456 lines
15 KiB
Python
456 lines
15 KiB
Python
import numpy as np
|
|
import pytest
|
|
|
|
from opt_einsum import (backends, contract, contract_expression, helpers, sharing)
|
|
from opt_einsum.contract import Shaped, infer_backend, parse_backend
|
|
|
|
try:
|
|
import cupy
|
|
found_cupy = True
|
|
except ImportError:
|
|
found_cupy = False
|
|
|
|
try:
|
|
import tensorflow as tf
|
|
# needed so tensorflow doesn't allocate all gpu mem
|
|
_TF_CONFIG = tf.ConfigProto()
|
|
_TF_CONFIG.gpu_options.allow_growth = True
|
|
found_tensorflow = True
|
|
except ImportError:
|
|
found_tensorflow = False
|
|
|
|
try:
|
|
import os
|
|
os.environ['MKL_THREADING_LAYER'] = 'GNU'
|
|
import theano
|
|
found_theano = True
|
|
except ImportError:
|
|
found_theano = False
|
|
|
|
try:
|
|
import torch
|
|
found_torch = True
|
|
except ImportError:
|
|
found_torch = False
|
|
|
|
try:
|
|
import jax
|
|
found_jax = True
|
|
except ImportError:
|
|
found_jax = False
|
|
|
|
try:
|
|
import autograd
|
|
found_autograd = True
|
|
except ImportError:
|
|
found_autograd = False
|
|
|
|
tests = [
|
|
'ab,bc->ca',
|
|
'abc,bcd,dea',
|
|
'abc,def->fedcba',
|
|
'abc,bcd,df->fa',
|
|
# test 'prefer einsum' ops
|
|
'ijk,ikj',
|
|
'i,j->ij',
|
|
'ijk,k->ij',
|
|
'AB,BC->CA',
|
|
]
|
|
|
|
|
|
@pytest.mark.skipif(not found_tensorflow, reason="Tensorflow not installed.")
|
|
@pytest.mark.parametrize("string", tests)
|
|
def test_tensorflow(string):
|
|
views = helpers.build_views(string)
|
|
ein = contract(string, *views, optimize=False, use_blas=False)
|
|
opt = np.empty_like(ein)
|
|
|
|
shps = [v.shape for v in views]
|
|
expr = contract_expression(string, *shps, optimize=True)
|
|
|
|
sess = tf.Session(config=_TF_CONFIG)
|
|
with sess.as_default():
|
|
expr(*views, backend='tensorflow', out=opt)
|
|
sess.close()
|
|
|
|
assert np.allclose(ein, opt)
|
|
|
|
# test non-conversion mode
|
|
tensorflow_views = [backends.to_tensorflow(view) for view in views]
|
|
expr(*tensorflow_views)
|
|
|
|
|
|
@pytest.mark.skipif(not found_tensorflow, reason="Tensorflow not installed.")
|
|
@pytest.mark.parametrize("constants", [{0, 1}, {0, 2}, {1, 2}])
|
|
def test_tensorflow_with_constants(constants):
|
|
eq = 'ij,jk,kl->li'
|
|
shapes = (2, 3), (3, 4), (4, 5)
|
|
non_const, = {0, 1, 2} - constants
|
|
ops = [np.random.rand(*shp) if i in constants else shp for i, shp in enumerate(shapes)]
|
|
var = np.random.rand(*shapes[non_const])
|
|
res_exp = contract(eq, *(ops[i] if i in constants else var for i in range(3)))
|
|
|
|
expr = contract_expression(eq, *ops, constants=constants)
|
|
|
|
# check tensorflow
|
|
with tf.Session(config=_TF_CONFIG).as_default():
|
|
res_got = expr(var, backend='tensorflow')
|
|
assert all(array is None or infer_backend(array) == 'tensorflow'
|
|
for array in expr._evaluated_constants['tensorflow'])
|
|
assert np.allclose(res_exp, res_got)
|
|
|
|
# check can call with numpy still
|
|
res_got2 = expr(var, backend='numpy')
|
|
assert np.allclose(res_exp, res_got2)
|
|
|
|
# check tensorflow call returns tensorflow still
|
|
res_got3 = expr(backends.to_tensorflow(var))
|
|
assert isinstance(res_got3, tf.Tensor)
|
|
|
|
|
|
@pytest.mark.skipif(not found_tensorflow, reason="Tensorflow not installed.")
