1212 lines
37 KiB
Python
1212 lines
37 KiB
Python
import os
|
|
import sys
|
|
import textwrap
|
|
import types
|
|
import re
|
|
import warnings
|
|
import functools
|
|
import platform
|
|
|
|
from .._utils import set_module
|
|
from numpy.core.numerictypes import issubclass_, issubsctype, issubdtype
|
|
from numpy.core import ndarray, ufunc, asarray
|
|
import numpy as np
|
|
|
|
__all__ = [
|
|
'issubclass_', 'issubsctype', 'issubdtype', 'deprecate',
|
|
'deprecate_with_doc', 'get_include', 'info', 'source', 'who',
|
|
'lookfor', 'byte_bounds', 'safe_eval', 'show_runtime'
|
|
]
|
|
|
|
|
|
def show_runtime():
|
|
"""
|
|
Print information about various resources in the system
|
|
including available intrinsic support and BLAS/LAPACK library
|
|
in use
|
|
|
|
.. versionadded:: 1.24.0
|
|
|
|
See Also
|
|
--------
|
|
show_config : Show libraries in the system on which NumPy was built.
|
|
|
|
Notes
|
|
-----
|
|
1. Information is derived with the help of `threadpoolctl <https://pypi.org/project/threadpoolctl/>`_
|
|
library if available.
|
|
2. SIMD related information is derived from ``__cpu_features__``,
|
|
``__cpu_baseline__`` and ``__cpu_dispatch__``
|
|
|
|
"""
|
|
from numpy.core._multiarray_umath import (
|
|
__cpu_features__, __cpu_baseline__, __cpu_dispatch__
|
|
)
|
|
from pprint import pprint
|
|
config_found = [{
|
|
"numpy_version": np.__version__,
|
|
"python": sys.version,
|
|
"uname": platform.uname(),
|
|
}]
|
|
features_found, features_not_found = [], []
|
|
for feature in __cpu_dispatch__:
|
|
if __cpu_features__[feature]:
|
|
features_found.append(feature)
|
|
else:
|
|
features_not_found.append(feature)
|
|
config_found.append({
|
|
"simd_extensions": {
|
|
"baseline": __cpu_baseline__,
|
|
"found": features_found,
|
|
"not_found": features_not_found
|
|
}
|
|
})
|
|
try:
|
|
from threadpoolctl import threadpool_info
|
|
config_found.extend(threadpool_info())
|
|
except ImportError:
|
|
print("WARNING: `threadpoolctl` not found in system!"
|
|
" Install it by `pip install threadpoolctl`."
|
|
" Once installed, try `np.show_runtime` again"
|
|
" for more detailed build information")
|
|
pprint(config_found)
|
|
|
|
|
|
def get_include():
|
|
"""
|
|
Return the directory that contains the NumPy \\*.h header files.
|
|
|
|
Extension modules that need to compile against NumPy should use this
|
|
function to locate the appropriate include directory.
|
|
|
|
Notes
|
|
-----
|
|
When using ``distutils``, for example in ``setup.py``::
|
|
|
|
import numpy as np
|
|
...
|
|
Extension('extension_name', ...
|
|
include_dirs=[np.get_include()])
|
|
...
|
|
|
|
"""
|
|
import numpy
|
|
if numpy.show_config is None:
|
|
# running from numpy source directory
|
|
d = os.path.join(os.path.dirname(numpy.__file__), 'core', 'include')
|
|
else:
|
|
# using installed numpy core headers
|
|
import numpy.core as core
|
|
d = os.path.join(os.path.dirname(core.__file__), 'include')
|
|
return d
|
|
|
|
|
|
class _Deprecate:
|
|
"""
|
|
Decorator class to deprecate old functions.
|
|
|
|
Refer to `deprecate` for details.
|
|
|
|
See Also
|
|
--------
|
|
deprecate
|
|
|
|
"""
|
|
|
|
def __init__(self, old_name=None, new_name=None, message=None):
|
|
self.old_name = old_name
|
|
self.new_name = new_name
|
|
self.message = message
|
|
|
|
def __call__(self, func, *args, **kwargs):
|
|
"""
|
|
Decorator call. Refer to ``decorate``.
|
|
|
|
"""
|
|
old_name = self.old_name
|
|
new_name = self.new_name
|
|
message = self.message
|
|
|
|
if old_name is None:
|
|
old_name = func.__name__
|
|
if new_name is None:
|
|
depdoc = "`%s` is deprecated!" % old_name
|
|
else:
|
|
depdoc = "`%s` is deprecated, use `%s` instead!" % \
|
|
(old_name, new_name)
|
|
|
|
if message is not None:
|
|
depdoc += "\n" + message
|
|
|
|
@functools.wraps(func)
|
|
def newfunc(*args, **kwds):
|
|
warnings.warn(depdoc, DeprecationWarning, stacklevel=2)
|
|
return func(*args, **kwds)
|
|
|
|
newfunc.__name__ = old_name
|
|
doc = func.__doc__
|
|
if doc is None:
|
|
doc = depdoc
|
|
else:
|
|
lines = doc.expandtabs().split('\n')
|
|
indent = _get_indent(lines[1:])
|
|
if lines[0].lstrip():
|
|
# Indent the original first line to let inspect.cleandoc()
|
|
# dedent the docstring despite the deprecation notice.
|
|
doc = indent * ' ' + doc
|
|
else:
|
|
# Remove the same leading blank lines as cleandoc() would.
|
|
skip = len(lines[0]) + 1
|
|
for line in lines[1:]:
|
|
if len(line) > indent:
|
|
break
|
|
skip += len(line) + 1
|
|
doc = doc[skip:]
|
|
depdoc = textwrap.indent(depdoc, ' ' * indent)
|
|
doc = '\n\n'.join([depdoc, doc])
|
|
newfunc.__doc__ = doc
|
|
|
|
return newfunc
|
|
|
|
|
|
def _get_indent(lines):
|
|
"""
|
|
Determines the leading whitespace that could be removed from all the lines.
