# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """GradientDescent for TensorFlow.""" from tensorflow.python.framework import indexed_slices from tensorflow.python.framework import ops from tensorflow.python.ops import gen_training_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.training import optimizer from tensorflow.python.util.tf_export import tf_export @tf_export(v1=["train.GradientDescentOptimizer"]) class GradientDescentOptimizer(optimizer.Optimizer): """Optimizer that implements the gradient descent algorithm. """ def __init__(self, learning_rate, use_locking=False, name="GradientDescent"): """Construct a new gradient descent optimizer. Args: learning_rate: A Tensor or a floating point value. The learning rate to use. use_locking: If True use locks for update operations. name: Optional name prefix for the operations created when applying gradients. Defaults to "GradientDescent". @compatibility(eager) When eager execution is enabled, `learning_rate` can be a callable that takes no arguments and returns the actual value to use. This can be useful for changing these values across different invocations of optimizer functions. @end_compatibility """ super(GradientDescentOptimizer, self).__init__(use_locking, name) self._learning_rate = learning_rate self._learning_rate_tensor = None def _apply_dense(self, grad, var): return gen_training_ops.apply_gradient_descent( var, math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype), grad, use_locking=self._use_locking).op def _resource_apply_dense(self, grad, handle): return gen_training_ops.resource_apply_gradient_descent( handle.handle, math_ops.cast(self._learning_rate_tensor, grad.dtype.base_dtype), grad, use_locking=self._use_locking) def _resource_apply_sparse_duplicate_indices(self, grad, handle, indices): return resource_variable_ops.resource_scatter_add( handle.handle, indices, -grad * math_ops.cast(self._learning_rate_tensor, grad.dtype.base_dtype)) def _apply_sparse_duplicate_indices(self, grad, var): delta = indexed_slices.IndexedSlices( grad.values * math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype), grad.indices, grad.dense_shape) return var.scatter_sub(delta, use_locking=self._use_locking) def _prepare(self): learning_rate = self._call_if_callable(self._learning_rate) self._learning_rate_tensor = ops.convert_to_tensor( learning_rate, name="learning_rate")