# Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Provides wrapper for TensorFlow modules.""" import importlib from tensorflow.python.eager import monitoring from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util import fast_module_type from tensorflow.python.util import tf_decorator from tensorflow.python.util import tf_inspect from tensorflow.tools.compatibility import all_renames_v2 FastModuleType = fast_module_type.get_fast_module_type_class() _PER_MODULE_WARNING_LIMIT = 1 compat_v1_usage_gauge = monitoring.BoolGauge('/tensorflow/api/compat/v1', 'compat.v1 usage') def get_rename_v2(name): if name not in all_renames_v2.symbol_renames: return None return all_renames_v2.symbol_renames[name] def _call_location(): """Extracts the caller filename and line number as a string. Returns: A string describing the caller source location. """ frame = tf_inspect.currentframe() assert frame.f_back.f_code.co_name == '_tfmw_add_deprecation_warning', ( 'This function should be called directly from ' '_tfmw_add_deprecation_warning, as the caller is identified ' 'heuristically by chopping off the top stack frames.') # We want to get stack frame 3 frames up from current frame, # i.e. above __getattr__, _tfmw_add_deprecation_warning, # and _call_location calls. for _ in range(3): parent = frame.f_back if parent is None: break frame = parent return '{}:{}'.format(frame.f_code.co_filename, frame.f_lineno) def contains_deprecation_decorator(decorators): return any(d.decorator_name == 'deprecated' for d in decorators) def has_deprecation_decorator(symbol): """Checks if given object has a deprecation decorator. We check if deprecation decorator is in decorators as well as whether symbol is a class whose __init__ method has a deprecation decorator. Args: symbol: Python object. Returns: True if symbol has deprecation decorator. """ decorators, symbol = tf_decorator.unwrap(symbol) if contains_deprecation_decorator(decorators): return True if tf_inspect.isfunction(symbol): return False if not tf_inspect.isclass(symbol): return False if not hasattr(symbol, '__init__'): return False init_decorators, _ = tf_decorator.unwrap(symbol.__init__) return contains_deprecation_decorator(init_decorators) class TFModuleWrapper(FastModuleType): """Wrapper for TF modules to support deprecation messages and lazyloading.""" # Ensures that compat.v1 API usage is recorded at most once compat_v1_usage_recorded = False def __init__( self, wrapped, module_name, public_apis=None, deprecation=True, has_lite=False): super(TFModuleWrapper, self).__init__(wrapped.__name__) FastModuleType.set_getattr_callback(self, TFModuleWrapper._getattr) FastModuleType.set_getattribute_callback(self, TFModuleWrapper._getattribute) self.__dict__.update(wrapped.__dict__) # Prefix all local attributes with _tfmw_ so that we can # handle them differently in attribute access methods. self._tfmw_wrapped_module = wrapped self._tfmw_module_name = module_name self._tfmw_public_apis = public_apis self._tfmw_print_deprecation_warnings = deprecation self._tfmw_has_lite = has_lite self._tfmw_is_compat_v1 = (wrapped.__name__.endswith('.compat.v1')) # Set __all__ so that import * work for lazy loaded modules if self._tfmw_public_apis: self._tfmw_wrapped_module.__all__ = list(self._tfmw_public_apis.keys()) self.__all__ = list(self._tfmw_public_apis.keys()) else: if hasattr(self._tfmw_wrapped_module, '__all__'): self.__all__ = self._tfmw_wrapped_module.__all__ else: self._tfmw_wrapped_module.__all__ = [ attr for attr in dir(self._tfmw_wrapped_module) if not attr.startswith('_') ] self.__all__ = self._tfmw_wrapped_module.__all__ # names we already checked for deprecation self._tfmw_deprecated_checked = set() self._tfmw_warning_count = 0 def _tfmw_add_deprecation_warning(self, name, attr): """Print deprecation warning for attr with given name if necessary.""" if (self._tfmw_warning_count < _PER_MODULE_WARNING_LIMIT and name not in self._tfmw_deprecated_checked): self._tfmw_deprecated_checked.add(name) if self._tfmw_module_name: full_name = 'tf.%s.%s' % (self._tfmw_module_name, name) else: full_name = 'tf.