|
|
"""
|
|
indent = sys.maxsize
|
|
for line in lines:
|
|
content = len(line.lstrip())
|
|
if content:
|
|
indent = min(indent, len(line) - content)
|
|
if indent == sys.maxsize:
|
|
indent = 0
|
|
return indent
|
|
|
|
|
|
def deprecate(*args, **kwargs):
|
|
"""
|
|
Issues a DeprecationWarning, adds warning to `old_name`'s
|
|
docstring, rebinds ``old_name.__name__`` and returns the new
|
|
function object.
|
|
|
|
This function may also be used as a decorator.
|
|
|
|
Parameters
|
|
----------
|
|
func : function
|
|
The function to be deprecated.
|
|
old_name : str, optional
|
|
The name of the function to be deprecated. Default is None, in
|
|
which case the name of `func` is used.
|
|
new_name : str, optional
|
|
The new name for the function. Default is None, in which case the
|
|
deprecation message is that `old_name` is deprecated. If given, the
|
|
deprecation message is that `old_name` is deprecated and `new_name`
|
|
should be used instead.
|
|
message : str, optional
|
|
Additional explanation of the deprecation. Displayed in the
|
|
docstring after the warning.
|
|
|
|
Returns
|
|
-------
|
|
old_func : function
|
|
The deprecated function.
|
|
|
|
Examples
|
|
--------
|
|
Note that ``olduint`` returns a value after printing Deprecation
|
|
Warning:
|
|
|
|
>>> olduint = np.deprecate(np.uint)
|
|
DeprecationWarning: `uint64` is deprecated! # may vary
|
|
>>> olduint(6)
|
|
6
|
|
|
|
"""
|
|
# Deprecate may be run as a function or as a decorator
|
|
# If run as a function, we initialise the decorator class
|
|
# and execute its __call__ method.
|
|
|
|
if args:
|
|
fn = args[0]
|
|
args = args[1:]
|
|
|
|
return _Deprecate(*args, **kwargs)(fn)
|
|
else:
|
|
return _Deprecate(*args, **kwargs)
|
|
|
|
|
|
def deprecate_with_doc(msg):
|
|
"""
|
|
Deprecates a function and includes the deprecation in its docstring.
|
|
|
|
This function is used as a decorator. It returns an object that can be
|
|
used to issue a DeprecationWarning, by passing the to-be decorated
|
|
function as argument, this adds warning to the to-be decorated function's
|
|
docstring and returns the new function object.
|
|
|
|
See Also
|
|
--------
|
|
deprecate : Decorate a function such that it issues a `DeprecationWarning`
|
|
|
|
Parameters
|
|
----------
|
|
msg : str
|
|
Additional explanation of the deprecation. Displayed in the
|
|
docstring after the warning.
|
|
|
|
Returns
|
|
-------
|
|
obj : object
|
|
|
|
"""
|
|
return _Deprecate(message=msg)
|
|
|
|
|
|
#--------------------------------------------
|
|
# Determine if two arrays can share memory
|
|
#--------------------------------------------
|
|
|
|
def byte_bounds(a):
|
|
"""
|
|
Returns pointers to the end-points of an array.
|
|
|
|
Parameters
|
|
----------
|
|
a : ndarray
|
|
Input array. It must conform to the Python-side of the array
|
|
interface.
|
|
|
|
Returns
|
|
-------
|
|
(low, high) : tuple of 2 integers
|
|
The first integer is the first byte of the array, the second
|
|
integer is just past the last byte of the array. If `a` is not
|
|
contiguous it will not use every byte between the (`low`, `high`)
|
|
values.
|
|
|
|
Examples
|
|
--------
|
|
>>> I = np.eye(2, dtype='f'); I.dtype
|
|
dtype('float32')
|
|
>>> low, high = np.byte_bounds(I)
|
|
>>> high - low == I.size*I.itemsize
|
|
True
|
|
>>> I = np.eye(2); I.dtype
|
|
dtype('float64')
|
|
>>> low, high = np.byte_bounds(I)
|
|
>>> high - low == I.size*I.itemsize
|
|
True
|
|
|
|
"""
|
|
ai = a.__array_interface__
|
|
a_data = ai['data'][0]
|
|
astrides = ai['strides']
|
|
ashape = ai['shape']
|
|
bytes_a = asarray(a).dtype.itemsize
|
|
|
|
a_low = a_high = a_data
|
|
if astrides is None:
|
|
# contiguous case
|
|
a_high += a.size * bytes_a
|
|
else:
|
|
for shape, stride in zip(ashape, astrides):
|
|
if stride < 0:
|
|
a_low += (shape-1)*stride
|
|
else:
|
|
a_high += (shape-1)*stride
|
|
a_high += bytes_a
|
|
return a_low, a_high
|
|
|
|
|
|
#-----------------------------------------------------------------------------
|
|
# Function for output and information on the variables used.
|
|
#-----------------------------------------------------------------------------
|
|
|
|
|
|
def who(vardict=None):
|
|
"""
|
|
Print the NumPy arrays in the given dictionary.
