters before saving a checkpoint. Args: num_shards: An `int`. shard_id: An `int`. table_id: An optional `int`. Defaults to `-1`. table_name: An optional `string`. Defaults to `""`. config: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (parameters, accumulators). parameters: A `Tensor` of type `float32`. accumulators: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "RetrieveTPUEmbeddingAdagradParameters", name, "table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) _result = _RetrieveTPUEmbeddingAdagradParametersOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return retrieve_tpu_embedding_adagrad_parameters_eager_fallback( table_id=table_id, table_name=table_name, num_shards=num_shards, shard_id=shard_id, config=config, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") _, _, _op, _outputs = _op_def_library._apply_op_helper( "RetrieveTPUEmbeddingAdagradParameters", num_shards=num_shards, shard_id=shard_id, table_id=table_id, table_name=table_name, config=config, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("table_id", _op._get_attr_int("table_id"), "table_name", _op.get_attr("table_name"), "num_shards", _op._get_attr_int("num_shards"), "shard_id", _op._get_attr_int("shard_id"), "config", _op.get_attr("config")) _inputs_flat = _op.inputs _execute.record_gradient( "RetrieveTPUEmbeddingAdagradParameters", _inputs_flat, _attrs, _result) _result = _RetrieveTPUEmbeddingAdagradParametersOutput._make(_result) return _result RetrieveTPUEmbeddingAdagradParameters = tf_export("raw_ops.RetrieveTPUEmbeddingAdagradParameters")(_ops.to_raw_op(retrieve_tpu_embedding_adagrad_parameters)) def retrieve_tpu_embedding_adagrad_parameters_eager_fallback(num_shards: int, shard_id: int, table_id: int, table_name: str, config: str, name, ctx): num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") _inputs_flat = [] _attrs = ("table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) _result = _execute.execute(b"RetrieveTPUEmbeddingAdagradParameters", 2, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "RetrieveTPUEmbeddingAdagradParameters", _inputs_flat, _attrs, _result) _result = _RetrieveTPUEmbeddingAdagradParametersOutput._make(_result) return _result _RetrieveTPUEmbeddingCenteredRMSPropParametersOutput = collections.namedtuple( "RetrieveTPUEmbeddingCenteredRMSPropParameters", ["parameters", "ms", "mom", "mg"]) def retrieve_tpu_embedding_centered_rms_prop_parameters(num_shards: int, shard_id: int, table_id:int=-1, table_name:str="", config:str="", name=None): r"""Retrieve centered RMSProp embedding parameters. An op that retrieves optimization parameters from embedding to host memory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to retrieve updated parameters before saving a checkpoint. Args: num_shards: An `int`. shard_id: An `int`. table_id: An optional `int`. Defaults to `-1`. table_name: An optional `string`. Defaults to `""`. config: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (parameters, ms, mom, mg). parameters: A `Tensor` of type `float32`. ms: A `Tensor` of type `float32`. mom: A `Tensor` of type `float32`. mg: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "RetrieveTPUEmbeddingCenteredRMSPropParameters", name, "table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) _result = _RetrieveTPUEmbeddingCenteredRMSPropParametersOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return retrieve_tpu_embedding_centered_rms_prop_parameters_eager_fallback( table_id=table_id, table_name=table_name, num_shards=num_shards, shard_id=shard_id, config=config, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") _, _, _op, _outputs = _op_def_library._apply_op_helper( "RetrieveTPUEmbeddingCenteredRMSPropParameters", num_shards=num_shards, shard_id=shard_id, table_id=table_id, table_name=table_name, config=config, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("table_id", _op._get_attr_int("table_id"), "table_name", _op.get_attr("table_name"), "num_shards", _op._get_attr_int("num_shards"), "shard_id", _op._get_attr_int("shard_id"), "config", _op.get_attr("config")) _inputs_flat = _op.inputs _execute.record_gradient( "RetrieveTPUEmbeddingCenteredRMSPropParameters", _inputs_flat, _attrs, _result) _result = _RetrieveTPUEmbeddingCenteredRMSPropParametersOutput._make(_result) return _result RetrieveTPUEmbeddingCenteredRMSPropParameters = tf_export("raw_ops.RetrieveTPUEmbeddingCenteredRMSPropParameters")(_ops.to_raw_op(retrieve_tpu_embedding_centered_rms_prop_parameters)) def retrieve_tpu_embedding_centered_rms_prop_parameters_eager_fallback(num_shards: int, shard_id: int, table_id: int, table_name: str, config: str, name, ctx): num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") _inputs_flat = [] _attrs = ("table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) _result = _execute.execute(b"RetrieveTPUEmbeddingCenteredRMSPropParameters", 4, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "RetrieveTPUEmbeddingCenteredRMSPropParameters", _inputs_flat, _attrs, _result) _result = _RetrieveTPUEmbeddingCenteredRMSPropParametersOutput._make(_result) return _result _RetrieveTPUEmbeddingFTRLParametersOutput = collections.namedtuple( "RetrieveTPUEmbeddingFTRLParameters", ["parameters", "accumulators", "linears"]) def retrieve_tpu_embedding_ftrl_parameters(num_shards: int, shard_id: int, table_id:int=-1, table_name:str="", config:str="", name=None): r"""Retrieve FTRL embedding parameters. An op that retrieves optimization parameters from embedding to host memory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to retrieve updated parameters before saving a checkpoint. Args: num_shards: An `int`. shard_id: An `int`. table_id: An optional `int`. Defaults to `-1`. table_name: An optional `string`. Defaults to `""`. config: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (parameters, accumulators, linears). parameters: A `Tensor` of type `float32`. accumulators: A `Tensor` of type `float32`. linears: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "RetrieveTPUEmbeddingFTRLParameters", name, "table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) _result = _RetrieveTPUEmbeddingFTRLParametersOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return retrieve_tpu_embedding_ftrl_parameters_eager_fallback( table_id=table_id, table_name=table_name, num_shards=num_shards, shard_id=shard_id, config=config, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") _, _, _op, _outputs = _op_def_library._apply_op_helper( "RetrieveTPUEmbeddingFTRLParameters", num_shards=num_shards, shard_id=shard_id, table_id=table_id, table_name=table_name, config=config, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("table_id", _op._get_attr_int("table_id"), "table_name", _op.get_attr("table_name"), "num_shards", _op._get_attr_int("num_shards"), "shard_id", _op._get_attr_int("shard_id"), "config", _op.get_attr("config")) _inputs_flat = _op.inputs _execute.record_gradient( "RetrieveTPUEmbeddingFTRLParameters", _inputs_flat, _attrs, _result) _result = _RetrieveTPUEmbeddingFTRLParametersOutput._make(_result) return _result RetrieveTPUEmbeddingFTRLParameters = tf_export("raw_ops.RetrieveTPUEmbeddingFTRLParameters")(_ops.to_raw_op(retrieve_tpu_embedding_ftrl_parameters)) def retrieve_tpu_embedding_ftrl_parameters_eager_fallback(num_shards: int, shard_id: int, table_id: int, table_name: str, config: str, name, ctx): num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") _inputs_flat = [] _attrs = ("table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) _result = _execute.execute(b"RetrieveTPUEmbeddingFTRLParameters", 3, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "RetrieveTPUEmbeddingFTRLParameters", _inputs_flat, _attrs, _result) _result = _RetrieveTPUEmbeddingFTRLParametersOutput._make(_result) return _result _RetrieveTPUEmbeddingFrequencyEstimatorParametersOutput = collections.namedtuple( "RetrieveTPUEmbeddingFrequencyEstimatorParameters", ["parameters", "last_hit_step"]) def retrieve_tpu_embedding_frequency_estimator_parameters(num_shards: int, shard_id: int, table_id:int=-1, table_name:str="", config:str="", name=None): r"""Retrieve frequency estimator embedding parameters. An op that retrieves optimization parameters from embedding to host memory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to retrieve updated parameters before saving a checkpoint. Args: num_shards: An `int`. shard_id: An `int`. table_id: An optional `int`. Defaults to `-1`. table_name: An optional `string`. Defaults to `""`. config: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (parameters, last_hit_step). parameters: A `Tensor` of type `float32`. last_hit_step: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "RetrieveTPUEmbeddingFrequencyEstimatorParameters", name, "table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) _result = _RetrieveTPUEmbeddingFrequencyEstimatorParametersOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return retrieve_tpu_embedding_frequency_estimator_parameters_eager_fallback( table_id=table_id, table_name=table_name, num_shards=num_shards, shard_id=shard_id, config=config, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") _, _, _op, _outputs = _op_def_library._apply_op_helper( "RetrieveTPUEmbeddingFrequencyEstimatorParameters", num_shards=num_shards, shard_id=shard_id, table_id=table_id, table_name=table_name, config=config, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("table_id", _op._get_attr_int("table_id"), "table_name", _op.get_attr("table_name"), "num_shards", _op._get_attr_int("num_shards"), "shard_id", _op._get_attr_int("shard_id"), "config", _op.get_attr("config")) _inputs_flat = _op.inputs _execute.record_gradient( "RetrieveTPUEmbeddingFrequencyEstimatorParameters", _inputs_flat, _attrs, _result) _result = _RetrieveTPUEmbeddingFrequencyEstimatorParametersOutput._make(_result) return _result RetrieveTPUEmbeddingFrequencyEstimatorParameters = tf_export("raw_ops.RetrieveTPUEmbeddingFrequencyEstimatorParameters")(_ops.to_raw_op(retrieve_tpu_embedding_frequency_estimator_parameters)) def retrieve_tpu_embedding_frequency_estimator_parameters_eager_fallback(num_shards: int, shard_id: int, table_id: int, table_name: str, config: str, name, ctx): num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") _inputs_flat = [] _attrs = ("table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) _result = _execute.execute(b"RetrieveTPUEmbeddingFrequencyEstimatorParameters", 2, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "RetrieveTPUEmbeddingFrequencyEstimatorParameters", _inputs_flat, _attrs, _result) _result = _RetrieveTPUEmbeddingFrequencyEstimatorParametersOutput._make(_result) return _result _RetrieveTPUEmbeddingMDLAdagradLightParametersOutput = collections.namedtuple( "RetrieveTPUEmbeddingMDLAdagradLightParameters", ["parameters", "accumulators", "weights", "benefits"]) def retrieve_tpu_embedding_mdl_adagrad_light_parameters(num_shards: int, shard_id: int, table_id:int=-1, table_name:str="", config:str="", name=None): r"""Retrieve MDL Adagrad Light embedding parameters. An op that retrieves optimization parameters from embedding to host memory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to retrieve updated parameters before saving a checkpoint. Args: num_shards: An `int`. shard_id: An `int`. table_id: An optional `int`. Defaults to `-1`. table_name: An optional `string`. Defaults to `""`. config: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (parameters, accumulators, weights, benefits). parameters: A `Tensor` of type `float32`. accumulators: A `Tensor` of type `float32`. weights: A `Tensor` of type `float32`. benefits: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "RetrieveTPUEmbeddingMDLAdagradLightParameters", name, "table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) _result = _RetrieveTPUEmbeddingMDLAdagradLightParametersOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return retrieve_tpu_embedding_mdl_adagrad_light_parameters_eager_fallback( table_id=table_id, table_name=table_name, num_shards=num_shards, shard_id=shard_id, config=config, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") _, _, _op, _outputs = _op_def_library._apply_op_helper( "RetrieveTPUEmbeddingMDLAdagradLightParameters", num_shards=num_shards, shard_id=shard_id, table_id=table_id, table_name=table_name, config=config, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("table_id", _op._get_attr_int("table_id"), "table_name", _op.get_attr("table_name"), "num_shards", _op._get_attr_int("num_shards"), "shard_id", _op._get_attr_int("shard_id"), "config", _op.get_attr("config")) _inputs_flat = _op.inputs _execute.record_gradient( "RetrieveTPUEmbeddingMDLAdagradLightParameters", _inputs_flat, _attrs, _result) _result = _RetrieveTPUEmbeddingMDLAdagradLightParametersOutput._make(_result) return _result RetrieveTPUEmbeddingMDLAdagradLightParameters = tf_export("raw_ops.RetrieveTPUEmbeddingMDLAdagradLightParameters")(_ops.to_raw_op(retrieve_tpu_embedding_mdl_adagrad_light_parameters)) def retrieve_tpu_embedding_mdl_adagrad_light_parameters_eager_fallback(num_shards: int, shard_id: int, table_id: int, table_name: str, config: str, name, ctx): num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") _inputs_flat = [] _attrs = ("table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) _result = _execute.execute(b"RetrieveTPUEmbeddingMDLAdagradLightParameters", 4, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "RetrieveTPUEmbeddingMDLAdagradLightParameters", _inputs_flat, _attrs, _result) _result = _RetrieveTPUEmbeddingMDLAdagradLightParametersOutput._make(_result) return _result _RetrieveTPUEmbeddingMomentumParametersOutput = collections.namedtuple( "RetrieveTPUEmbeddingMomentumParameters", ["parameters", "momenta"]) def retrieve_tpu_embedding_momentum_parameters(num_shards: int, shard_id: int, table_id:int=-1, table_name:str="", config:str="", name=None): r"""Retrieve Momentum embedding parameters. An op that retrieves optimization parameters from embedding to host memory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to retrieve updated parameters before saving a checkpoint. Args: num_shards: An `int`. shard_id: An `int`. table_id: An optional `int`. Defaults to `-1`. table_name: An optional `string`. Defaults to `""`. config: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (parameters, momenta). parameters: A `Tensor` of type `float32`. momenta: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "RetrieveTPUEmbeddingMomentumParameters", name, "table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) _result = _RetrieveTPUEmbeddingMomentumParametersOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return retrieve_tpu_embedding_momentum_parameters_eager_fallback( table_id=table_id, table_name=table_name, num_shards=num_shards, shard_id=shard_id, config=config, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") _, _, _op, _outputs = _op_def_library._apply_op_helper( "RetrieveTPUEmbeddingMomentumParameters", num_shards=num_shards, shard_id=shard_id, table_id=table_id, table_name=table_name, config=config, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("table_id", _op._get_attr_int("table_id"), "table_name", _op.get_attr("table_name"), "num_shards", _op._get_attr_int("num_shards"), "shard_id", _op._get_attr_int("shard_id"), "config", _op.get_attr("config")) _inputs_flat = _op.inputs _execute.record_gradient( "RetrieveTPUEmbeddingMomentumParameters", _inputs_flat, _attrs, _result) _result = _RetrieveTPUEmbeddingMomentumParametersOutput._make(_result) return _result RetrieveTPUEmbeddingMomentumParameters = tf_export("raw_ops.RetrieveTPUEmbeddingMomentumParameters")(_ops.to_raw_op(retrieve_tpu_embedding_momentum_parameters)) def retrieve_tpu_embedding_momentum_parameters_eager_fallback(num_shards: int, shard_id: int, table_id: int, table_name: str, config: str, name, ctx): num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") _inputs_flat = [] _attrs = ("table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) _result = _execute.execute(b"RetrieveTPUEmbeddingMomentumParameters", 2, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "RetrieveTPUEmbeddingMomentumParameters", _inputs_flat, _attrs, _result) _result = _RetrieveTPUEmbeddingMomentumParametersOutput._make(_result) return _result _RetrieveTPUEmbeddingProximalAdagradParametersOutput = collections.namedtuple( "RetrieveTPUEmbeddingProximalAdagradParameters", ["parameters", "accumulators"]) def retrieve_tpu_embedding_proximal_adagrad_parameters(num_shards: int, shard_id: int, table_id:int=-1, table_name:str="", config:str="", name=None): r"""Retrieve proximal Adagrad embedding parameters. An op that retrieves optimization parameters from embedding to host memory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to retrieve updated parameters before saving a checkpoint. Args: num_shards: An `int`. shard_id: An `int`. table_id: An optional `int`. Defaults to `-1`. table_name: An optional `string`. Defaults to `""`. config: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (parameters, accumulators). parameters: A `Tensor` of type `float32`. accumulators: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "RetrieveTPUEmbeddingProximalAdagradParameters", name, "table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) _result = _RetrieveTPUEmbeddingProximalAdagradParametersOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return retrieve_tpu_embedding_proximal_adagrad_parameters_eager_fallback( table_id=table_id, table_name=table_name, num_shards=num_shards, shard_id=shard_id, config=config, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") _, _, _op, _outputs = _op_def_library._apply_op_helper( "RetrieveTPUEmbeddingProximalAdagradParameters", num_shards=num_shards, shard_id=shard_id, table_id=table_id, table_name=table_name, config=config, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("table_id", _op._get_attr_int("table_id"), "table_name", _op.get_attr("table_name"), "num_shards", _op._get_attr_int("num_shards"), "shard_id", _op._get_attr_int("shard_id"), "config", _op.get_attr("config")) _inputs_flat = _op.inputs _execute.record_gradient( "RetrieveTPUEmbeddingProximalAdagradParameters", _inputs_flat, _attrs, _result) _result = _RetrieveTPUEmbeddingProximalAdagradParametersOutput._make(_result) return _result RetrieveTPUEmbeddingProximalAdagradParameters = tf_export("raw_ops.RetrieveTPUEmbeddingProximalAdagradParameters")(_ops.to_raw_op(retrieve_tpu_embedding_proximal_adagrad_parameters)) def retrieve_tpu_embedding_proximal_adagrad_parameters_eager_fallback(num_shards: int, shard_id: int, table_id: int, table_name: str, config: str, name, ctx): num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") _inputs_flat = [] _attrs = ("table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) _result = _execute.execute(b"RetrieveTPUEmbeddingProximalAdagradParameters", 2, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "RetrieveTPUEmbeddingProximalAdagradParameters", _inputs_flat, _attrs, _result) _result = _RetrieveTPUEmbeddingProximalAdagradParametersOutput._make(_result) return _result _RetrieveTPUEmbeddingProximalYogiParametersOutput = collections.namedtuple( "RetrieveTPUEmbeddingProximalYogiParameters", ["parameters", "v", "m"]) def retrieve_tpu_embedding_proximal_yogi_parameters(num_shards: int, shard_id: int, table_id:int=-1, table_name:str="", config:str="", name=None): r"""TODO: add doc. Args: num_shards: An `int`. shard_id: An `int`. table_id: An optional `int`. Defaults to `-1`. table_name: An optional `string`. Defaults to `""`. config: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (parameters, v, m). parameters: A `Tensor` of type `float32`. v: A `Tensor` of type `float32`. m: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "RetrieveTPUEmbeddingProximalYogiParameters", name, "table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) _result = _RetrieveTPUEmbeddingProximalYogiParametersOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return retrieve_tpu_embedding_proximal_yogi_parameters_eager_fallback( table_id=table_id, table_name=table_name, num_shards=num_shards, shard_id=shard_id, config=config, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") _, _, _op, _outputs = _op_def_library._apply_op_helper( "RetrieveTPUEmbeddingProximalYogiParameters", num_shards=num_shards, shard_id=shard_id, table_id=table_id, table_name=table_name, config=config, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("table_id", _op._get_attr_int("table_id"), "table_name", _op.get_attr("table_name"), "num_shards", _op._get_attr_int("num_shards"), "shard_id", _op._get_attr_int("shard_id"), "config", _op.get_attr("config")) _inputs_flat = _op.inputs _execute.record_gradient( "RetrieveTPUEmbeddingProximalYogiParameters", _inputs_flat, _attrs, _result) _result = _RetrieveTPUEmbeddingProximalYogiParametersOutput._make(_result) return _result RetrieveTPUEmbeddingProximalYogiParameters = tf_export("raw_ops.RetrieveTPUEmbeddingProximalYogiParameters")(_ops.to_raw_op(retrieve_tpu_embedding_proximal_yogi_parameters)) def retrieve_tpu_embedding_proximal_yogi_parameters_eager_fallback(num_shards: int, shard_id: int, table_id: int, table_name: str, config: str, name, ctx): num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") _inputs_flat = [] _attrs = ("table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) _result = _execute.execute(b"RetrieveTPUEmbeddingProximalYogiParameters", 3, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "RetrieveTPUEmbeddingProximalYogiParameters", _inputs_flat, _attrs, _result) _result = _RetrieveTPUEmbeddingProximalYogiParametersOutput._make(_result) return _result _RetrieveTPUEmbeddingRMSPropParametersOutput = collections.namedtuple( "RetrieveTPUEmbeddingRMSPropParameters", ["parameters", "ms", "mom"]) def retrieve_tpu_embedding_rms_prop_parameters(num_shards: int, shard_id: int, table_id:int=-1, table_name:str="", config:str="", name=None): r"""Retrieve RMSProp embedding parameters. An op that retrieves optimization parameters from embedding to host memory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to retrieve updated parameters before saving a checkpoint. Args: num_shards: An `int`. shard_id: An `int`. table_id: An optional `int`. Defaults to `-1`. table_name: An optional `string`. Defaults to `""`. config: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (parameters, ms, mom). parameters: A `Tensor` of type `float32`. ms: A `Tensor` of type `float32`. mom: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "RetrieveTPUEmbeddingRMSPropParameters", name, "table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) _result = _RetrieveTPUEmbeddingRMSPropParametersOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return