%s' % name rename = get_rename_v2(full_name) if rename and not has_deprecation_decorator(attr): call_location = _call_location() # skip locations in Python source if not call_location.startswith('<'): logging.warning( 'From %s: The name %s is deprecated. Please use %s instead.\n', _call_location(), full_name, rename) self._tfmw_warning_count += 1 return True return False def _tfmw_import_module(self, name): """Lazily loading the modules.""" # We ignore 'app' because it is accessed in __init__.py of tf.compat.v1. # That way, if a user only imports tensorflow.compat.v1, it is not # considered v1 API usage. if (self._tfmw_is_compat_v1 and name != 'app' and not TFModuleWrapper.compat_v1_usage_recorded): TFModuleWrapper.compat_v1_usage_recorded = True compat_v1_usage_gauge.get_cell().set(True) symbol_loc_info = self._tfmw_public_apis[name] if symbol_loc_info[0]: module = importlib.import_module(symbol_loc_info[0]) attr = getattr(module, symbol_loc_info[1]) else: attr = importlib.import_module(symbol_loc_info[1]) setattr(self._tfmw_wrapped_module, name, attr) self.__dict__[name] = attr # Cache the pair self._fastdict_insert(name, attr) return attr def _getattribute(self, name): # pylint: disable=g-doc-return-or-yield,g-doc-args """Imports and caches pre-defined API. Warns if necessary. This method is a replacement for __getattribute__(). It will be added into the extended python module as a callback to reduce API overhead. """ # Avoid infinite recursions func__fastdict_insert = object.__getattribute__(self, '_fastdict_insert') # Make sure we do not import from tensorflow/lite/__init__.py if name == 'lite': if self._tfmw_has_lite: attr = self._tfmw_import_module(name) setattr(self._tfmw_wrapped_module, 'lite', attr) func__fastdict_insert(name, attr) return attr # Placeholder for Google-internal contrib error attr = object.__getattribute__(self, name) # Return and cache dunders and our own members. # This is necessary to guarantee successful construction. # In addition, all the accessed attributes used during the construction must # begin with "__" or "_tfmw" or "_fastdict_". if name.startswith('__') or name.startswith('_tfmw_') or name.startswith( '_fastdict_'): func__fastdict_insert(name, attr) return attr # Print deprecations, only cache functions after deprecation warnings have # stopped. if not (self._tfmw_print_deprecation_warnings and self._tfmw_add_deprecation_warning(name, attr)): func__fastdict_insert(name, attr) return attr def _getattr(self, name): # pylint: disable=g-doc-return-or-yield,g-doc-args """Imports and caches pre-defined API. Warns if necessary. This method is a replacement for __getattr__(). It will be added into the extended python module as a callback to reduce API overhead. Instead of relying on implicit AttributeError handling, this added callback function will be called explicitly from the extended C API if the default attribute lookup fails. """ try: attr = getattr(self._tfmw_wrapped_module, name) except AttributeError: # Placeholder for Google-internal contrib error if not self._tfmw_public_apis: raise if name not in self._tfmw_public_apis: raise attr = self._tfmw_import_module(name) if self._tfmw_print_deprecation_warnings: self._tfmw_add_deprecation_warning(name, attr) return attr def __setattr__(self, arg, val): if not arg.startswith('_tfmw_'): setattr(self._tfmw_wrapped_module, arg, val) self.__dict__[arg] = val if arg not in self.__all__ and arg != '__all__': self.__all__.append(arg) # Update the cache if self._fastdict_key_in(arg): self._fastdict_insert(arg, val) super(TFModuleWrapper, self).__setattr__(arg, val) def __dir__(self): if self._tfmw_public_apis: return list( set(self._tfmw_public_apis.keys()).union( set([ attr for attr in dir(self._tfmw_wrapped_module) if not attr.startswith('_') ]))) else: return dir(self._tfmw_wrapped_module) def __delattr__(self, name): if name.startswith('_tfmw_'): super(TFModuleWrapper, self).__delattr__(name) else: delattr(self._tfmw_wrapped_module, name) self.__dict__.pop(name) if name in self.__all__: self.__all__.remove(name) self._fastdict_pop(name) # delattr(self._tfmw_wrapped_module, name) def __repr__(self): return self._tfmw_wrapped_module.__repr__() def __reduce__(self): return importlib.import_module, (self.__name__,)