|
|
|
|
If there is no dictionary passed in or `vardict` is None then returns
|
|
NumPy arrays in the globals() dictionary (all NumPy arrays in the
|
|
namespace).
|
|
|
|
Parameters
|
|
----------
|
|
vardict : dict, optional
|
|
A dictionary possibly containing ndarrays. Default is globals().
|
|
|
|
Returns
|
|
-------
|
|
out : None
|
|
Returns 'None'.
|
|
|
|
Notes
|
|
-----
|
|
Prints out the name, shape, bytes and type of all of the ndarrays
|
|
present in `vardict`.
|
|
|
|
Examples
|
|
--------
|
|
>>> a = np.arange(10)
|
|
>>> b = np.ones(20)
|
|
>>> np.who()
|
|
Name Shape Bytes Type
|
|
===========================================================
|
|
a 10 80 int64
|
|
b 20 160 float64
|
|
Upper bound on total bytes = 240
|
|
|
|
>>> d = {'x': np.arange(2.0), 'y': np.arange(3.0), 'txt': 'Some str',
|
|
... 'idx':5}
|
|
>>> np.who(d)
|
|
Name Shape Bytes Type
|
|
===========================================================
|
|
x 2 16 float64
|
|
y 3 24 float64
|
|
Upper bound on total bytes = 40
|
|
|
|
"""
|
|
if vardict is None:
|
|
frame = sys._getframe().f_back
|
|
vardict = frame.f_globals
|
|
sta = []
|
|
cache = {}
|
|
for name in vardict.keys():
|
|
if isinstance(vardict[name], ndarray):
|
|
var = vardict[name]
|
|
idv = id(var)
|
|
if idv in cache.keys():
|
|
namestr = name + " (%s)" % cache[idv]
|
|
original = 0
|
|
else:
|
|
cache[idv] = name
|
|
namestr = name
|
|
original = 1
|
|
shapestr = " x ".join(map(str, var.shape))
|
|
bytestr = str(var.nbytes)
|
|
sta.append([namestr, shapestr, bytestr, var.dtype.name,
|
|
original])
|
|
|
|
maxname = 0
|
|
maxshape = 0
|
|
maxbyte = 0
|
|
totalbytes = 0
|
|
for val in sta:
|
|
if maxname < len(val[0]):
|
|
maxname = len(val[0])
|
|
if maxshape < len(val[1]):
|
|
maxshape = len(val[1])
|
|
if maxbyte < len(val[2]):
|
|
maxbyte = len(val[2])
|
|
if val[4]:
|
|
totalbytes += int(val[2])
|
|
|
|
if len(sta) > 0:
|
|
sp1 = max(10, maxname)
|
|
sp2 = max(10, maxshape)
|
|
sp3 = max(10, maxbyte)
|
|
prval = "Name %s Shape %s Bytes %s Type" % (sp1*' ', sp2*' ', sp3*' ')
|
|
print(prval + "\n" + "="*(len(prval)+5) + "\n")
|
|
|
|
for val in sta:
|
|
print("%s %s %s %s %s %s %s" % (val[0], ' '*(sp1-len(val[0])+4),
|
|
val[1], ' '*(sp2-len(val[1])+5),
|
|
val[2], ' '*(sp3-len(val[2])+5),
|
|
val[3]))
|
|
print("\nUpper bound on total bytes = %d" % totalbytes)
|
|
return
|
|
|
|
#-----------------------------------------------------------------------------
|
|
|
|
|
|
# NOTE: pydoc defines a help function which works similarly to this
|
|
# except it uses a pager to take over the screen.
|
|
|
|
# combine name and arguments and split to multiple lines of width
|
|
# characters. End lines on a comma and begin argument list indented with
|
|
# the rest of the arguments.
|
|
def _split_line(name, arguments, width):
|
|
firstwidth = len(name)
|
|
k = firstwidth
|
|
newstr = name
|
|
sepstr = ", "
|
|
arglist = arguments.split(sepstr)
|
|
for argument in arglist:
|
|
if k == firstwidth:
|
|
addstr = ""
|
|
else:
|
|
addstr = sepstr
|
|
k = k + len(argument) + len(addstr)
|
|
if k > width:
|
|
k = firstwidth + 1 + len(argument)
|
|
newstr = newstr + ",\n" + " "*(firstwidth+2) + argument
|
|
else:
|
|
newstr = newstr + addstr + argument
|
|
return newstr
|
|
|
|
_namedict = None
|
|
_dictlist = None
|
|
|
|
# Traverse all module directories underneath globals
|
|
# to see if something is defined
|
|
def _makenamedict(module='numpy'):
|
|
module = __import__(module, globals(), locals(), [])
|
|
thedict = {module.__name__:module.__dict__}
|
|
dictlist = [module.__name__]
|
|
totraverse = [module.__dict__]
|
|
while True:
|
|
if len(totraverse) == 0:
|
|
break
|
|
thisdict = totraverse.pop(0)
|
|
for x in thisdict.keys():
|
|
if isinstance(thisdict[x], types.ModuleType):
|
|
modname = thisdict[x].__name__
|
|
if modname not in dictlist:
|
|
moddict = thisdict[x].__dict__
|
|
dictlist.append(modname)
|
|
totraverse.append(moddict)
|
|
thedict[modname] = moddict
|
|
return thedict, dictlist
|
|
|
|
|
|
def _info(obj, output=None):
|
|
"""Provide information about ndarray obj.
