# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Standard functions for creating slots. A slot is a `Variable` created with the same first m-dimension as a primary variable or `Tensor`. A slot is always scoped in the namespace of the primary object and typically has the same device and type. Slots are typically used as accumulators to track values associated with the primary object: ```python # Optimizers can create a slot for each variable to track accumulators accumulators = {var : create_zeros_slot(var, "momentum") for var in vs} for var in vs: apply_momentum(var, accumulators[var], lr, grad, momentum_tensor) # Slots can also be used for moving averages mavg = create_slot(var, var.initialized_value(), "exponential_moving_avg") update_mavg = mavg.assign_sub((mavg - var) * (1 - decay)) ``` """ # pylint: disable=g-bad-name from tensorflow.python.compiler.xla.experimental import xla_sharding from tensorflow.python.distribute import distribute_lib from tensorflow.python.ops import array_ops from tensorflow.python.ops import cond from tensorflow.python.ops import init_ops from tensorflow.python.ops import ref_variable from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variable_v1 from tensorflow.python.ops import variables def _create_slot_var(primary, val, scope, validate_shape, shape, dtype, *, copy_xla_sharding=False): """Helper function for creating a slot variable.""" # TODO(lukaszkaiser): Consider allowing partitioners to be set in the current # scope. current_partitioner = variable_scope.get_variable_scope().partitioner variable_scope.get_variable_scope().set_partitioner(None) # When init from val instead of callable initializer, the shape is expected to # be None, not or any fully defined shape. shape = shape if callable(val) else None if resource_variable_ops.is_resource_variable(primary): use_resource = True elif isinstance(primary, ref_variable.RefVariable): use_resource = False else: use_resource = None slot = variable_scope.get_variable( scope, initializer=val, trainable=False, use_resource=use_resource, shape=shape, dtype=dtype, validate_shape=validate_shape) variable_scope.get_variable_scope().set_partitioner(current_partitioner) # pylint: disable=protected-access if isinstance(primary, variables.Variable) and primary._save_slice_info: # Primary is a partitioned variable, so we need to also indicate that # the slot is a partitioned variable. Slots have the same partitioning # as their primaries. # For examples when using AdamOptimizer in linear model, slot.name # here can be "linear//weights/Adam:0", while primary.op.name is # "linear//weight". We want to get 'Adam' as real_slot_name, so we # remove "'linear//weight' + '/'" and ':0'. real_slot_name = slot.name[len(primary.op.name + "/"):-2] slice_info = primary._save_slice_info # support slot's shape not same as primary's shape # example: primary's shape = [10, 20, 30], slot's shape = # None, [], [10], [10, 20] or [10, 20, 30] is allowed # slot's shape = None or [10, 20, 30], set slot's slice_info same as primary # slot's shape = [], don't set slot's slice_info # slot's shape = [10] or [10, 20], set slot's slice_info according to ndims n = slot.shape.ndims if n is None or n > 0: slot._set_save_slice_info( variables.Variable.SaveSliceInfo( slice_info.full_name + "/" + real_slot_name, slice_info.full_shape[:n], slice_info.var_offset[:n], slice_info.var_shape[:n])) # pylint: enable=protected-access # Copy XLA sharding attributes from the primary if the slot variable has the # same rank as the primary. def _has_same_rank(primary_shape, slot_shape): return (primary_shape.rank is not None and slot_shape.rank is not None and primary_shape.rank == slot_shape.rank) if copy_xla_sharding and _has_same_rank(primary.shape, slot.shape): slot = xla_sharding.copy_sharding(primary, slot, use_sharding_op=False) return slot def create_slot(primary, val, name, colocate_with_primary=True, *, copy_xla_sharding=False): """Create a slot initialized to the given value. The type of the slot is determined by the given value. Args: primary: The primary `Variable` or `Tensor`. val: A `Tensor` specifying