|
|
@pytest.mark.parametrize("string", tests)
|
|
def test_tensorflow_with_sharing(string):
|
|
views = helpers.build_views(string)
|
|
ein = contract(string, *views, optimize=False, use_blas=False)
|
|
|
|
shps = [v.shape for v in views]
|
|
expr = contract_expression(string, *shps, optimize=True)
|
|
|
|
sess = tf.Session(config=_TF_CONFIG)
|
|
|
|
with sess.as_default(), sharing.shared_intermediates() as cache:
|
|
tfl1 = expr(*views, backend='tensorflow')
|
|
assert sharing.get_sharing_cache() is cache
|
|
cache_sz = len(cache)
|
|
assert cache_sz > 0
|
|
tfl2 = expr(*views, backend='tensorflow')
|
|
assert len(cache) == cache_sz
|
|
|
|
assert all(isinstance(t, tf.Tensor) for t in cache.values())
|
|
|
|
assert np.allclose(ein, tfl1)
|
|
assert np.allclose(ein, tfl2)
|
|
|
|
|
|
@pytest.mark.skipif(not found_theano, reason="Theano not installed.")
|
|
@pytest.mark.parametrize("string", tests)
|
|
def test_theano(string):
|
|
views = helpers.build_views(string)
|
|
ein = contract(string, *views, optimize=False, use_blas=False)
|
|
shps = [v.shape for v in views]
|
|
|
|
expr = contract_expression(string, *shps, optimize=True)
|
|
|
|
opt = expr(*views, backend='theano')
|
|
assert np.allclose(ein, opt)
|
|
|
|
# test non-conversion mode
|
|
theano_views = [backends.to_theano(view) for view in views]
|
|
theano_opt = expr(*theano_views)
|
|
assert isinstance(theano_opt, theano.tensor.TensorVariable)
|
|
|
|
|
|
@pytest.mark.skipif(not found_theano, reason="theano not installed.")
|
|
@pytest.mark.parametrize("constants", [{0, 1}, {0, 2}, {1, 2}])
|
|
def test_theano_with_constants(constants):
|
|
eq = 'ij,jk,kl->li'
|
|
shapes = (2, 3), (3, 4), (4, 5)
|
|
non_const, = {0, 1, 2} - constants
|
|
ops = [np.random.rand(*shp) if i in constants else shp for i, shp in enumerate(shapes)]
|
|
var = np.random.rand(*shapes[non_const])
|
|
res_exp = contract(eq, *(ops[i] if i in constants else var for i in range(3)))
|
|
|
|
expr = contract_expression(eq, *ops, constants=constants)
|
|
|
|
# check theano
|
|
res_got = expr(var, backend='theano')
|
|
assert all(array is None or infer_backend(array) == 'theano' for array in expr._evaluated_constants['theano'])
|
|
assert np.allclose(res_exp, res_got)
|
|
|
|
# check can call with numpy still
|
|
res_got2 = expr(var, backend='numpy')
|
|
assert np.allclose(res_exp, res_got2)
|
|
|
|
# check theano call returns theano still
|
|
res_got3 = expr(backends.to_theano(var))
|
|
assert isinstance(res_got3, theano.tensor.TensorVariable)
|
|
|
|
|
|
@pytest.mark.skipif(not found_theano, reason="Theano not installed.")
|
|
@pytest.mark.parametrize("string", tests)
|
|
def test_theano_with_sharing(string):
|
|
views = helpers.build_views(string)
|
|
ein = contract(string, *views, optimize=False, use_blas=False)
|
|
|
|
shps = [v.shape for v in views]
|
|
expr = contract_expression(string, *shps, optimize=True)
|
|
|
|
with sharing.shared_intermediates() as cache:
|
|
thn1 = expr(*views, backend='theano')
|
|
assert sharing.get_sharing_cache() is cache
|
|
cache_sz = len(cache)
|
|
assert cache_sz > 0
|
|
thn2 = expr(*views, backend='theano')
|
|
assert len(cache) == cache_sz
|
|
|
|
assert all(isinstance(t, theano.tensor.TensorVariable) for t in cache.values())
|
|
|
|
assert np.allclose(ein, thn1)
|
|
assert np.allclose(ein, thn2)
|
|
|
|
|
|
@pytest.mark.skipif(not found_cupy, reason="Cupy not installed.")