|
|
|
|
Parameters
|
|
----------
|
|
obj : ndarray
|
|
Must be ndarray, not checked.
|
|
output
|
|
Where printed output goes.
|
|
|
|
Notes
|
|
-----
|
|
Copied over from the numarray module prior to its removal.
|
|
Adapted somewhat as only numpy is an option now.
|
|
|
|
Called by info.
|
|
|
|
"""
|
|
extra = ""
|
|
tic = ""
|
|
bp = lambda x: x
|
|
cls = getattr(obj, '__class__', type(obj))
|
|
nm = getattr(cls, '__name__', cls)
|
|
strides = obj.strides
|
|
endian = obj.dtype.byteorder
|
|
|
|
if output is None:
|
|
output = sys.stdout
|
|
|
|
print("class: ", nm, file=output)
|
|
print("shape: ", obj.shape, file=output)
|
|
print("strides: ", strides, file=output)
|
|
print("itemsize: ", obj.itemsize, file=output)
|
|
print("aligned: ", bp(obj.flags.aligned), file=output)
|
|
print("contiguous: ", bp(obj.flags.contiguous), file=output)
|
|
print("fortran: ", obj.flags.fortran, file=output)
|
|
print(
|
|
"data pointer: %s%s" % (hex(obj.ctypes._as_parameter_.value), extra),
|
|
file=output
|
|
)
|
|
print("byteorder: ", end=' ', file=output)
|
|
if endian in ['|', '=']:
|
|
print("%s%s%s" % (tic, sys.byteorder, tic), file=output)
|
|
byteswap = False
|
|
elif endian == '>':
|
|
print("%sbig%s" % (tic, tic), file=output)
|
|
byteswap = sys.byteorder != "big"
|
|
else:
|
|
print("%slittle%s" % (tic, tic), file=output)
|
|
byteswap = sys.byteorder != "little"
|
|
print("byteswap: ", bp(byteswap), file=output)
|
|
print("type: %s" % obj.dtype, file=output)
|
|
|
|
|
|
@set_module('numpy')
|
|
def info(object=None, maxwidth=76, output=None, toplevel='numpy'):
|
|
"""
|
|
Get help information for an array, function, class, or module.
|
|
|
|
Parameters
|
|
----------
|
|
object : object or str, optional
|
|
Input object or name to get information about. If `object` is
|
|
an `ndarray` instance, information about the array is printed.
|
|
If `object` is a numpy object, its docstring is given. If it is
|
|
a string, available modules are searched for matching objects.
|
|
If None, information about `info` itself is returned.
|
|
maxwidth : int, optional
|
|
Printing width.
|
|
output : file like object, optional
|
|
File like object that the output is written to, default is
|
|
``None``, in which case ``sys.stdout`` will be used.
|
|
The object has to be opened in 'w' or 'a' mode.
|
|
toplevel : str, optional
|
|
Start search at this level.
|
|
|
|
See Also
|
|
--------
|
|
source, lookfor
|
|
|
|
Notes
|
|
-----
|
|
When used interactively with an object, ``np.info(obj)`` is equivalent
|
|
to ``help(obj)`` on the Python prompt or ``obj?`` on the IPython
|
|
prompt.
|
|
|
|
Examples
|
|
--------
|
|
>>> np.info(np.polyval) # doctest: +SKIP
|
|
polyval(p, x)
|
|
Evaluate the polynomial p at x.
|
|
...
|
|
|
|
When using a string for `object` it is possible to get multiple results.
|
|
|
|
>>> np.info('fft') # doctest: +SKIP
|
|
*** Found in numpy ***
|
|
Core FFT routines
|
|
...
|
|
*** Found in numpy.fft ***
|
|
fft(a, n=None, axis=-1)
|
|
...
|
|
*** Repeat reference found in numpy.fft.fftpack ***
|
|
*** Total of 3 references found. ***
|
|
|
|
When the argument is an array, information about the array is printed.
|
|
|
|
>>> a = np.array([[1 + 2j, 3, -4], [-5j, 6, 0]], dtype=np.complex64)
|
|
>>> np.info(a)
|
|
class: ndarray
|
|
shape: (2, 3)
|
|
strides: (24, 8)
|
|
itemsize: 8
|
|
aligned: True
|
|
contiguous: True
|
|
fortran: False
|
|
data pointer: 0x562b6e0d2860 # may vary
|
|
byteorder: little
|
|
byteswap: False
|
|
type: complex64
|
|
|
|
"""
