# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Decorator that provides a warning if the wrapped object is never used.""" import copy import sys import textwrap import traceback import types from tensorflow.python.eager import context from tensorflow.python.framework import ops from tensorflow.python.platform import tf_logging from tensorflow.python.util import tf_decorator class _TFShouldUseHelper(object): """Object stored in TFShouldUse-wrapped objects. When it is deleted it will emit a warning or error if its `sate` method has not been called by time of deletion, and Tensorflow is not executing eagerly or inside a tf.function (which use autodeps and resolve the main issues this wrapper warns about). """ def __init__(self, type_, repr_, stack_frame, error_in_function, warn_in_eager): self._type = type_ self._repr = repr_ self._stack_frame = stack_frame self._error_in_function = error_in_function if context.executing_eagerly(): # If warn_in_eager, sated == False. Otherwise true. self._sated = not warn_in_eager elif ops.inside_function(): if error_in_function: self._sated = False ops.add_exit_callback_to_default_func_graph( lambda: self._check_sated(raise_error=True)) else: self._sated = True else: # TF1 graph building mode self._sated = False def sate(self): self._sated = True self._type = None self._repr = None self._stack_frame = None self._logging_module = None def _check_sated(self, raise_error): """Check if the object has been sated.""" if self._sated: return creation_stack = ''.join( [line.rstrip() for line in traceback.format_stack(self._stack_frame, limit=5)]) if raise_error: try: raise RuntimeError( 'Object was never used (type {}): {}. If you want to mark it as ' 'used call its "mark_used()" method. It was originally created ' 'here:\n{}'.format(self._type, self._repr, creation_stack)) finally: self.sate() else: tf_logging.error( '==================================\n' 'Object was never used (type {}):\n{}\nIf you want to mark it as ' 'used call its "mark_used()" method.\nIt was originally created ' 'here:\n{}\n' '==================================' .format(self._type, self._repr, creation_stack)) def __del__(self): self._check_sated(raise_error=False) def _new__init__(self, wrapped_value, tf_should_use_helper): # pylint: disable=protected-access self._tf_should_use_helper = tf_should_use_helper self._tf_should_use_wrapped_value = wrapped_value def _new__setattr__(self, key, value): if key in ('_tf_should_use_helper', '_tf_should_use_wrapped_value'): return object.__setattr__(self, key, value) return setattr( object.__getattribute__(self, '_tf_should_use_wrapped_value'), key, value) def _new__getattribute__(self, key): if key not in ('_tf_should_use_helper', '_tf_should_use_wrapped_value'): object.__getattribute__(self, '_tf_should_use_helper').sate() if key in ( '_tf_should_use_wrapped_value', '_tf_should_use_helper', 'mark_used', '__setattr__', ): return object.__getattribute__(self, key) return getattr( object.__getattribute__(self, '_tf_should_use_wrapped_value'), key) def _new_mark_used(self, *args, **kwargs): object.__getattribute__(self, '_tf_should_use_helper').sate() try: mu = object.__getattribute__( object.__getattribute__(self, '_tf_should_use_wrapped_value'), 'mark_used') return mu(*args, **kwargs) except AttributeError: pass OVERLOADABLE_OPERATORS = { '__add__', '__radd__', '__sub__', '__rsub__', '__mul__', '__rmul__', '__div__', '__rdiv__', '__truediv__', '__rtruediv__', '__floordiv__', '__rfloordiv__', '__mod__', '__rmod__', '__lt__', '__le__', '__gt__', '__ge__', '__ne__', '__eq__', '__and__', '__rand__', '__or__', '__ror__', '__xor__', '__rxor__', '__getitem__', '__pow__', '__rpow__', '__invert__', '__neg__', '__abs__', '__matmul__', '__rmatmul__', } _WRAPPERS = {} class ShouldUseWrapper(object): pass def _get_wrapper(x, tf_should_use_helper): """Create a wrapper for object x, whose class subclasses type(x). The wrapper will emit a warning if it is deleted without any of its properties being accessed or methods being called. Args: x: The instance to wrap. tf_should_use_helper: The object that tracks usage. Returns: An object wrapping `x`, of type `type(x)`. """ type_x = type(x) memoized = _WRAPPERS.get(type_x, None) if memoized: return memoized(x, tf_should_use_helper) # Make a copy of `object` tx = copy.deepcopy(ShouldUseWrapper) # Prefer using __orig_bases__, which preserve generic type arguments. bases = getattr(tx, '__orig_bases__', tx.