# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utility to retrieve function args.""" import functools from tensorflow.core.protobuf import config_pb2 from tensorflow.python.util import tf_decorator from tensorflow.python.util import tf_inspect def _is_bound_method(fn): _, fn = tf_decorator.unwrap(fn) return tf_inspect.ismethod(fn) and (fn.__self__ is not None) def _is_callable_object(obj): return hasattr(obj, '__call__') and tf_inspect.ismethod(obj.__call__) def fn_args(fn): """Get argument names for function-like object. Args: fn: Function, or function-like object (e.g., result of `functools.partial`). Returns: `tuple` of string argument names. Raises: ValueError: if partial function has positionally bound arguments """ if isinstance(fn, functools.partial): args = fn_args(fn.func) args = [a for a in args[len(fn.args):] if a not in (fn.keywords or [])] else: if _is_callable_object(fn): fn = fn.__call__ args = tf_inspect.getfullargspec(fn).args if _is_bound_method(fn) and args: # If it's a bound method, it may or may not have a self/cls first # argument; for example, self could be captured in *args. # If it does have a positional argument, it is self/cls. args.pop(0) return tuple(args) def has_kwargs(fn): """Returns whether the passed callable has **kwargs in its signature. Args: fn: Function, or function-like object (e.g., result of `functools.partial`). Returns: `bool`: if `fn` has **kwargs in its signature. Raises: `TypeError`: If fn is not a Function, or function-like object. """ if isinstance(fn, functools.partial): fn = fn.func elif _is_callable_object(fn): fn = fn.__call__ elif not callable(fn): raise TypeError( 'Argument `fn` should be a callable. ' f'Received: fn={fn} (of type {type(fn)})') return tf_inspect.getfullargspec(fn).varkw is not None def get_func_name(func): """Returns name of passed callable.""" _, func = tf_decorator.unwrap(func) if callable(func): if tf_inspect.isfunction(func): return func.__name__ elif tf_inspect.ismethod(func): return '%s.%s' % ( func.__self__.__class__.__name__, func.__func__.__name__, ) else: # Probably a class instance with __call__ return str(type(func)) else: raise ValueError( 'Argument `func` must be a callable. ' f'Received func={func} (of type {type(func)})') def get_func_code(func): """Returns func_code of passed callable, or None if not available.""" _, func = tf_decorator.unwrap(func) if callable(func): if tf_inspect.isfunction(func) or tf_inspect.ismethod(func): return func.__code__ # Since the object is not a function or method, but is a callable, we will # try to access the __call__method as a function. This works with callable # classes but fails with functool.partial objects despite their __call__ # attribute. try: return func.__call__.__code__ except AttributeError: return None else: raise ValueError( 'Argument `func` must be a callable. ' f'Received func={func} (of type {type(func)})') _rewriter_config_optimizer_disabled = None def get_disabled_rewriter_config(): global _rewriter_config_optimizer_disabled if _rewriter_config_optimizer_disabled is None: config = config_pb2.ConfigProto() rewriter_config = config.graph_options.rewrite_options rewriter_config.disable_meta_optimizer = True _rewriter_config_optimizer_disabled = config.SerializeToString() return _rewriter_config_optimizer_disabled