|
|
global _namedict, _dictlist
|
|
# Local import to speed up numpy's import time.
|
|
import pydoc
|
|
import inspect
|
|
|
|
if (hasattr(object, '_ppimport_importer') or
|
|
hasattr(object, '_ppimport_module')):
|
|
object = object._ppimport_module
|
|
elif hasattr(object, '_ppimport_attr'):
|
|
object = object._ppimport_attr
|
|
|
|
if output is None:
|
|
output = sys.stdout
|
|
|
|
if object is None:
|
|
info(info)
|
|
elif isinstance(object, ndarray):
|
|
_info(object, output=output)
|
|
elif isinstance(object, str):
|
|
if _namedict is None:
|
|
_namedict, _dictlist = _makenamedict(toplevel)
|
|
numfound = 0
|
|
objlist = []
|
|
for namestr in _dictlist:
|
|
try:
|
|
obj = _namedict[namestr][object]
|
|
if id(obj) in objlist:
|
|
print("\n "
|
|
"*** Repeat reference found in %s *** " % namestr,
|
|
file=output
|
|
)
|
|
else:
|
|
objlist.append(id(obj))
|
|
print(" *** Found in %s ***" % namestr, file=output)
|
|
info(obj)
|
|
print("-"*maxwidth, file=output)
|
|
numfound += 1
|
|
except KeyError:
|
|
pass
|
|
if numfound == 0:
|
|
print("Help for %s not found." % object, file=output)
|
|
else:
|
|
print("\n "
|
|
"*** Total of %d references found. ***" % numfound,
|
|
file=output
|
|
)
|
|
|
|
elif inspect.isfunction(object) or inspect.ismethod(object):
|
|
name = object.__name__
|
|
try:
|
|
arguments = str(inspect.signature(object))
|
|
except Exception:
|
|
arguments = "()"
|
|
|
|
if len(name+arguments) > maxwidth:
|
|
argstr = _split_line(name, arguments, maxwidth)
|
|
else:
|
|
argstr = name + arguments
|
|
|
|
print(" " + argstr + "\n", file=output)
|
|
print(inspect.getdoc(object), file=output)
|
|
|
|
elif inspect.isclass(object):
|
|
name = object.__name__
|
|
try:
|
|
arguments = str(inspect.signature(object))
|
|
except Exception:
|
|
arguments = "()"
|
|
|
|
if len(name+arguments) > maxwidth:
|
|
argstr = _split_line(name, arguments, maxwidth)
|
|
else:
|
|
argstr = name + arguments
|
|
|
|
print(" " + argstr + "\n", file=output)
|
|
doc1 = inspect.getdoc(object)
|
|
if doc1 is None:
|
|
if hasattr(object, '__init__'):
|
|
print(inspect.getdoc(object.__init__), file=output)
|
|
else:
|
|
print(inspect.getdoc(object), file=output)
|
|
|
|
methods = pydoc.allmethods(object)
|
|
|
|
public_methods = [meth for meth in methods if meth[0] != '_']
|
|
if public_methods:
|
|
print("\n\nMethods:\n", file=output)
|
|
for meth in public_methods:
|
|
thisobj = getattr(object, meth, None)
|
|
if thisobj is not None:
|
|
methstr, other = pydoc.splitdoc(
|
|
inspect.getdoc(thisobj) or "None"
|
|
)
|
|
print(" %s -- %s" % (meth, methstr), file=output)
|
|
|
|
elif hasattr(object, '__doc__'):
|
|
print(inspect.getdoc(object), file=output)
|
|
|
|
|
|
@set_module('numpy')
|
|
def source(object, output=sys.stdout):
|
|
"""
|
|
Print or write to a file the source code for a NumPy object.
|
|
|
|
The source code is only returned for objects written in Python. Many
|
|
functions and classes are defined in C and will therefore not return
|
|
useful information.
|
|
|
|
Parameters
|
|
----------
|
|
object : numpy object
|
|
Input object. This can be any object (function, class, module,
|
|
...).
|
|
output : file object, optional
|
|
If `output` not supplied then source code is printed to screen
|
|
(sys.stdout). File object must be created with either write 'w' or
|
|
append 'a' modes.
|
|
|
|
See Also
|
|
--------
|
|
lookfor, info
|
|
|
|
Examples
|
|
--------
|
|
>>> np.source(np.interp) #doctest: +SKIP
|
|
In file: /usr/lib/python2.6/dist-packages/numpy/lib/function_base.py
|
|
def interp(x, xp, fp, left=None, right=None):
|
|
\"\"\".... (full docstring printed)\"\"\"
|
|
if isinstance(x, (float, int, number)):
|
|
return compiled_interp([x], xp, fp, left, right).item()
|
|
else:
|
|
return compiled_interp(x, xp, fp, left, right)
|
|
|
|
The source code is only returned for objects written in Python.
|
|
|
|
>>> np.source(np.array) #doctest: +SKIP
|
|
Not available for this object.
|
|
|
|
"""
|
|
# Local import to speed up numpy's import time.
|
|
import inspect
|
|
try:
|
|
print("In file: %s\n" % inspect.getsourcefile(object), file=output)
|
|
print(inspect.getsource(object), file=output)
|
|
except Exception:
|
|
print("Not available for this object.", file=output)
|
|
|
|
|
|
# Cache for lookfor: {id(module): {name: (docstring, kind, index), ...}...}
|
|
# where kind: "func", "class", "module", "object"
|
|
# and index: index in breadth-first namespace traversal
|
|
_lookfor_caches = {}
|
|
|
|
# regexp whose match indicates that the string may contain a function
|
|
# signature
|
|
_function_signature_re = re.compile(r"[a-z0-9_]+\(.*[,=].*\)", re.I)
|
|
|
|
|
|
@set_module('numpy')
|
|
def lookfor(what, module=None, import_modules=True, regenerate=False,
|
|
output=None):
|
|
"""
|
|
Do a keyword search on docstrings.