__bases__) def set_body(ns): ns.update(tx.__dict__) return ns copy_tx = types.new_class(tx.__name__, bases, exec_body=set_body) copy_tx.__init__ = _new__init__ copy_tx.__getattribute__ = _new__getattribute__ for op in OVERLOADABLE_OPERATORS: if hasattr(type_x, op): setattr(copy_tx, op, getattr(type_x, op)) copy_tx.mark_used = _new_mark_used copy_tx.__setattr__ = _new__setattr__ _WRAPPERS[type_x] = copy_tx return copy_tx(x, tf_should_use_helper) def _add_should_use_warning(x, error_in_function=False, warn_in_eager=False): """Wraps object x so that if it is never used, a warning is logged. Args: x: Python object. error_in_function: Python bool. If `True`, a `RuntimeError` is raised if the returned value is never used when created during `tf.function` tracing. warn_in_eager: Python bool. If `True` raise warning if in Eager mode as well as graph mode. Returns: An instance of `TFShouldUseWarningWrapper` which subclasses `type(x)` and is a very shallow wrapper for `x` which logs access into `x`. """ if x is None or (isinstance(x, list) and not x): return x if context.executing_eagerly() and not warn_in_eager: return x if ops.inside_function() and not error_in_function: # We don't currently log warnings in tf.function calls, so just skip it. return x # Extract the current frame for later use by traceback printing. try: raise ValueError() except ValueError: stack_frame = sys.exc_info()[2].tb_frame.f_back tf_should_use_helper = _TFShouldUseHelper( type_=type(x), repr_=repr(x), stack_frame=stack_frame, error_in_function=error_in_function, warn_in_eager=warn_in_eager) return _get_wrapper(x, tf_should_use_helper) def should_use_result(fn=None, warn_in_eager=False, error_in_function=False): """Function wrapper that ensures the function's output is used. If the output is not used, a `logging.error` is logged. If `error_in_function` is set, then a `RuntimeError` will be raised at the end of function tracing if the output is not used by that point. An output is marked as used if any of its attributes are read, modified, or updated. Examples when the output is a `Tensor` include: - Using it in any capacity (e.g. `y = t + 0`, `sess.run(t)`) - Accessing a property (e.g. getting `t.name` or `t.op`). - Calling `t.mark_used()`. Note, certain behaviors cannot be tracked - for these the object may not be marked as used. Examples include: - `t != 0`. In this case, comparison is done on types / ids. - `isinstance(t, tf.Tensor)`. Similar to above. Args: fn: The function to wrap. warn_in_eager: Whether to create warnings in Eager as well. error_in_function: Whether to raise an error when creating a tf.function. Returns: The wrapped function. """ def decorated(fn): """Decorates the input function.""" def wrapped(*args, **kwargs): return _add_should_use_warning(fn(*args, **kwargs), warn_in_eager=warn_in_eager, error_in_function=error_in_function) fn_doc = fn.__doc__ or '' split_doc = fn_doc.split('\n', 1) if len(split_doc) == 1: updated_doc = fn_doc else: brief, rest = split_doc updated_doc = '\n'.join([brief, textwrap.dedent(rest)]) note = ('\n\nNote: The output of this function should be used. If it is ' 'not, a warning will be logged or an error may be raised. ' 'To mark the output as used, call its .mark_used() method.') return tf_decorator.make_decorator( target=fn, decorator_func=wrapped, decorator_name='should_use_result', decorator_doc=updated_doc + note) if fn is not None: return decorated(fn) else: return decorated