# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ProximalAdagrad for TensorFlow.""" from tensorflow.python.framework import constant_op from tensorflow.python.framework import ops from tensorflow.python.ops import gen_training_ops from tensorflow.python.ops import math_ops from tensorflow.python.training import optimizer from tensorflow.python.util.tf_export import tf_export @tf_export(v1=["train.ProximalAdagradOptimizer"]) class ProximalAdagradOptimizer(optimizer.Optimizer): # pylint: disable=line-too-long """Optimizer that implements the Proximal Adagrad algorithm. References: Adaptive Subgradient Methods for Online Learning and Stochastic Optimization: [Duchi et al., 2011](http://jmlr.org/papers/v12/duchi11a.html) ([pdf](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)) Efficient Learning using Forward-Backward Splitting: [Duchi et al., 2009](http://papers.nips.cc/paper/3793-efficient-learning-using-forward-backward-splitting) ([pdf](http://papers.nips.cc/paper/3793-efficient-learning-using-forward-backward-splitting.pdf)) """ def __init__(self, learning_rate, initial_accumulator_value=0.1, l1_regularization_strength=0.0, l2_regularization_strength=0.0, use_locking=False, name="ProximalAdagrad"): """Construct a new ProximalAdagrad optimizer. Args: learning_rate: A `Tensor` or a floating point value. The learning rate. initial_accumulator_value: A floating point value. Starting value for the accumulators, must be positive. l1_regularization_strength: A float value, must be greater than or equal to zero. l2_regularization_strength: A float value, must be greater than or equal to zero. use_locking: If `True` use locks for update operations. name: Optional name prefix for the operations created when applying gradients. Defaults to "Adagrad". Raises: ValueError: If the `initial_accumulator_value` is invalid. """ if initial_accumulator_value <= 0.0: raise ValueError("initial_accumulator_value must be positive: %s" % initial_accumulator_value) super(ProximalAdagradOptimizer, self).__init__(use_locking, name) self._learning_rate = learning_rate self._initial_accumulator_value = initial_accumulator_value self._l1_regularization_strength = l1_regularization_strength self._l2_regularization_strength = l2_regularization_strength # Created in Initialize. self._l1_regularization_strength_tensor = None self._l2_regularization_strength_tensor = None self._learning_rate_tensor = None def _create_slots(self, var_list): for v in var_list: with ops.colocate_with(v): val = constant_op.constant(self._initial_accumulator_value, shape=v.get_shape(), dtype=v.dtype.base_dtype) self._get_or_make_slot(v, val, "accumulator", self._name) def _prepare(self): self._learning_rate_tensor = ops.convert_to_tensor(self._learning_rate, name="learning_rate") self._l1_regularization_strength_tensor = ops.convert_to_tensor( self._l1_regularization_strength, name="l1_regularization_strength") self._l2_regularization_strength_tensor = ops.convert_to_tensor( self._l2_regularization_strength, name="l2_regularization_strength") def _apply_dense(self, grad, var): acc = self.get_slot(var, "accumulator") return gen_training_ops.apply_proximal_adagrad( var, acc, self._learning_rate_tensor, self._l1_regularization_strength_tensor, self._l2_regularization_strength_tensor, grad, use_locking=self._use_locking) def _resource_apply_dense(self, grad, var): acc = self.get_slot(var, "accumulator") return gen_training_ops.resource_apply_proximal_adagrad( var.handle, acc.handle, self._learning_rate_tensor, self._l1_regularization_strength_tensor, self._l2_regularization_strength_tensor, grad, use_locking=self._use_locking) def _apply_sparse(self, grad, var): acc = self.get_slot(var, "accumulator") return gen_training_ops.sparse_apply_proximal_adagrad( var, acc, self._learning_rate_tensor, self._l1_regularization_strength_tensor, self._l2_regularization_strength_tensor, grad.values, grad.indices, use_locking=self._use_locking) def _resource_apply_sparse(self, grad, var, indices): acc = self.get_slot(var, "accumulator") return gen_training_ops.resource_sparse_apply_proximal_adagrad( var.handle, acc.handle, math_ops.cast(self._learning_rate_tensor, grad.dtype), math_ops.cast(self._l1_regularization_strength_tensor, grad.dtype), math_ops.cast(self._l2_regularization_strength_tensor, grad.dtype), grad, indices, use_locking=self._use_locking)