|
|
|
|
A list of objects that matched the search is displayed,
|
|
sorted by relevance. All given keywords need to be found in the
|
|
docstring for it to be returned as a result, but the order does
|
|
not matter.
|
|
|
|
Parameters
|
|
----------
|
|
what : str
|
|
String containing words to look for.
|
|
module : str or list, optional
|
|
Name of module(s) whose docstrings to go through.
|
|
import_modules : bool, optional
|
|
Whether to import sub-modules in packages. Default is True.
|
|
regenerate : bool, optional
|
|
Whether to re-generate the docstring cache. Default is False.
|
|
output : file-like, optional
|
|
File-like object to write the output to. If omitted, use a pager.
|
|
|
|
See Also
|
|
--------
|
|
source, info
|
|
|
|
Notes
|
|
-----
|
|
Relevance is determined only roughly, by checking if the keywords occur
|
|
in the function name, at the start of a docstring, etc.
|
|
|
|
Examples
|
|
--------
|
|
>>> np.lookfor('binary representation') # doctest: +SKIP
|
|
Search results for 'binary representation'
|
|
------------------------------------------
|
|
numpy.binary_repr
|
|
Return the binary representation of the input number as a string.
|
|
numpy.core.setup_common.long_double_representation
|
|
Given a binary dump as given by GNU od -b, look for long double
|
|
numpy.base_repr
|
|
Return a string representation of a number in the given base system.
|
|
...
|
|
|
|
"""
|
|
import pydoc
|
|
|
|
# Cache
|
|
cache = _lookfor_generate_cache(module, import_modules, regenerate)
|
|
|
|
# Search
|
|
# XXX: maybe using a real stemming search engine would be better?
|
|
found = []
|
|
whats = str(what).lower().split()
|
|
if not whats:
|
|
return
|
|
|
|
for name, (docstring, kind, index) in cache.items():
|
|
if kind in ('module', 'object'):
|
|
# don't show modules or objects
|
|
continue
|
|
doc = docstring.lower()
|
|
if all(w in doc for w in whats):
|
|
found.append(name)
|
|
|
|
# Relevance sort
|
|
# XXX: this is full Harrison-Stetson heuristics now,
|
|
# XXX: it probably could be improved
|
|
|
|
kind_relevance = {'func': 1000, 'class': 1000,
|
|
'module': -1000, 'object': -1000}
|
|
|
|
def relevance(name, docstr, kind, index):
|
|
r = 0
|
|
# do the keywords occur within the start of the docstring?
|
|
first_doc = "\n".join(docstr.lower().strip().split("\n")[:3])
|
|
r += sum([200 for w in whats if w in first_doc])
|
|
# do the keywords occur in the function name?
|
|
r += sum([30 for w in whats if w in name])
|
|
# is the full name long?
|
|
r += -len(name) * 5
|
|
# is the object of bad type?
|
|
r += kind_relevance.get(kind, -1000)
|
|
# is the object deep in namespace hierarchy?
|
|
r += -name.count('.') * 10
|
|
r += max(-index / 100, -100)
|
|
return r
|
|
|
|
def relevance_value(a):
|
|
return relevance(a, *cache[a])
|
|
found.sort(key=relevance_value)
|
|
|
|
# Pretty-print
|
|
s = "Search results for '%s'" % (' '.join(whats))
|
|
help_text = [s, "-"*len(s)]
|
|
for name in found[::-1]:
|
|
doc, kind, ix = cache[name]
|
|
|
|
doclines = [line.strip() for line in doc.strip().split("\n")
|
|
if line.strip()]
|
|
|
|
# find a suitable short description
|
|
try:
|
|
first_doc = doclines[0].strip()
|
|
if _function_signature_re.search(first_doc):
|
|
first_doc = doclines[1].strip()
|
|
except IndexError:
|
|
first_doc = ""
|
|
help_text.append("%s\n %s" % (name, first_doc))
|
|
|
|
if not found:
|
|
help_text.append("Nothing found.")
|
|
|
|
# Output
|
|
if output is not None:
|
|
output.write("\n".join(help_text))
|
|
elif len(help_text) > 10:
|
|
pager = pydoc.getpager()
|
|
pager("\n".join(help_text))
|
|
else:
|
|
print("\n".join(help_text))
|
|
|
|
def _lookfor_generate_cache(module, import_modules, regenerate):
|
|
"""
|
|
Generate docstring cache for given module.
|
|
|
|
Parameters
|
|
----------
|
|
module : str, None, module
|
|
Module for which to generate docstring cache
|
|
import_modules : bool
|
|
Whether to import sub-modules in packages.
|
|
regenerate : bool
|
|
Re-generate the docstring cache
|
|
|
|
Returns
|
|
-------
|
|
cache : dict {obj_full_name: (docstring, kind, index), ...}
|
|
Docstring cache for the module, either cached one (regenerate=False)
|
|
or newly generated.
