# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities for exporting TensorFlow symbols to the API. Exporting a function or a class: To export a function or a class use tf_export decorator. For e.g.: ```python @tf_export('foo', 'bar.foo') def foo(...): ... ``` If a function is assigned to a variable, you can export it by calling tf_export explicitly. For e.g.: ```python foo = get_foo(...) tf_export('foo', 'bar.foo')(foo) ``` Exporting a constant ```python foo = 1 tf_export('consts.foo').export_constant(__name__, 'foo') ``` """ from collections.abc import Sequence import functools import sys from typing import Any, NamedTuple, Optional, Protocol, TypeVar from tensorflow.python.util import tf_decorator from tensorflow.python.util import tf_inspect KERAS_API_NAME = 'keras' TENSORFLOW_API_NAME = 'tensorflow' # List of subpackage names used by TensorFlow components. Have to check that # TensorFlow core repo does not export any symbols under these names. SUBPACKAGE_NAMESPACES = [] class _Attributes(NamedTuple): names: str constants: str # Attribute values must be unique to each API. API_ATTRS = { TENSORFLOW_API_NAME: _Attributes('_tf_api_names', '_tf_api_constants'), KERAS_API_NAME: _Attributes('_keras_api_names', '_keras_api_constants'), } API_ATTRS_V1 = { TENSORFLOW_API_NAME: _Attributes( '_tf_api_names_v1', '_tf_api_constants_v1' ), KERAS_API_NAME: _Attributes( '_keras_api_names_v1', '_keras_api_constants_v1' ), } class InvalidSymbolNameError(Exception): """Raised when trying to export symbol as an invalid or unallowed name.""" _NAME_TO_SYMBOL_MAPPING: dict[str, Any] = dict() def get_symbol_from_name(name: str) -> Optional[Any]: return _NAME_TO_SYMBOL_MAPPING.get(name) def get_canonical_name_for_symbol( symbol: Any, api_name: str = TENSORFLOW_API_NAME, add_prefix_to_v1_names: bool = False, ) -> Optional[str]: """Get canonical name for the API symbol. Example: ```python from tensorflow.python.util import tf_export cls = tf_export.get_symbol_from_name('keras.optimizers.Adam') # Gives `` print(cls) # Gives `keras.optimizers.Adam` print(tf_export.get_canonical_name_for_symbol(cls, api_name='keras')) ``` Args: symbol: API function or class. api_name: API name. Currently, only `tensorflow`. add_prefix_to_v1_names: Specifies whether a name available only in V1 should be prefixed with compat.v1. Returns: Canonical name for the API symbol (for e.g. initializers.zeros) if canonical name could be determined. Otherwise, returns None. """ if not hasattr(symbol, '__dict__'): return None api_names_attr = API_ATTRS[api_name].names _, undecorated_symbol = tf_decorator.unwrap(symbol) if api_names_attr not in undecorated_symbol.__dict__: return None api_names = getattr(undecorated_symbol, api_names_attr) deprecated_api_names = undecorated_symbol.__dict__.get( '_tf_deprecated_api_names', [] ) canonical_name = get_canonical_name(api_names, deprecated_api_names) if canonical_name: return canonical_name # If there is no V2 canonical name, get V1 canonical name. api_names_attr = API_ATTRS_V1[api_name].names api_names = getattr(undecorated_symbol, api_names_attr) v1_canonical_name = get_canonical_name(api_names, deprecated_api_names) if add_prefix_to_v1_names: return 'compat.v1.%s' % v1_canonical_name return v1_canonical_name def get_canonical_name( api_names: Sequence[str], deprecated_api_names: Sequence[str] ) -> Optional[str]: """Get preferred endpoint name. Args: api_names: API names iterable. deprecated_api_names: Deprecated API names iterable. Returns: Returns one of the following in decreasing preference: - first non-deprecated endpoint - first endpoint - None """ non_deprecated_name = next( (name for name in api_names if name not in deprecated_api_names), None ) if non_deprecated_name: return non_deprecated_name if api_names: return api_names[0] return None def get_v1_names(symbol: Any) -> Sequence[str]: """Get a list of TF 1.* names for this symbol. Args: symbol: symbol to get API names for. Returns: List of all API names for this symbol. """ names_v1 = [] tensorflow_api_attr_v1 = API_ATTRS_V1[TENSORFLOW_API_NAME].names keras_api_attr_v1 = API_ATTRS_V1[KERAS_API_NAME].names if not hasattr(symbol, '__dict__'): return names_v1 if tensorflow_api_attr_v1 in symbol.__dict__: names_v1.extend(getattr(symbol, tensorflow_api_attr_v1)) if keras_api_attr_v1 in symbol.__dict__: names_v1.extend(getattr(symbol, keras_api_attr_v1)) return names_v1 def get_v2_names(symbol: Any) -> Sequence[str]: """Get a list of TF 2.0 names for this symbol. Args: symbol: symbol to get API names for. Returns: List of all API names for this symbol. """ names_v2 = [] tensorflow_api_attr = API_ATTRS[TENSORFLOW_API_NAME].names keras_api_attr = API_ATTRS[KERAS_API_NAME].names if not hasattr(symbol, '__dict__'): return names_v2 if tensorflow_api_attr in symbol.__dict__: names_v2.extend(getattr(symbol, tensorflow_api_attr)) if keras_api_attr in symbol.__dict__: names_v2.extend(getattr(symbol, keras_api_attr)) return names_v2 def get_v1_constants(module: Any) -> Sequence[str]: """Get a list of TF 1.