|
|
@pytest.mark.parametrize("string", tests)
|
|
def test_cupy(string): # pragma: no cover
|
|
views = helpers.build_views(string)
|
|
ein = contract(string, *views, optimize=False, use_blas=False)
|
|
shps = [v.shape for v in views]
|
|
|
|
expr = contract_expression(string, *shps, optimize=True)
|
|
|
|
opt = expr(*views, backend='cupy')
|
|
assert np.allclose(ein, opt)
|
|
|
|
# test non-conversion mode
|
|
cupy_views = [backends.to_cupy(view) for view in views]
|
|
cupy_opt = expr(*cupy_views)
|
|
assert isinstance(cupy_opt, cupy.ndarray)
|
|
assert np.allclose(ein, cupy.asnumpy(cupy_opt))
|
|
|
|
|
|
@pytest.mark.skipif(not found_cupy, reason="Cupy not installed.")
|
|
@pytest.mark.parametrize("constants", [{0, 1}, {0, 2}, {1, 2}])
|
|
def test_cupy_with_constants(constants): # pragma: no cover
|
|
eq = 'ij,jk,kl->li'
|
|
shapes = (2, 3), (3, 4), (4, 5)
|
|
non_const, = {0, 1, 2} - constants
|
|
ops = [np.random.rand(*shp) if i in constants else shp for i, shp in enumerate(shapes)]
|
|
var = np.random.rand(*shapes[non_const])
|
|
res_exp = contract(eq, *(ops[i] if i in constants else var for i in range(3)))
|
|
|
|
expr = contract_expression(eq, *ops, constants=constants)
|
|
|
|
# check cupy
|
|
res_got = expr(var, backend='cupy')
|
|
# check cupy versions of constants exist
|
|
assert all(array is None or infer_backend(array) == 'cupy' for array in expr._evaluated_constants['cupy'])
|
|
assert np.allclose(res_exp, res_got)
|
|
|
|
# check can call with numpy still
|
|
res_got2 = expr(var, backend='numpy')
|
|
assert np.allclose(res_exp, res_got2)
|
|
|
|
# check cupy call returns cupy still
|
|
res_got3 = expr(cupy.asarray(var))
|
|
assert isinstance(res_got3, cupy.ndarray)
|
|
assert np.allclose(res_exp, res_got3.get())
|
|
|
|
|
|
@pytest.mark.skipif(not found_jax, reason="jax not installed.")
|
|
@pytest.mark.parametrize("string", tests)
|
|
def test_jax(string): # pragma: no cover
|
|
views = helpers.build_views(string)
|
|
ein = contract(string, *views, optimize=False, use_blas=False)
|
|
shps = [v.shape for v in views]
|
|
|
|
expr = contract_expression(string, *shps, optimize=True)
|
|
|
|
opt = expr(*views, backend='jax')
|
|
assert np.allclose(ein, opt)
|
|
assert isinstance(opt, np.ndarray)
|
|
|
|
|
|
@pytest.mark.skipif(not found_jax, reason="jax not installed.")
|
|
@pytest.mark.parametrize("constants", [{0, 1}, {0, 2}, {1, 2}])
|
|
def test_jax_with_constants(constants): # pragma: no cover
|
|
eq = 'ij,jk,kl->li'
|
|
shapes = (2, 3), (3, 4), (4, 5)
|
|
non_const, = {0, 1, 2} - constants
|
|
ops = [np.random.rand(*shp) if i in constants else shp for i, shp in enumerate(shapes)]
|
|
var = np.random.rand(*shapes[non_const])
|
|
res_exp = contract(eq, *(ops[i] if i in constants else var for i in range(3)))
|
|
|
|
expr = contract_expression(eq, *ops, constants=constants)
|
|
|
|
# check jax
|
|
res_got = expr(var, backend='jax')
|
|
# check jax versions of constants exist
|
|
assert all(array is None or infer_backend(array) == 'jax' for array in expr._evaluated_constants['jax'])
|
|
|
|
assert np.allclose(res_exp, res_got)
|
|
|
|
|
|
@pytest.mark.skipif(not found_jax, reason="jax not installed.")