|
|
|
|
"""
|
|
# Local import to speed up numpy's import time.
|
|
import inspect
|
|
|
|
from io import StringIO
|
|
|
|
if module is None:
|
|
module = "numpy"
|
|
|
|
if isinstance(module, str):
|
|
try:
|
|
__import__(module)
|
|
except ImportError:
|
|
return {}
|
|
module = sys.modules[module]
|
|
elif isinstance(module, list) or isinstance(module, tuple):
|
|
cache = {}
|
|
for mod in module:
|
|
cache.update(_lookfor_generate_cache(mod, import_modules,
|
|
regenerate))
|
|
return cache
|
|
|
|
if id(module) in _lookfor_caches and not regenerate:
|
|
return _lookfor_caches[id(module)]
|
|
|
|
# walk items and collect docstrings
|
|
cache = {}
|
|
_lookfor_caches[id(module)] = cache
|
|
seen = {}
|
|
index = 0
|
|
stack = [(module.__name__, module)]
|
|
while stack:
|
|
name, item = stack.pop(0)
|
|
if id(item) in seen:
|
|
continue
|
|
seen[id(item)] = True
|
|
|
|
index += 1
|
|
kind = "object"
|
|
|
|
if inspect.ismodule(item):
|
|
kind = "module"
|
|
try:
|
|
_all = item.__all__
|
|
except AttributeError:
|
|
_all = None
|
|
|
|
# import sub-packages
|
|
if import_modules and hasattr(item, '__path__'):
|
|
for pth in item.__path__:
|
|
for mod_path in os.listdir(pth):
|
|
this_py = os.path.join(pth, mod_path)
|
|
init_py = os.path.join(pth, mod_path, '__init__.py')
|
|
if (os.path.isfile(this_py) and
|
|
mod_path.endswith('.py')):
|
|
to_import = mod_path[:-3]
|
|
elif os.path.isfile(init_py):
|
|
to_import = mod_path
|
|
else:
|
|
continue
|
|
if to_import == '__init__':
|
|
continue
|
|
|
|
try:
|
|
old_stdout = sys.stdout
|
|
old_stderr = sys.stderr
|
|
try:
|
|
sys.stdout = StringIO()
|
|
sys.stderr = StringIO()
|
|
__import__("%s.%s" % (name, to_import))
|
|
finally:
|
|
sys.stdout = old_stdout
|
|
sys.stderr = old_stderr
|
|
except KeyboardInterrupt:
|
|
# Assume keyboard interrupt came from a user
|
|
raise
|
|
except BaseException:
|
|
# Ignore also SystemExit and pytests.importorskip
|
|
# `Skipped` (these are BaseExceptions; gh-22345)
|
|
continue
|
|
|
|
for n, v in _getmembers(item):
|
|
try:
|
|
item_name = getattr(v, '__name__', "%s.%s" % (name, n))
|
|
mod_name = getattr(v, '__module__', None)
|
|
except NameError:
|
|
# ref. SWIG's global cvars
|
|
# NameError: Unknown C global variable
|
|
item_name = "%s.%s" % (name, n)
|
|
mod_name = None
|
|
if '.' not in item_name and mod_name:
|
|
item_name = "%s.%s" % (mod_name, item_name)
|
|
|
|
if not item_name.startswith(name + '.'):
|
|
# don't crawl "foreign" objects
|
|
if isinstance(v, ufunc):
|
|
# ... unless they are ufuncs
|
|
pass
|
|
else:
|
|
continue
|
|
elif not (inspect.ismodule(v) or _all is None or n in _all):
|
|
continue
|
|
stack.append(("%s.%s" % (name, n), v))
|
|
elif inspect.isclass(item):
|
|
kind = "class"
|
|
for n, v in _getmembers(item):
|
|
stack.append(("%s.%s" % (name, n), v))
|
|
elif hasattr(item, "__call__"):
|
|
kind = "func"
|
|
|
|
try:
|
|
doc = inspect.getdoc(item)
|
|
except NameError:
|
|
# ref SWIG's NameError: Unknown C global variable
|
|
doc = None
|
|
if doc is not None:
|
|
cache[name] = (doc, kind, index)
|
|
|
|
return cache
|
|
|
|
def _getmembers(item):
|
|
import inspect
|
|
try:
|
|
members = inspect.getmembers(item)
|
|
except Exception:
|
|
members = [(x, getattr(item, x)) for x in dir(item)
|
|
if hasattr(item, x)]
|
|
return members
|
|
|
|
|
|
def safe_eval(source):
|
|
"""
|
|
Protected string evaluation.
|
|
|
|
Evaluate a string containing a Python literal expression without
|
|
allowing the execution of arbitrary non-literal code.
|
|
|
|
.. warning::
|
|
|
|
This function is identical to :py:meth:`ast.literal_eval` and
|
|
has the same security implications. It may not always be safe
|
|
to evaluate large input strings.
|
|
|
|
Parameters
|
|
----------
|
|
source : str
|
|
The string to evaluate.
|
|
|
|
Returns
|
|
-------
|
|
obj : object
|
|
The result of evaluating `source`.
|
|
|
|
Raises
|
|
------
|
|
SyntaxError
|
|
If the code has invalid Python syntax, or if it contains
|
|
non-literal code.
|
|
|
|
Examples
|
|
--------
|
|
>>> np.safe_eval('1')
|
|
1
|
|
>>> np.safe_eval('[1, 2, 3]')
|
|
[1, 2, 3]
|
|
>>> np.safe_eval('{"foo": ("bar", 10.0)}')
|
|
{'foo': ('bar', 10.0)}
|
|
|
|
>>> np.safe_eval('import os')
|
|
Traceback (most recent call last):
|
|
...