the initial value of the slot. name: Name to use for the slot variable. colocate_with_primary: Boolean. If True the slot is located on the same device as `primary`. copy_xla_sharding: Boolean. If True also copies XLA sharding from primary. Returns: A `Variable` object. """ # Scope the slot name in the namespace of the primary variable. # Set primary's name + '/' + name as default name, so the scope name of # optimizer can be shared when reuse is True. Meanwhile when reuse is False # and the same name has been previously used, the scope name will add '_N' # as suffix for unique identifications. validate_shape = val.get_shape().is_fully_defined() if isinstance(primary, variables.Variable): prefix = primary._shared_name # pylint: disable=protected-access else: prefix = primary.op.name with variable_scope.variable_scope(None, prefix + "/" + name): if colocate_with_primary: distribution_strategy = distribute_lib.get_strategy() with distribution_strategy.extended.colocate_vars_with(primary): return _create_slot_var( primary, val, "", validate_shape, None, None, copy_xla_sharding=copy_xla_sharding) else: return _create_slot_var( primary, val, "", validate_shape, None, None, copy_xla_sharding=copy_xla_sharding) def create_slot_with_initializer(primary, initializer, shape, dtype, name, colocate_with_primary=True, *, copy_xla_sharding=False): """Creates a slot initialized using an `Initializer`. The type of the slot is determined by the given value. Args: primary: The primary `Variable` or `Tensor`. initializer: An `Initializer`. The initial value of the slot. shape: Shape of the initial value of the slot. dtype: Type of the value of the slot. name: Name to use for the slot variable. colocate_with_primary: Boolean. If True the slot is located on the same device as `primary`. copy_xla_sharding: Boolean. If True also copies XLA sharding from primary. Returns: A `Variable` object. """ # Scope the slot name in the namespace of the primary variable. # Set "primary.op.name + '/' + name" as default name, so the scope name of # optimizer can be shared when reuse is True. Meanwhile when reuse is False # and the same name has been previously used, the scope name will add '_N' # as suffix for unique identifications. validate_shape = shape.is_fully_defined() if isinstance(primary, variables.Variable): prefix = primary._shared_name # pylint: disable=protected-access else: prefix = primary.op.name with variable_scope.variable_scope(None, prefix + "/" + name): if colocate_with_primary: distribution_strategy = distribute_lib.get_strategy() with distribution_strategy.extended.colocate_vars_with(primary): return _create_slot_var( primary, initializer, "", validate_shape, shape, dtype, copy_xla_sharding=copy_xla_sharding) else: return _create_slot_var( primary, initializer, "", validate_shape, shape, dtype, copy_xla_sharding=copy_xla_sharding) def create_zeros_slot(primary, name, dtype=None, colocate_with_primary=True, *, copy_xla_sharding=False): """Create a slot initialized to 0 with same shape as the primary object. Args: primary: The primary `Variable` or `Tensor`. name: Name to use for the slot variable. dtype: Type of the slot variable. Defaults to the type of `primary`. colocate_with_primary: Boolean. If True the slot is located on the same device as `primary`. copy_xla_sharding: Boolean. If True also copies XLA sharding from primary. Returns: A `Variable` object. """ if dtype is None: dtype = primary.dtype slot_shape = primary.get_shape() if slot_shape.is_fully_defined(): initializer = init_ops.zeros_initializer() return create_slot_with_initializer( primary, initializer, slot_shape, dtype, name, colocate_with_primary=colocate_with_primary, copy_xla_sharding=copy_xla_sharding) else: if isinstance(primary, variables.Variable): slot_shape = array_ops.shape( cond.cond( variable_v1.is_variable_initialized(primary), primary.read_value, lambda: primary.initial_value)) else: slot_shape = array_ops.shape(primary) val = array_ops.zeros(slot_shape, dtype=dtype) return create_slot( primary, val, name, colocate_with_primary=colocate_with_primary, copy_xla_sharding=copy_xla_sharding)