* constants in this module. Args: module: TensorFlow module. Returns: List of all API constants under the given module. """ constants_v1 = [] tensorflow_constants_attr_v1 = API_ATTRS_V1[TENSORFLOW_API_NAME].constants if hasattr(module, tensorflow_constants_attr_v1): constants_v1.extend(getattr(module, tensorflow_constants_attr_v1)) return constants_v1 def get_v2_constants(module: Any) -> Sequence[str]: """Get a list of TF 2.0 constants in this module. Args: module: TensorFlow module. Returns: List of all API constants under the given module. """ constants_v2 = [] tensorflow_constants_attr = API_ATTRS[TENSORFLOW_API_NAME].constants if hasattr(module, tensorflow_constants_attr): constants_v2.extend(getattr(module, tensorflow_constants_attr)) return constants_v2 T = TypeVar('T') class api_export(object): # pylint: disable=invalid-name """Provides ways to export symbols to the TensorFlow API.""" _names: Sequence[str] _names_v1: Sequence[str] _api_name: str def __init__( self, *args: str, api_name: str = TENSORFLOW_API_NAME, v1: Optional[Sequence[str]] = None, allow_multiple_exports: bool = True, # pylint: disable=unused-argument ): """Export under the names *args (first one is considered canonical). Args: *args: API names in dot delimited format. api_name: API you want to generate Currently, only `tensorflow`. v1: Names for the TensorFlow V1 API. If not set, we will use V2 API names both for TensorFlow V1 and V2 APIs. allow_multiple_exports: Deprecated. """ self._names = args self._names_v1 = v1 if v1 is not None else args self._api_name = api_name self._validate_symbol_names() def _validate_symbol_names(self) -> None: """Validate you are exporting symbols under an allowed package. We need to ensure things exported by tf_export, etc. export symbols under disjoint top-level package names. For TensorFlow, we check that it does not export anything under subpackage names used by components (keras, etc.). For each component, we check that it exports everything under its own subpackage. Raises: InvalidSymbolNameError: If you try to export symbol under disallowed name. """ all_symbol_names = set(self._names) | set(self._names_v1) if self._api_name == TENSORFLOW_API_NAME: for subpackage in SUBPACKAGE_NAMESPACES: if any(n.startswith(subpackage) for n in all_symbol_names): raise InvalidSymbolNameError( '@tf_export is not allowed to export symbols under %s.*' % (subpackage) ) else: if not all(n.startswith(self._api_name) for n in all_symbol_names): raise InvalidSymbolNameError( 'Can only export symbols under package name of component.' ) def __call__(self, func: T) -> T: """Calls this decorator. Args: func: decorated symbol (function or class). Returns: The input function with _tf_api_names attribute set. """ api_names_attr = API_ATTRS[self._api_name].names api_names_attr_v1 = API_ATTRS_V1[self._api_name].names _, undecorated_func = tf_decorator.unwrap(func) self.set_attr(undecorated_func, api_names_attr, self._names) self.set_attr(undecorated_func, api_names_attr_v1, self._names_v1) for name in self._names: _NAME_TO_SYMBOL_MAPPING[name] = func for name_v1 in self._names_v1: _NAME_TO_SYMBOL_MAPPING['compat.v1.%s' % name_v1] = func return func def set_attr( self, func: Any, api_names_attr: str, names: Sequence[str] ) -> None: setattr(func, api_names_attr, names) def export_constant(self, module_name: str, name: str) -> None: """Store export information for constants/string literals. Export information is stored in the module where constants/string literals are defined. e.g. ```python foo = 1 bar = 2 tf_export("consts.foo").export_constant(__name__, 'foo') tf_export("consts.bar").export_constant(__name__, 'bar') ``` Args: module_name: (string) Name of the module to store constant at. name: (string) Current constant name. """ module = sys.modules[module_name] api_constants_attr = API_ATTRS[self._api_name].constants api_constants_attr_v1 = API_ATTRS_V1[self._api_name].constants if not hasattr(module, api_constants_attr): setattr(module, api_constants_attr, []) # pylint: disable=protected-access getattr(module, api_constants_attr).append((self._names, name)) if not hasattr(module, api_constants_attr_v1): setattr(module, api_constants_attr_v1, []) getattr(module, api_constants_attr_v1).append((self._names_v1, name)) def kwarg_only(f: Any) -> Any: """A wrapper that throws away all non-kwarg arguments.""" f_argspec = tf_inspect.getfullargspec(f) def wrapper(*args, **kwargs): if args: raise TypeError( '{f} only takes keyword args (possible keys: {kwargs}). ' 'Please pass these args as kwargs instead.'.format( f=f.__name__, kwargs=f_argspec.args ) ) return f(**kwargs) return tf_decorator.make_decorator(f, wrapper, decorator_argspec=f_argspec) class ExportType(Protocol): def __call__( self, *v2: str, v1: Optional[Sequence[str]] = None, allow_multiple_exports: bool = True, # Deprecated, no-op ) -> api_export: ... tf_export: ExportType = functools.partial( api_export, api_name=TENSORFLOW_API_NAME ) keras_export: ExportType = functools.partial( api_export, api_name=KERAS_API_NAME )