3RNN/Lib/site-packages/pandas/core/arrays/integer.py
2024-05-26 19:49:15 +02:00

273 lines
6.3 KiB
Python

from __future__ import annotations
from typing import ClassVar
import numpy as np
from pandas.core.dtypes.base import register_extension_dtype
from pandas.core.dtypes.common import is_integer_dtype
from pandas.core.arrays.numeric import (
NumericArray,
NumericDtype,
)
class IntegerDtype(NumericDtype):
"""
An ExtensionDtype to hold a single size & kind of integer dtype.
These specific implementations are subclasses of the non-public
IntegerDtype. For example, we have Int8Dtype to represent signed int 8s.
The attributes name & type are set when these subclasses are created.
"""
_default_np_dtype = np.dtype(np.int64)
_checker = is_integer_dtype
@classmethod
def construct_array_type(cls) -> type[IntegerArray]:
"""
Return the array type associated with this dtype.
Returns
-------
type
"""
return IntegerArray
@classmethod
def _get_dtype_mapping(cls) -> dict[np.dtype, IntegerDtype]:
return NUMPY_INT_TO_DTYPE
@classmethod
def _safe_cast(cls, values: np.ndarray, dtype: np.dtype, copy: bool) -> np.ndarray:
"""
Safely cast the values to the given dtype.
"safe" in this context means the casting is lossless. e.g. if 'values'
has a floating dtype, each value must be an integer.
"""
try:
return values.astype(dtype, casting="safe", copy=copy)
except TypeError as err:
casted = values.astype(dtype, copy=copy)
if (casted == values).all():
return casted
raise TypeError(
f"cannot safely cast non-equivalent {values.dtype} to {np.dtype(dtype)}"
) from err
class IntegerArray(NumericArray):
"""
Array of integer (optional missing) values.
Uses :attr:`pandas.NA` as the missing value.
.. warning::
IntegerArray is currently experimental, and its API or internal
implementation may change without warning.
We represent an IntegerArray with 2 numpy arrays:
- data: contains a numpy integer array of the appropriate dtype
- mask: a boolean array holding a mask on the data, True is missing
To construct an IntegerArray from generic array-like input, use
:func:`pandas.array` with one of the integer dtypes (see examples).
See :ref:`integer_na` for more.
Parameters
----------
values : numpy.ndarray
A 1-d integer-dtype array.
mask : numpy.ndarray
A 1-d boolean-dtype array indicating missing values.
copy : bool, default False
Whether to copy the `values` and `mask`.
Attributes
----------
None
Methods
-------
None
Returns
-------
IntegerArray
Examples
--------
Create an IntegerArray with :func:`pandas.array`.
>>> int_array = pd.array([1, None, 3], dtype=pd.Int32Dtype())
>>> int_array
<IntegerArray>
[1, <NA>, 3]
Length: 3, dtype: Int32
String aliases for the dtypes are also available. They are capitalized.
>>> pd.array([1, None, 3], dtype='Int32')
<IntegerArray>
[1, <NA>, 3]
Length: 3, dtype: Int32
>>> pd.array([1, None, 3], dtype='UInt16')
<IntegerArray>
[1, <NA>, 3]
Length: 3, dtype: UInt16
"""
_dtype_cls = IntegerDtype
# The value used to fill '_data' to avoid upcasting
_internal_fill_value = 1
# Fill values used for any/all
# Incompatible types in assignment (expression has type "int", base class
# "BaseMaskedArray" defined the type as "<typing special form>")
_truthy_value = 1 # type: ignore[assignment]
_falsey_value = 0 # type: ignore[assignment]
_dtype_docstring = """
An ExtensionDtype for {dtype} integer data.
Uses :attr:`pandas.NA` as its missing value, rather than :attr:`numpy.nan`.
Attributes
----------
None
Methods
-------
None
Examples
--------
For Int8Dtype:
>>> ser = pd.Series([2, pd.NA], dtype=pd.Int8Dtype())
>>> ser.dtype
Int8Dtype()
For Int16Dtype:
>>> ser = pd.Series([2, pd.NA], dtype=pd.Int16Dtype())
>>> ser.dtype
Int16Dtype()
For Int32Dtype:
>>> ser = pd.Series([2, pd.NA], dtype=pd.Int32Dtype())
>>> ser.dtype
Int32Dtype()
For Int64Dtype:
>>> ser = pd.Series([2, pd.NA], dtype=pd.Int64Dtype())
>>> ser.dtype
Int64Dtype()
For UInt8Dtype:
>>> ser = pd.Series([2, pd.NA], dtype=pd.UInt8Dtype())
>>> ser.dtype
UInt8Dtype()
For UInt16Dtype:
>>> ser = pd.Series([2, pd.NA], dtype=pd.UInt16Dtype())
>>> ser.dtype
UInt16Dtype()
For UInt32Dtype:
>>> ser = pd.Series([2, pd.NA], dtype=pd.UInt32Dtype())
>>> ser.dtype
UInt32Dtype()
For UInt64Dtype:
>>> ser = pd.Series([2, pd.NA], dtype=pd.UInt64Dtype())
>>> ser.dtype
UInt64Dtype()
"""
# create the Dtype
@register_extension_dtype
class Int8Dtype(IntegerDtype):
type = np.int8
name: ClassVar[str] = "Int8"
__doc__ = _dtype_docstring.format(dtype="int8")
@register_extension_dtype
class Int16Dtype(IntegerDtype):
type = np.int16
name: ClassVar[str] = "Int16"
__doc__ = _dtype_docstring.format(dtype="int16")
@register_extension_dtype
class Int32Dtype(IntegerDtype):
type = np.int32
name: ClassVar[str] = "Int32"
__doc__ = _dtype_docstring.format(dtype="int32")
@register_extension_dtype
class Int64Dtype(IntegerDtype):
type = np.int64
name: ClassVar[str] = "Int64"
__doc__ = _dtype_docstring.format(dtype="int64")
@register_extension_dtype
class UInt8Dtype(IntegerDtype):
type = np.uint8
name: ClassVar[str] = "UInt8"
__doc__ = _dtype_docstring.format(dtype="uint8")
@register_extension_dtype
class UInt16Dtype(IntegerDtype):
type = np.uint16
name: ClassVar[str] = "UInt16"
__doc__ = _dtype_docstring.format(dtype="uint16")
@register_extension_dtype
class UInt32Dtype(IntegerDtype):
type = np.uint32
name: ClassVar[str] = "UInt32"
__doc__ = _dtype_docstring.format(dtype="uint32")
@register_extension_dtype
class UInt64Dtype(IntegerDtype):
type = np.uint64
name: ClassVar[str] = "UInt64"
__doc__ = _dtype_docstring.format(dtype="uint64")
NUMPY_INT_TO_DTYPE: dict[np.dtype, IntegerDtype] = {
np.dtype(np.int8): Int8Dtype(),
np.dtype(np.int16): Int16Dtype(),
np.dtype(np.int32): Int32Dtype(),
np.dtype(np.int64): Int64Dtype(),
np.dtype(np.uint8): UInt8Dtype(),
np.dtype(np.uint16): UInt16Dtype(),
np.dtype(np.uint32): UInt32Dtype(),
np.dtype(np.uint64): UInt64Dtype(),
}