retrieve_tpu_embedding_rms_prop_parameters_eager_fallback( table_id=table_id, table_name=table_name, num_shards=num_shards, shard_id=shard_id, config=config, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") _, _, _op, _outputs = _op_def_library._apply_op_helper( "RetrieveTPUEmbeddingRMSPropParameters", num_shards=num_shards, shard_id=shard_id, table_id=table_id, table_name=table_name, config=config, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("table_id", _op._get_attr_int("table_id"), "table_name", _op.get_attr("table_name"), "num_shards", _op._get_attr_int("num_shards"), "shard_id", _op._get_attr_int("shard_id"), "config", _op.get_attr("config")) _inputs_flat = _op.inputs _execute.record_gradient( "RetrieveTPUEmbeddingRMSPropParameters", _inputs_flat, _attrs, _result) _result = _RetrieveTPUEmbeddingRMSPropParametersOutput._make(_result) return _result RetrieveTPUEmbeddingRMSPropParameters = tf_export("raw_ops.RetrieveTPUEmbeddingRMSPropParameters")(_ops.to_raw_op(retrieve_tpu_embedding_rms_prop_parameters)) def retrieve_tpu_embedding_rms_prop_parameters_eager_fallback(num_shards: int, shard_id: int, table_id: int, table_name: str, config: str, name, ctx): num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") _inputs_flat = [] _attrs = ("table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) _result = _execute.execute(b"RetrieveTPUEmbeddingRMSPropParameters", 3, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "RetrieveTPUEmbeddingRMSPropParameters", _inputs_flat, _attrs, _result) _result = _RetrieveTPUEmbeddingRMSPropParametersOutput._make(_result) return _result def retrieve_tpu_embedding_stochastic_gradient_descent_parameters(num_shards: int, shard_id: int, table_id:int=-1, table_name:str="", config:str="", name=None) -> Annotated[Any, _atypes.Float32]: r"""Retrieve SGD embedding parameters. An op that retrieves optimization parameters from embedding to host memory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to retrieve updated parameters before saving a checkpoint. Args: num_shards: An `int`. shard_id: An `int`. table_id: An optional `int`. Defaults to `-1`. table_name: An optional `string`. Defaults to `""`. config: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "RetrieveTPUEmbeddingStochasticGradientDescentParameters", name, "table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return retrieve_tpu_embedding_stochastic_gradient_descent_parameters_eager_fallback( table_id=table_id, table_name=table_name, num_shards=num_shards, shard_id=shard_id, config=config, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") _, _, _op, _outputs = _op_def_library._apply_op_helper( "RetrieveTPUEmbeddingStochasticGradientDescentParameters", num_shards=num_shards, shard_id=shard_id, table_id=table_id, table_name=table_name, config=config, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("table_id", _op._get_attr_int("table_id"), "table_name", _op.get_attr("table_name"), "num_shards", _op._get_attr_int("num_shards"), "shard_id", _op._get_attr_int("shard_id"), "config", _op.get_attr("config")) _inputs_flat = _op.inputs _execute.record_gradient( "RetrieveTPUEmbeddingStochasticGradientDescentParameters", _inputs_flat, _attrs, _result) _result, = _result return _result RetrieveTPUEmbeddingStochasticGradientDescentParameters = tf_export("raw_ops.RetrieveTPUEmbeddingStochasticGradientDescentParameters")(_ops.to_raw_op(retrieve_tpu_embedding_stochastic_gradient_descent_parameters)) def retrieve_tpu_embedding_stochastic_gradient_descent_parameters_eager_fallback(num_shards: int, shard_id: int, table_id: int, table_name: str, config: str, name, ctx) -> Annotated[Any, _atypes.Float32]: num_shards = _execute.make_int(num_shards, "num_shards") shard_id = _execute.make_int(shard_id, "shard_id") if table_id is None: table_id = -1 table_id = _execute.make_int(table_id, "table_id") if table_name is None: table_name = "" table_name = _execute.make_str(table_name, "table_name") if config is None: config = "" config = _execute.make_str(config, "config") _inputs_flat = [] _attrs = ("table_id", table_id, "table_name", table_name, "num_shards", num_shards, "shard_id", shard_id, "config", config) _result = _execute.execute(b"RetrieveTPUEmbeddingStochasticGradientDescentParameters", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "RetrieveTPUEmbeddingStochasticGradientDescentParameters", _inputs_flat, _attrs, _result) _result, = _result return _result def send_tpu_embedding_gradients(inputs: Annotated[List[Any], _atypes.Float32], learning_rates: Annotated[List[Any], _atypes.Float32], config: str, name=None): r"""Performs gradient updates of embedding tables. Args: inputs: A list of at least 1 `Tensor` objects with type `float32`. A TensorList of gradients with which to update embedding tables. This argument has the same length and shapes as the return value of RecvTPUEmbeddingActivations, but contains gradients of the model's loss with respect to the embedding activations. The embedding tables are updated from these gradients via the optimizer specified in the TPU embedding configuration given to tpu.initialize_system. learning_rates: A list of `Tensor` objects with type `float32`. A TensorList of float32 scalars, one for each dynamic learning rate tag: see the comments in //third_party/tensorflow/core/protobuf/tpu/optimization_parameters.proto. Multiple tables can share the same dynamic learning rate tag as specified in the configuration. If the learning rates for all tables are constant, this list should be empty. config: A `string`. Serialized TPUEmbeddingConfiguration proto. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "SendTPUEmbeddingGradients", name, inputs, learning_rates, "config", config) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return send_tpu_embedding_gradients_eager_fallback( inputs, learning_rates, config=config, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(inputs, (list, tuple)): raise TypeError( "Expected list for 'inputs' argument to " "'send_tpu_embedding_gradients' Op, not %r." % inputs) _attr_N = len(inputs) if not isinstance(learning_rates, (list, tuple)): raise TypeError( "Expected list for 'learning_rates' argument to " "'send_tpu_embedding_gradients' Op, not %r." % learning_rates) _attr_NN = len(learning_rates) config = _execute.make_str(config, "config") _, _, _op, _outputs = _op_def_library._apply_op_helper( "SendTPUEmbeddingGradients", inputs=inputs, learning_rates=learning_rates, config=config, name=name) return _op SendTPUEmbeddingGradients = tf_export("raw_ops.SendTPUEmbeddingGradients")(_ops.to_raw_op(send_tpu_embedding_gradients)) def send_tpu_embedding_gradients_eager_fallback(inputs: Annotated[List[Any], _atypes.Float32], learning_rates: Annotated[List[Any], _atypes.Float32], config: str, name, ctx): if not isinstance(inputs, (list, tuple)): raise TypeError( "Expected list for 'inputs' argument to " "'send_tpu_embedding_gradients' Op, not %r." % inputs) _attr_N = len(inputs) if not isinstance(learning_rates, (list, tuple)): raise TypeError( "Expected list for 'learning_rates' argument to " "'send_tpu_embedding_gradients' Op, not %r." % learning_rates) _attr_NN = len(learning_rates) config = _execute.make_str(config, "config") inputs = _ops.convert_n_to_tensor(inputs, _dtypes.float32) learning_rates = _ops.convert_n_to_tensor(learning_rates, _dtypes.float32) _inputs_flat = list(inputs) + list(learning_rates) _attrs = ("N", _attr_N, "NN", _attr_NN, "config", config) _result = _execute.execute(b"SendTPUEmbeddingGradients", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result def shutdown_distributed_tpu(name=None): r"""Shuts down a running