# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Operations for linear algebra.""" import numpy as np from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.util import compat # Names below are lower_case. # pylint: disable=invalid-name def eye(num_rows, num_columns=None, batch_shape=None, dtype=dtypes.float32, name=None): """Construct an identity matrix, or a batch of matrices. See `linalg_ops.eye`. """ with ops.name_scope( name, default_name='eye', values=[num_rows, num_columns, batch_shape]): is_square = num_columns is None batch_shape = [] if batch_shape is None else batch_shape num_columns = num_rows if num_columns is None else num_columns # We cannot statically infer what the diagonal size should be: if (isinstance(num_rows, tensor.Tensor) or isinstance(num_columns, tensor.Tensor)): diag_size = math_ops.minimum(num_rows, num_columns) else: # We can statically infer the diagonal size, and whether it is square. if not isinstance(num_rows, compat.integral_types) or not isinstance( num_columns, compat.integral_types): raise TypeError( 'Arguments `num_rows` and `num_columns` must be positive integer ' f'values. Received: num_rows={num_rows}, num_columns={num_columns}') is_square = num_rows == num_columns diag_size = np.minimum(num_rows, num_columns) # We can not statically infer the shape of the tensor. if isinstance(batch_shape, tensor.Tensor) or isinstance( diag_size, tensor.Tensor ): batch_shape = ops.convert_to_tensor( batch_shape, name='shape', dtype=dtypes.int32 ) diag_shape = array_ops.concat((batch_shape, [diag_size]), axis=0) if not is_square: shape = array_ops.concat((batch_shape, [num_rows, num_columns]), axis=0) # We can statically infer everything. else: batch_shape = list(batch_shape) diag_shape = batch_shape + [diag_size] if not is_square: shape = batch_shape + [num_rows, num_columns] diag_ones = array_ops.ones(diag_shape, dtype=dtype) if is_square: return array_ops.matrix_diag(diag_ones) else: zero_matrix = array_ops.zeros(shape, dtype=dtype) return array_ops.matrix_set_diag(zero_matrix, diag_ones) # pylint: enable=invalid-name,redefined-builtin