|
|
def test_jax_jit_gradient():
|
|
eq = 'ij,jk,kl->'
|
|
shapes = (2, 3), (3, 4), (4, 2)
|
|
views = [np.random.randn(*s) for s in shapes]
|
|
expr = contract_expression(eq, *shapes)
|
|
x0 = expr(*views)
|
|
|
|
jit_expr = jax.jit(expr)
|
|
x1 = jit_expr(*views).item()
|
|
assert x1 == pytest.approx(x0, rel=1e-5)
|
|
|
|
# jax only takes gradient w.r.t first argument
|
|
grad_expr = jax.jit(jax.grad(lambda views: expr(*views)))
|
|
view_grads = grad_expr(views)
|
|
assert all(v1.shape == v2.shape for v1, v2 in zip(views, view_grads))
|
|
|
|
# taking a step along the gradient should reduce our 'loss'
|
|
new_views = [v - 0.001 * dv for v, dv in zip(views, view_grads)]
|
|
x2 = jit_expr(*new_views).item()
|
|
assert x2 < x1
|
|
|
|
|
|
@pytest.mark.skipif(not found_autograd, reason="autograd not installed.")
|
|
def test_autograd_gradient():
|
|
eq = 'ij,jk,kl->'
|
|
shapes = (2, 3), (3, 4), (4, 2)
|
|
views = [np.random.randn(*s) for s in shapes]
|
|
expr = contract_expression(eq, *shapes)
|
|
x0 = expr(*views)
|
|
|
|
# autograd only takes gradient w.r.t first argument
|
|
grad_expr = autograd.grad(lambda views: expr(*views))
|
|
view_grads = grad_expr(views)
|
|
assert all(v1.shape == v2.shape for v1, v2 in zip(views, view_grads))
|
|
|
|
# taking a step along the gradient should reduce our 'loss'
|
|
new_views = [v - 0.001 * dv for v, dv in zip(views, view_grads)]
|
|
x1 = expr(*new_views)
|
|
assert x1 < x0
|
|
|
|
|
|
@pytest.mark.parametrize("string", tests)
|
|
def test_dask(string):
|
|
da = pytest.importorskip("dask.array")
|
|
|
|
views = helpers.build_views(string)
|
|
ein = contract(string, *views, optimize=False, use_blas=False)
|
|
shps = [v.shape for v in views]
|
|
expr = contract_expression(string, *shps, optimize=True)
|
|
|
|
# test non-conversion mode
|
|
da_views = [da.from_array(x, chunks=(2)) for x in views]
|
|
da_opt = expr(*da_views)
|
|
|
|
# check type is maintained when not using numpy arrays
|
|
assert isinstance(da_opt, da.Array)
|
|
|
|
assert np.allclose(ein, np.array(da_opt))
|
|
|
|
# try raw contract
|
|
da_opt = contract(string, *da_views)
|
|
assert isinstance(da_opt, da.Array)
|
|
assert np.allclose(ein, np.array(da_opt))
|
|
|
|
|
|
@pytest.mark.parametrize("string", tests)
|
|
def test_sparse(string):
|
|
sparse = pytest.importorskip("sparse")
|
|
|
|
views = helpers.build_views(string)
|
|
|
|
# sparsify views so they don't become dense during contraction
|
|
for view in views:
|
|
np.random.seed(42)
|
|
mask = np.random.choice([False, True], view.shape, True, [0.05, 0.95])
|
|
view[mask] = 0
|
|
|
|
ein = contract(string, *views, optimize=False, use_blas=False)
|
|
shps = [v.shape for v in views]
|
|
expr = contract_expression(string, *shps, optimize=True)
|
|
|
|
# test non-conversion mode
|
|
sparse_views = [sparse.COO.from_numpy(x) for x in views]
|
|
sparse_opt = expr(*sparse_views)
|
|
|
|
# check type is maintained when not using numpy arrays
|
|
assert isinstance(sparse_opt, sparse.COO)
|
|
|
|
assert np.allclose(ein, sparse_opt.todense())
|
|
|
|
# try raw contract
|
|
sparse_opt = contract(string, *sparse_views)
|
|
assert isinstance(sparse_opt, sparse.COO)
|
|
assert np.allclose(ein, sparse_opt.todense())
|
|
|
|
|
|
@pytest.mark.skipif(not found_torch, reason="Torch not installed.")