distributed TPU system. The op returns an error if no system is running. Args: name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "ShutdownDistributedTPU", name) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return shutdown_distributed_tpu_eager_fallback( name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "ShutdownDistributedTPU", name=name) return _op ShutdownDistributedTPU = tf_export("raw_ops.ShutdownDistributedTPU")(_ops.to_raw_op(shutdown_distributed_tpu)) def shutdown_distributed_tpu_eager_fallback(name, ctx): _inputs_flat = [] _attrs = None _result = _execute.execute(b"ShutdownDistributedTPU", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result def tpu_compilation_result(name=None) -> Annotated[Any, _atypes.String]: r"""Returns the result of a TPU compilation. This operation returns the result of a TPU compilation as a serialized CompilationResultProto, which holds a status and an error message if an error occurred during compilation. Args: name: A name for the operation (optional). Returns: A `Tensor` of type `string`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "TPUCompilationResult", name) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return tpu_compilation_result_eager_fallback( name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "TPUCompilationResult", name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "TPUCompilationResult", _inputs_flat, _attrs, _result) _result, = _result return _result TPUCompilationResult = tf_export("raw_ops.TPUCompilationResult")(_ops.to_raw_op(tpu_compilation_result)) def tpu_compilation_result_eager_fallback(name, ctx) -> Annotated[Any, _atypes.String]: _inputs_flat = [] _attrs = None _result = _execute.execute(b"TPUCompilationResult", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "TPUCompilationResult", _inputs_flat, _attrs, _result) _result, = _result return _result def tpu_embedding_activations(embedding_variable: Annotated[Any, _atypes.Float32], sliced_activations: Annotated[Any, _atypes.Float32], table_id: int, lookup_id: int, name=None) -> Annotated[Any, _atypes.Float32]: r"""An op enabling differentiation of TPU Embeddings. This op simply returns its first input, which is assumed to have been sliced from the Tensors returned by TPUEmbeddingDequeueActivations. The presence of this op, and its first argument being a trainable Variable, enables automatic differentiation of graphs containing embeddings via the TPU Embedding Python libraries. Args: embedding_variable: A `Tensor` of type `float32`. A trainable variable, enabling optimizers to find this op. sliced_activations: A `Tensor` of type `float32`. The embedding activations Tensor to return. table_id: An `int` that is `>= 0`. The id of the table in the embedding layer configuration from which these activations were computed. lookup_id: An `int` that is `>= 0`. Identifier of the set of embedding indices which produced these activations. name: A name for the operation (optional). Returns: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "TPUEmbeddingActivations", name, embedding_variable, sliced_activations, "table_id", table_id, "lookup_id", lookup_id) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return tpu_embedding_activations_eager_fallback( embedding_variable, sliced_activations, table_id=table_id, lookup_id=lookup_id, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. table_id = _execute.make_int(table_id, "table_id") lookup_id = _execute.make_int(lookup_id, "lookup_id") _, _, _op, _outputs = _op_def_library._apply_op_helper( "TPUEmbeddingActivations", embedding_variable=embedding_variable, sliced_activations=sliced_activations, table_id=table_id, lookup_id=lookup_id, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("table_id", _op._get_attr_int("table_id"), "lookup_id", _op._get_attr_int("lookup_id")) _inputs_flat = _op.inputs _execute.record_gradient( "TPUEmbeddingActivations", _inputs_flat, _attrs, _result) _result, = _result return _result TPUEmbeddingActivations = tf_export("raw_ops.TPUEmbeddingActivations")(_ops.to_raw_op(tpu_embedding_activations)) def tpu_embedding_activations_eager_fallback(embedding_variable: Annotated[Any, _atypes.Float32], sliced_activations: Annotated[Any, _atypes.Float32], table_id: int, lookup_id: int, name, ctx) -> Annotated[Any, _atypes.Float32]: table_id = _execute.make_int(table_id, "table_id") lookup_id = _execute.make_int(lookup_id, "lookup_id") embedding_variable = _ops.convert_to_tensor(embedding_variable, _dtypes.float32) sliced_activations = _ops.convert_to_tensor(sliced_activations, _dtypes.float32) _inputs_flat = [embedding_variable, sliced_activations] _attrs = ("table_id", table_id, "lookup_id", lookup_id) _result = _execute.execute(b"TPUEmbeddingActivations", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "TPUEmbeddingActivations", _inputs_flat, _attrs, _result) _result, = _result return _result def tpu_ordinal_selector(name=None) -> Annotated[Any, _atypes.Int32]: r"""A TPU core selector Op. This Op produces a set of TPU cores (for warm-up) or a single TPU core (for regular inference) to execute the TPU program on. The output is consumed by TPUPartitionedCall. Args: name: A name for the operation (optional). Returns: A `Tensor` of type `int32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "TPUOrdinalSelector", name) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return tpu_ordinal_selector_eager_fallback( name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "TPUOrdinalSelector", name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "TPUOrdinalSelector", _inputs_flat, _attrs, _result) _result, = _result return _result TPUOrdinalSelector = tf_export("raw_ops.TPUOrdinalSelector")(_ops.to_raw_op(tpu_ordinal_selector)) def tpu_ordinal_selector_eager_fallback(name, ctx) -> Annotated[Any, _atypes.Int32]: _inputs_flat = [] _attrs = None _result = _execute.execute(b"TPUOrdinalSelector", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "TPUOrdinalSelector", _inputs_flat, _attrs, _result) _result, = _result return _result def tpu_partitioned_call(args, device_ordinal: Annotated[Any, _atypes.Int32], Tout, f, autotuner_thresh:int=0, name=None): r"""Calls a function placed on a specified TPU device. Args: args: A list of `Tensor` objects. The arguments to the function. device_ordinal: A `Tensor` of type `int32`. The TPU device ordinal to run the function on. Tout: A list of `tf.DTypes`. The types of the outputs of the function. f: A function decorated with @Defun. The function to call. autotuner_thresh: An optional `int`. Defaults to `0`. name: A name for the operation (optional). Returns: A list of `Tensor` objects of type `Tout`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "TPUPartitionedCall", name, args, device_ordinal, "Tout", Tout, "f", f, "autotuner_thresh", autotuner_thresh) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return tpu_partitioned_call_eager_fallback( args, device_ordinal, Tout=Tout, f=f, autotuner_thresh=autotuner_thresh, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(Tout, (list, tuple)): raise TypeError( "Expected list for 'Tout' argument to " "'tpu_partitioned_call' Op, not %r." % Tout) Tout = [_execute.make_type(_t, "Tout") for _t in Tout] if autotuner_thresh is None: autotuner_thresh = 0 autotuner_thresh = _execute.make_int(autotuner_thresh, "autotuner_thresh") _, _, _op, _outputs = _op_def_library._apply_op_helper( "TPUPartitionedCall", args=args, device_ordinal=device_ordinal, Tout=Tout, f=f, autotuner_thresh=autotuner_thresh, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Tin", _op.get_attr("Tin"), "Tout", _op.get_attr("Tout"), "f", _op.get_attr("f"), "autotuner_thresh", _op._get_attr_int("autotuner_thresh")) _inputs_flat = _op.inputs _execute.record_gradient( "TPUPartitionedCall", _inputs_flat, _attrs, _result) return _result TPUPartitionedCall = tf_export("raw_ops.TPUPartitionedCall")(_ops.to_raw_op(tpu_partitioned_call)) def tpu_partitioned_call_eager_fallback(args, device_ordinal: Annotated[Any, _atypes.Int32], Tout, f, autotuner_thresh: int, name, ctx): if not isinstance(Tout, (list, tuple)): raise TypeError( "Expected list for 'Tout' argument to " "'tpu_partitioned_call' Op, not %r." % Tout) Tout = [_execute.make_type(_t, "Tout") for _t in Tout] if autotuner_thresh is None: autotuner_thresh = 0 autotuner_thresh = _execute.make_int(autotuner_thresh, "autotuner_thresh") _attr_Tin, args = _execute.convert_to_mixed_eager_tensors(args, ctx) device_ordinal = _ops.convert_to_tensor(device_ordinal, _dtypes.int32) _inputs_flat = list(args) + [device_ordinal] _attrs = ("Tin", _attr_Tin, "Tout", Tout, "f", f, "autotuner_thresh", autotuner_thresh) _result = _execute.execute(b"TPUPartitionedCall", len(Tout), inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "TPUPartitionedCall", _inputs_flat, _attrs, _result) return _result def tpu_replicate_metadata(num_replicas: int, num_cores_per_replica:int=1, topology:str="", use_tpu:bool=True, device_assignment=[], computation_shape=[], host_compute_core=[], padding_map=[], step_marker_location:str="STEP_MARK_AT_ENTRY", allow_soft_placement:bool=False, use_spmd_for_xla_partitioning:bool=False, tpu_compile_options_proto:str="", name=None): r"""Metadata indicating how the TPU computation should be replicated. This operation holds the metadata common to operations of a `tpu.replicate()` computation subgraph. Args: num_replicas: An `int` that is `>= 0`. Number of replicas of the computation num_cores_per_replica: An optional `int`. Defaults to `1`. Number of cores per replica. Used for model parallelism. topology: An optional `string`. Defaults to `""`. TopologyProto indicating the topology of the TPU pod slice. use_tpu: An optional `bool`. Defaults to `True`. Whether to place the computation on the TPU. device_assignment: An optional list of `ints`. Defaults to `[]`. The assignment of devices for the computation. computation_shape: An optional list of `ints`. Defaults to `[]`. DEPRECATED. Use num_cores_per_replica instead. host_compute_core: An optional list of `strings`. Defaults to `[]`. padding_map: An optional list of `strings`. Defaults to `[]`. step_marker_location: An optional `string`. Defaults to `"STEP_MARK_AT_ENTRY"`. allow_soft_placement: An optional `bool`. Defaults to `False`. use_spmd_for_xla_partitioning: An optional `bool`. Defaults to `False`. tpu_compile_options_proto: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "TPUReplicateMetadata", name, "num_replicas", num_replicas, "num_cores_per_replica", num_cores_per_replica, "topology", topology, "use_tpu", use_tpu, "device_assignment", device_assignment, "computation_shape", computation_shape, "host_compute_core", host_compute_core, "padding_map", padding_map, "step_marker_location", step_marker_location, "allow_soft_placement", allow_soft_placement, "use_spmd_for_xla_partitioning", use_spmd_for_xla_partitioning, "tpu_compile_options_proto", tpu_compile_options_proto) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return tpu_replicate_metadata_eager_fallback( num_replicas=num_replicas, num_cores_per_replica=num_cores_per_replica, topology=topology, use_tpu=use_tpu, device_assignment=device_assignment, computation_shape=computation_shape, host_compute_core=host_compute_core, padding_map=padding_map, step_marker_location=step_marker_location, allow_soft_placement=allow_soft_placement, use_spmd_for_xla_partitioning=use_spmd_for_xla_partitioning, tpu_compile_options_proto=tpu_compile_options_proto, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. num_replicas = _execute.make_int(num_replicas, "num_replicas") if num_cores_per_replica is None: num_cores_per_replica = 1 num_cores_per_replica = _execute.make_int(num_cores_per_replica, "num_cores_per_replica") if topology is None: topology = "" topology = _execute.make_str(topology, "topology") if use_tpu is None: use_tpu = True use_tpu = _execute.make_bool(use_tpu, "use_tpu") if device_assignment is None: device_assignment = [] if not isinstance(device_assignment, (list, tuple)): raise TypeError( "Expected list for 'device_assignment' argument to " "'tpu_replicate_metadata' Op, not %r." % device_assignment) device_assignment = [_execute.make_int(_i, "device_assignment") for _i in device_assignment] if computation_shape is None: computation_shape = [] if not isinstance(computation_shape, (list, tuple)): raise TypeError( "Expected list for 'computation_shape' argument to " "'tpu_replicate_metadata' Op, not %r." % computation_shape) computation_shape = [_execute.make_int(_i, "computation_shape") for _i in computation_shape] if host_compute_core is None: host_compute_core = [] if not isinstance(host_compute_core, (list, tuple)): raise TypeError( "Expected list for 'host_compute_core' argument to " "'tpu_replicate_metadata' Op, not %r." % host_compute_core) host_compute_core = [_execute.make_str(_s, "host_compute_core") for _s in host_compute_core] if padding_map is None: padding_map = [] if not isinstance(padding_map, (list, tuple)): raise TypeError( "Expected list for 'padding_map' argument to " "'tpu_replicate_metadata' Op, not %r." % padding_map) padding_map = [_execute.make_str(_s, "padding_map") for _s in padding_map] if step_marker_location is None: step_marker_location = "STEP_MARK_AT_ENTRY" step_marker_location = _execute.make_str(step_marker_location, "step_marker_location") if allow_soft_placement is None: allow_soft_placement = False allow_soft_placement = _execute.make_bool(allow_soft_placement, "allow_soft_placement") if use_spmd_for_xla_partitioning is None: use_spmd_for_xla_partitioning = False use_spmd_for_xla_partitioning = _execute.make_bool(use_spmd_for_xla_partitioning, "use_spmd_for_xla_partitioning") if tpu_compile_options_proto is None: tpu_compile_options_proto = "" tpu_compile_options_proto = _execute.make_str(tpu_compile_options_proto, "tpu_compile_options_proto") _, _, _op, _outputs = _op_def_library._apply_op_helper( "TPUReplicateMetadata", num_replicas=num_replicas, num_cores_per_replica=num_cores_per_replica, topology=topology, use_tpu=use_tpu, device_assignment=device_assignment, computation_shape=computation_shape, host_compute_core=host_compute_core, padding_map=padding_map, step_marker_location=step_marker_location, allow_soft_placement=allow_soft_placement, use_spmd_for_xla_partitioning=use_spmd_for_xla_partitioning, tpu_compile_options_proto=tpu_compile_options_proto, name=name) return _op TPUReplicateMetadata = tf_export("raw_ops.TPUReplicateMetadata")(_ops.to_raw_op(tpu_replicate_metadata)) def tpu_replicate_metadata_eager_fallback(num_replicas: int, num_cores_per_replica: int, topology: str, use_tpu: bool, device_assignment, computation_shape, host_compute_core, padding_map, step_marker_location: str, allow_soft_placement: bool, use_spmd_for_xla_partitioning: bool, tpu_compile_options_proto: str, name, ctx): num_replicas = _execute.make_int(num_replicas, "num_replicas") if num_cores_per_replica is None: num_cores_per_replica = 1 num_cores_per_replica = _execute.make_int(num_cores_per_replica, "num_cores_per_replica") if topology is None: topology = "" topology = _execute.make_str(topology, "topology") if use_tpu is None: use_tpu = True use_tpu = _execute.make_bool(use_tpu, "use_tpu") if