|
|
SyntaxError: invalid syntax
|
|
|
|
>>> np.safe_eval('open("/home/user/.ssh/id_dsa").read()')
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: malformed node or string: <_ast.Call object at 0x...>
|
|
|
|
"""
|
|
# Local import to speed up numpy's import time.
|
|
import ast
|
|
return ast.literal_eval(source)
|
|
|
|
|
|
def _median_nancheck(data, result, axis):
|
|
"""
|
|
Utility function to check median result from data for NaN values at the end
|
|
and return NaN in that case. Input result can also be a MaskedArray.
|
|
|
|
Parameters
|
|
----------
|
|
data : array
|
|
Sorted input data to median function
|
|
result : Array or MaskedArray
|
|
Result of median function.
|
|
axis : int
|
|
Axis along which the median was computed.
|
|
|
|
Returns
|
|
-------
|
|
result : scalar or ndarray
|
|
Median or NaN in axes which contained NaN in the input. If the input
|
|
was an array, NaN will be inserted in-place. If a scalar, either the
|
|
input itself or a scalar NaN.
|
|
"""
|
|
if data.size == 0:
|
|
return result
|
|
potential_nans = data.take(-1, axis=axis)
|
|
n = np.isnan(potential_nans)
|
|
# masked NaN values are ok, although for masked the copyto may fail for
|
|
# unmasked ones (this was always broken) when the result is a scalar.
|
|
if np.ma.isMaskedArray(n):
|
|
n = n.filled(False)
|
|
|
|
if not n.any():
|
|
return result
|
|
|
|
# Without given output, it is possible that the current result is a
|
|
# numpy scalar, which is not writeable. If so, just return nan.
|
|
if isinstance(result, np.generic):
|
|
return potential_nans
|
|
|
|
# Otherwise copy NaNs (if there are any)
|
|
np.copyto(result, potential_nans, where=n)
|
|
return result
|
|
|
|
def _opt_info():
|
|
"""
|
|
Returns a string contains the supported CPU features by the current build.
|
|
|
|
The string format can be explained as follows:
|
|
- dispatched features that are supported by the running machine
|
|
end with `*`.
|
|
- dispatched features that are "not" supported by the running machine
|
|
end with `?`.
|
|
- remained features are representing the baseline.
|
|
"""
|
|
from numpy.core._multiarray_umath import (
|
|
__cpu_features__, __cpu_baseline__, __cpu_dispatch__
|
|
)
|
|
|
|
if len(__cpu_baseline__) == 0 and len(__cpu_dispatch__) == 0:
|
|
return ''
|
|
|
|
enabled_features = ' '.join(__cpu_baseline__)
|
|
for feature in __cpu_dispatch__:
|
|
if __cpu_features__[feature]:
|
|
enabled_features += f" {feature}*"
|
|
else:
|
|
enabled_features += f" {feature}?"
|
|
|
|
return enabled_features
|
|
|
|
|
|
def drop_metadata(dtype, /):
|
|
"""
|
|
Returns the dtype unchanged if it contained no metadata or a copy of the
|
|
dtype if it (or any of its structure dtypes) contained metadata.
|
|
|
|
This utility is used by `np.save` and `np.savez` to drop metadata before
|
|
saving.
|
|
|
|
.. note::
|
|
|
|
Due to its limitation this function may move to a more appropriate
|
|
home or change in the future and is considered semi-public API only.
|
|
|
|
.. warning::
|
|
|
|
This function does not preserve more strange things like record dtypes
|
|
and user dtypes may simply return the wrong thing. If you need to be
|
|
sure about the latter, check the result with:
|
|
``np.can_cast(new_dtype, dtype, casting="no")``.
|
|
|
|
"""
|
|
if dtype.fields is not None:
|
|
found_metadata = dtype.metadata is not None
|
|
|
|
names = []
|
|
formats = []
|
|
offsets = []
|
|
titles = []
|
|
for name, field in dtype.fields.items():
|
|
field_dt = drop_metadata(field[0])
|
|
if field_dt is not field[0]:
|
|
found_metadata = True
|
|
|
|
names.append(name)
|
|
formats.append(field_dt)
|
|
offsets.append(field[1])
|
|
titles.append(None if len(field) < 3 else field[2])
|
|
|
|
if not found_metadata:
|
|
return dtype
|
|
|
|
structure = dict(
|
|
names=names, formats=formats, offsets=offsets, titles=titles,
|
|
itemsize=dtype.itemsize)
|
|
|
|
# NOTE: Could pass (dtype.type, structure) to preserve record dtypes...
|
|
return np.dtype(structure, align=dtype.isalignedstruct)
|
|
elif dtype.subdtype is not None:
|
|
# subarray dtype
|
|
subdtype, shape = dtype.subdtype
|
|
new_subdtype = drop_metadata(subdtype)
|
|
if dtype.metadata is None and new_subdtype is subdtype:
|
|
return dtype
|
|
|
|
return np.dtype((new_subdtype, shape))
|
|
else:
|
|
# Normal unstructured dtype
|
|
if dtype.metadata is None:
|
|
return dtype
|
|
# Note that `dt.str` doesn't round-trip e.g. for user-dtypes.
|
|
return np.dtype(dtype.str)
|