|
|
@pytest.mark.parametrize("string", tests)
|
|
def test_torch(string):
|
|
|
|
views = helpers.build_views(string)
|
|
ein = contract(string, *views, optimize=False, use_blas=False)
|
|
shps = [v.shape for v in views]
|
|
|
|
expr = contract_expression(string, *shps, optimize=True)
|
|
|
|
opt = expr(*views, backend='torch')
|
|
assert np.allclose(ein, opt)
|
|
|
|
# test non-conversion mode
|
|
torch_views = [backends.to_torch(view) for view in views]
|
|
torch_opt = expr(*torch_views)
|
|
assert isinstance(torch_opt, torch.Tensor)
|
|
assert np.allclose(ein, torch_opt.cpu().numpy())
|
|
|
|
|
|
@pytest.mark.skipif(not found_torch, reason="Torch not installed.")
|
|
@pytest.mark.parametrize("constants", [{0, 1}, {0, 2}, {1, 2}])
|
|
def test_torch_with_constants(constants):
|
|
eq = 'ij,jk,kl->li'
|
|
shapes = (2, 3), (3, 4), (4, 5)
|
|
non_const, = {0, 1, 2} - constants
|
|
ops = [np.random.rand(*shp) if i in constants else shp for i, shp in enumerate(shapes)]
|
|
var = np.random.rand(*shapes[non_const])
|
|
res_exp = contract(eq, *(ops[i] if i in constants else var for i in range(3)))
|
|
|
|
expr = contract_expression(eq, *ops, constants=constants)
|
|
|
|
# check torch
|
|
res_got = expr(var, backend='torch')
|
|
assert all(array is None or infer_backend(array) == 'torch' for array in expr._evaluated_constants['torch'])
|
|
assert np.allclose(res_exp, res_got)
|
|
|
|
# check can call with numpy still
|
|
res_got2 = expr(var, backend='numpy')
|
|
assert np.allclose(res_exp, res_got2)
|
|
|
|
# check torch call returns torch still
|
|
res_got3 = expr(backends.to_torch(var))
|
|
assert isinstance(res_got3, torch.Tensor)
|
|
res_got3 = res_got3.numpy() if res_got3.device.type == 'cpu' else res_got3.cpu().numpy()
|
|
assert np.allclose(res_exp, res_got3)
|
|
|
|
|
|
def test_auto_backend_custom_array_no_tensordot():
|
|
x = Shaped((1, 2, 3))
|
|
# Shaped is an array-like object defined by opt_einsum - which has no TDOT
|
|
assert infer_backend(x) == 'opt_einsum'
|
|
assert parse_backend([x], 'auto') == 'numpy'
|
|
|
|
|
|
@pytest.mark.parametrize("string", tests)
|
|
def test_object_arrays_backend(string):
|
|
views = helpers.build_views(string)
|
|
ein = contract(string, *views, optimize=False, use_blas=False)
|
|
assert ein.dtype != object
|
|
|
|
shps = [v.shape for v in views]
|
|
expr = contract_expression(string, *shps, optimize=True)
|
|
|
|
obj_views = [view.astype(object) for view in views]
|
|
|
|
# try raw contract
|
|
obj_opt = contract(string, *obj_views, backend='object')
|
|
assert obj_opt.dtype == object
|
|
assert np.allclose(ein, obj_opt.astype(float))
|
|
|
|
# test expression
|
|
obj_opt = expr(*obj_views, backend='object')
|
|
assert obj_opt.dtype == object
|
|
assert np.allclose(ein, obj_opt.astype(float))
|