device_assignment is None: device_assignment = [] if not isinstance(device_assignment, (list, tuple)): raise TypeError( "Expected list for 'device_assignment' argument to " "'tpu_replicate_metadata' Op, not %r." % device_assignment) device_assignment = [_execute.make_int(_i, "device_assignment") for _i in device_assignment] if computation_shape is None: computation_shape = [] if not isinstance(computation_shape, (list, tuple)): raise TypeError( "Expected list for 'computation_shape' argument to " "'tpu_replicate_metadata' Op, not %r." % computation_shape) computation_shape = [_execute.make_int(_i, "computation_shape") for _i in computation_shape] if host_compute_core is None: host_compute_core = [] if not isinstance(host_compute_core, (list, tuple)): raise TypeError( "Expected list for 'host_compute_core' argument to " "'tpu_replicate_metadata' Op, not %r." % host_compute_core) host_compute_core = [_execute.make_str(_s, "host_compute_core") for _s in host_compute_core] if padding_map is None: padding_map = [] if not isinstance(padding_map, (list, tuple)): raise TypeError( "Expected list for 'padding_map' argument to " "'tpu_replicate_metadata' Op, not %r." % padding_map) padding_map = [_execute.make_str(_s, "padding_map") for _s in padding_map] if step_marker_location is None: step_marker_location = "STEP_MARK_AT_ENTRY" step_marker_location = _execute.make_str(step_marker_location, "step_marker_location") if allow_soft_placement is None: allow_soft_placement = False allow_soft_placement = _execute.make_bool(allow_soft_placement, "allow_soft_placement") if use_spmd_for_xla_partitioning is None: use_spmd_for_xla_partitioning = False use_spmd_for_xla_partitioning = _execute.make_bool(use_spmd_for_xla_partitioning, "use_spmd_for_xla_partitioning") if tpu_compile_options_proto is None: tpu_compile_options_proto = "" tpu_compile_options_proto = _execute.make_str(tpu_compile_options_proto, "tpu_compile_options_proto") _inputs_flat = [] _attrs = ("num_replicas", num_replicas, "num_cores_per_replica", num_cores_per_replica, "topology", topology, "use_tpu", use_tpu, "device_assignment", device_assignment, "computation_shape", computation_shape, "host_compute_core", host_compute_core, "padding_map", padding_map, "step_marker_location", step_marker_location, "allow_soft_placement", allow_soft_placement, "use_spmd_for_xla_partitioning", use_spmd_for_xla_partitioning, "tpu_compile_options_proto", tpu_compile_options_proto) _result = _execute.execute(b"TPUReplicateMetadata", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result TV_TPUReplicatedInput_T = TypeVar("TV_TPUReplicatedInput_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def tpu_replicated_input(inputs: Annotated[List[Any], TV_TPUReplicatedInput_T], is_mirrored_variable:bool=False, index:int=-1, is_packed:bool=False, name=None) -> Annotated[Any, TV_TPUReplicatedInput_T]: r"""Connects N inputs to an N-way replicated TPU computation. This operation holds a replicated input to a `tpu.replicate()` computation subgraph. Each replicated input has the same shape and type alongside the output. For example: ``` %a = "tf.opA"() %b = "tf.opB"() %replicated_input = "tf.TPUReplicatedInput"(%a, %b) %computation = "tf.Computation"(%replicated_input) ``` The above computation has a replicated input of two replicas. Args: inputs: A list of at least 1 `Tensor` objects with the same type. is_mirrored_variable: An optional `bool`. Defaults to `False`. index: An optional `int`. Defaults to `-1`. is_packed: An optional `bool`. Defaults to `False`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `inputs`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "TPUReplicatedInput", name, inputs, "is_mirrored_variable", is_mirrored_variable, "index", index, "is_packed", is_packed) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return tpu_replicated_input_eager_fallback( inputs, is_mirrored_variable=is_mirrored_variable, index=index, is_packed=is_packed, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if not isinstance(inputs, (list, tuple)): raise TypeError( "Expected list for 'inputs' argument to " "'tpu_replicated_input' Op, not %r." % inputs) _attr_N = len(inputs) if is_mirrored_variable is None: is_mirrored_variable = False is_mirrored_variable = _execute.make_bool(is_mirrored_variable, "is_mirrored_variable") if index is None: index = -1 index = _execute.make_int(index, "index") if is_packed is None: is_packed = False is_packed = _execute.make_bool(is_packed, "is_packed") _, _, _op, _outputs = _op_def_library._apply_op_helper( "TPUReplicatedInput", inputs=inputs, is_mirrored_variable=is_mirrored_variable, index=index, is_packed=is_packed, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("N", _op._get_attr_int("N"), "T", _op._get_attr_type("T"), "is_mirrored_variable", _op._get_attr_bool("is_mirrored_variable"), "index", _op._get_attr_int("index"), "is_packed", _op._get_attr_bool("is_packed")) _inputs_flat = _op.inputs _execute.record_gradient( "TPUReplicatedInput", _inputs_flat, _attrs, _result) _result, = _result return _result TPUReplicatedInput = tf_export("raw_ops.TPUReplicatedInput")(_ops.to_raw_op(tpu_replicated_input)) def tpu_replicated_input_eager_fallback(inputs: Annotated[List[Any], TV_TPUReplicatedInput_T], is_mirrored_variable: bool, index: int, is_packed: bool, name, ctx) -> Annotated[Any, TV_TPUReplicatedInput_T]: if not isinstance(inputs, (list, tuple)): raise TypeError( "Expected list for 'inputs' argument to " "'tpu_replicated_input' Op, not %r." % inputs) _attr_N = len(inputs) if is_mirrored_variable is None: is_mirrored_variable = False is_mirrored_variable = _execute.make_bool(is_mirrored_variable, "is_mirrored_variable") if index is None: index = -1 index = _execute.make_int(index, "index") if is_packed is None: is_packed = False is_packed = _execute.make_bool(is_packed, "is_packed") _attr_T, inputs = _execute.args_to_matching_eager(list(inputs), ctx, []) _inputs_flat = list(inputs) _attrs = ("N", _attr_N, "T", _attr_T, "is_mirrored_variable", is_mirrored_variable, "index", index, "is_packed", is_packed) _result = _execute.execute(b"TPUReplicatedInput", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "TPUReplicatedInput", _inputs_flat, _attrs, _result) _result, = _result return _result TV_TPUReplicatedOutput_T = TypeVar("TV_TPUReplicatedOutput_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def tpu_replicated_output(input: Annotated[Any, TV_TPUReplicatedOutput_T], num_replicas: int, name=None): r"""Connects N outputs from an N-way replicated TPU computation. This operation holds a replicated output from a `tpu.replicate()` computation subgraph. Each replicated output has the same shape and type alongside the input. For example: ``` %computation = "tf.Computation"() %replicated_output:2 = "tf.TPUReplicatedOutput"(%computation) ``` The above computation has a replicated output of two replicas. Args: input: A `Tensor`. num_replicas: An `int` that is `>= 1`. name: A name for the operation (optional). Returns: A list of `num_replicas` `Tensor` objects with the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "TPUReplicatedOutput", name, input, "num_replicas", num_replicas) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return tpu_replicated_output_eager_fallback( input, num_replicas=num_replicas, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. num_replicas = _execute.make_int(num_replicas, "num_replicas") _, _, _op, _outputs = _op_def_library._apply_op_helper( "TPUReplicatedOutput", input=input, num_replicas=num_replicas, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("num_replicas", _op._get_attr_int("num_replicas"), "T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "TPUReplicatedOutput", _inputs_flat, _attrs, _result) return _result TPUReplicatedOutput = tf_export("raw_ops.TPUReplicatedOutput")(_ops.to_raw_op(tpu_replicated_output)) def tpu_replicated_output_eager_fallback(input: Annotated[Any, TV_TPUReplicatedOutput_T], num_replicas: int, name, ctx): num_replicas = _execute.make_int(num_replicas, "num_replicas") _attr_T, (input,) = _execute.args_to_matching_eager([input], ctx, []) _inputs_flat = [input] _attrs = ("num_replicas", num_replicas, "T", _attr_T) _result = _execute.execute(b"TPUReplicatedOutput", num_replicas, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "TPUReplicatedOutput", _inputs_flat, _attrs, _result) return _result def worker_heartbeat(request: Annotated[Any, _atypes.String], name=None) -> Annotated[Any, _atypes.String]: r"""Worker heartbeat op. Heartbeats may be sent periodically to indicate the coordinator is still active, to retrieve the current worker status and to expedite shutdown when necessary. Args: request: A `Tensor` of type `string`. A string tensor containing a serialized WorkerHeartbeatRequest name: A name for the operation (optional). Returns: A `Tensor` of type `string`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "WorkerHeartbeat", name, request) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return worker_heartbeat_eager_fallback( request, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "WorkerHeartbeat", request=request, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "WorkerHeartbeat", _inputs_flat, _attrs, _result) _result, = _result return _result WorkerHeartbeat = tf_export("raw_ops.WorkerHeartbeat")(_ops.to_raw_op(worker_heartbeat)) def worker_heartbeat_eager_fallback(request: Annotated[Any, _atypes.String], name, ctx) -> Annotated[Any, _atypes.String]: request = _ops.convert_to_tensor(request, _dtypes.string) _inputs_flat = [request] _attrs = None _result = _execute.execute(b"WorkerHeartbeat", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "WorkerHeartbeat", _inputs_flat, _attrs, _result) _result, = _result return _result TV_XlaConcatND_T = TypeVar("TV_XlaConcatND_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def xla_concat_nd(inputs: Annotated[List[Any], TV_XlaConcatND_T], num_concats, paddings=[], name=None) -> Annotated[Any, TV_XlaConcatND_T]: r"""Concats input tensor across all dimensions. An op which merges slices the input tensor based on the given num_splits attribute, strips paddings optionally, and returns the merged tensor without paddings. This op may be generated via the TPU bridge. For example, with `input` tensor: ``` [[0, 1], [4, 5]] [[2, 3], [6, 7]] [[8, 9], [12, 13]] [[10, 11], [14, 15]] ``` `num_splits`: ``` [2, 2] ``` and `paddings`: ``` [1, 1] ``` the expected `outputs` is: ``` [[0, 1, 2], [4, 5, 6], [8, 9, 10]] ``` Args: inputs: A list of at least 1 `Tensor` objects with the same type. Input tensor slices in row-major order to merge across all dimensions. All inputs must have the same shape. } out_arg { name: "output" description: < Annotated[Any, TV_XlaConcatND_T]: if not isinstance(inputs, (list, tuple)): raise TypeError( "Expected list for 'inputs' argument to " "'xla_concat_nd' Op, not %r." % inputs) _attr_N = len(inputs) if not isinstance(num_concats, (list, tuple)): raise TypeError( "Expected list for 'num_concats' argument to " "'xla_concat_nd' Op, not %r." % num_concats) num_concats = [_execute.make_int(_i, "num_concats") for _i in num_concats] if paddings is None: paddings = [] if not isinstance(paddings, (list, tuple)): raise TypeError( "Expected list for 'paddings' argument to " "'xla_concat_nd' Op, not %r." % paddings) paddings = [_execute.make_int(_i, "paddings") for _i in paddings] _attr_T, inputs = _execute.args_to_matching_eager(list(inputs), ctx, []) _inputs_flat = list(inputs) _attrs = ("T", _attr_T, "N", _attr_N, "num_concats", num_concats, "paddings", paddings) _result = _execute.execute(b"XlaConcatND", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "XlaConcatND", _inputs_flat, _attrs, _result) _result, = _result return _result TV_XlaSplitND_T = TypeVar("TV_XlaSplitND_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) def xla_split_nd(input: Annotated[Any, TV_XlaSplitND_T], N: int, num_splits, paddings=[], name=None): r"""Splits input tensor across all dimensions. An op which slices the input tensor based on the given num_splits attribute, pads slices optionally, and returned the slices. Slices are returned in row-major order. This op may be generated via the TPU bridge. For example, with `input` tensor: ``` [[0, 1, 2], [3, 4, 5], [6, 7, 8]] ``` `num_splits`: ``` [2, 2] ``` and `paddings`: ``` [1, 1] ``` the expected `outputs` is: ``` [[0, 1], [3, 4]] [[2, 0], [5, 0]] [[6, 7], [0, 0]] [[8, 0], [0, 0]] ``` Args: input: A `Tensor`. Input tensor to split across all dimensions. } out_arg { name: "outputs" description: <= 1`. num_splits: A list of `ints`. Number of ways to split per dimension. Shape dimensions must be evenly divisible. paddings: An optional list of `ints`. Defaults to `[]`. Optional list of right paddings per dimension of input tensor to apply before splitting. This can be used to make a dimension evenly divisible. name: A name for the operation (optional). Returns: A list of `N` `Tensor` objects with the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "XlaSplitND", name, input, "N", N, "num_splits", num_splits, "paddings", paddings) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return xla_split_nd_eager_fallback( input, N=N, num_splits=num_splits, paddings=paddings, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. N = _execute.make_int(N, "N") if not isinstance(num_splits, (list, tuple)): raise TypeError( "Expected list for 'num_splits' argument to " "'xla_split_nd' Op, not %r." % num_splits) num_splits = [_execute.make_int(_i, "num_splits") for _i in num_splits] if paddings is None: paddings = [] if not isinstance(paddings, (list, tuple)): raise TypeError( "Expected list for 'paddings' argument to " "'xla_split_nd' Op, not %r." % paddings) paddings = [_execute.make_int(_i, "paddings") for _i in paddings] _, _, _op, _outputs = _op_def_library._apply_op_helper( "XlaSplitND", input=input, N=N, num_splits=num_splits, paddings=paddings, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "N", _op._get_attr_int("N"), "num_splits", _op.get_attr("num_splits"), "paddings", _op.get_attr("paddings")) _inputs_flat = _op.inputs _execute.record_gradient( "XlaSplitND", _inputs_flat, _attrs, _result) return _result XlaSplitND = tf_export("raw_ops.XlaSplitND")(_ops.to_raw_op(xla_split_nd)) def xla_split_nd_eager_fallback(input: Annotated[Any, TV_XlaSplitND_T], N: int, num_splits, paddings, name, ctx): N = _execute.make_int(N, "N") if not isinstance(num_splits, (list, tuple)): raise TypeError( "Expected list for 'num_splits' argument to " "'xla_split_nd' Op, not %r." % num_splits) num_splits = [_execute.make_int(_i, "num_splits") for _i in num_splits] if paddings is None: paddings = [] if not isinstance(paddings, (list, tuple)): raise TypeError( "Expected list for 'paddings' argument to " "'xla_split_nd' Op, not %r." % paddings) paddings = [_execute.make_int(_i, "paddings") for _i in paddings] _attr_T, (input,) = _execute.args_to_matching_eager([input], ctx, []) _inputs_flat = [input] _attrs = ("T", _attr_T, "N", N, "num_splits", num_splits, "paddings", paddings) _result = _execute.execute(b"XlaSplitND", N, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "XlaSplitND", _inputs_flat, _attrs, _result) return _result