3RNN/Lib/site-packages/pandas/tests/arrays/integer/test_construction.py
2024-05-26 19:49:15 +02:00

246 lines
7.6 KiB
Python

import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
from pandas.api.types import is_integer
from pandas.core.arrays import IntegerArray
from pandas.core.arrays.integer import (
Int8Dtype,
Int32Dtype,
Int64Dtype,
)
@pytest.fixture(params=[pd.array, IntegerArray._from_sequence])
def constructor(request):
"""Fixture returning parametrized IntegerArray from given sequence.
Used to test dtype conversions.
"""
return request.param
def test_uses_pandas_na():
a = pd.array([1, None], dtype=Int64Dtype())
assert a[1] is pd.NA
def test_from_dtype_from_float(data):
# construct from our dtype & string dtype
dtype = data.dtype
# from float
expected = pd.Series(data)
result = pd.Series(data.to_numpy(na_value=np.nan, dtype="float"), dtype=str(dtype))
tm.assert_series_equal(result, expected)
# from int / list
expected = pd.Series(data)
result = pd.Series(np.array(data).tolist(), dtype=str(dtype))
tm.assert_series_equal(result, expected)
# from int / array
expected = pd.Series(data).dropna().reset_index(drop=True)
dropped = np.array(data.dropna()).astype(np.dtype(dtype.type))
result = pd.Series(dropped, dtype=str(dtype))
tm.assert_series_equal(result, expected)
def test_conversions(data_missing):
# astype to object series
df = pd.DataFrame({"A": data_missing})
result = df["A"].astype("object")
expected = pd.Series(np.array([pd.NA, 1], dtype=object), name="A")
tm.assert_series_equal(result, expected)
# convert to object ndarray
# we assert that we are exactly equal
# including type conversions of scalars
result = df["A"].astype("object").values
expected = np.array([pd.NA, 1], dtype=object)
tm.assert_numpy_array_equal(result, expected)
for r, e in zip(result, expected):
if pd.isnull(r):
assert pd.isnull(e)
elif is_integer(r):
assert r == e
assert is_integer(e)
else:
assert r == e
assert type(r) == type(e)
def test_integer_array_constructor():
values = np.array([1, 2, 3, 4], dtype="int64")
mask = np.array([False, False, False, True], dtype="bool")
result = IntegerArray(values, mask)
expected = pd.array([1, 2, 3, np.nan], dtype="Int64")
tm.assert_extension_array_equal(result, expected)
msg = r".* should be .* numpy array. Use the 'pd.array' function instead"
with pytest.raises(TypeError, match=msg):
IntegerArray(values.tolist(), mask)
with pytest.raises(TypeError, match=msg):
IntegerArray(values, mask.tolist())
with pytest.raises(TypeError, match=msg):
IntegerArray(values.astype(float), mask)
msg = r"__init__\(\) missing 1 required positional argument: 'mask'"
with pytest.raises(TypeError, match=msg):
IntegerArray(values)
def test_integer_array_constructor_copy():
values = np.array([1, 2, 3, 4], dtype="int64")
mask = np.array([False, False, False, True], dtype="bool")
result = IntegerArray(values, mask)
assert result._data is values
assert result._mask is mask
result = IntegerArray(values, mask, copy=True)
assert result._data is not values
assert result._mask is not mask
@pytest.mark.parametrize(
"a, b",
[
([1, None], [1, np.nan]),
([None], [np.nan]),
([None, np.nan], [np.nan, np.nan]),
([np.nan, np.nan], [np.nan, np.nan]),
],
)
def test_to_integer_array_none_is_nan(a, b):
result = pd.array(a, dtype="Int64")
expected = pd.array(b, dtype="Int64")
tm.assert_extension_array_equal(result, expected)
@pytest.mark.parametrize(
"values",
[
["foo", "bar"],
"foo",
1,
1.0,
pd.date_range("20130101", periods=2),
np.array(["foo"]),
[[1, 2], [3, 4]],
[np.nan, {"a": 1}],
],
)
def test_to_integer_array_error(values):
# error in converting existing arrays to IntegerArrays
msg = "|".join(
[
r"cannot be converted to IntegerDtype",
r"invalid literal for int\(\) with base 10:",
r"values must be a 1D list-like",
r"Cannot pass scalar",
r"int\(\) argument must be a string",
]
)
with pytest.raises((ValueError, TypeError), match=msg):
pd.array(values, dtype="Int64")
with pytest.raises((ValueError, TypeError), match=msg):
IntegerArray._from_sequence(values)
def test_to_integer_array_inferred_dtype(constructor):
# if values has dtype -> respect it
result = constructor(np.array([1, 2], dtype="int8"))
assert result.dtype == Int8Dtype()
result = constructor(np.array([1, 2], dtype="int32"))
assert result.dtype == Int32Dtype()
# if values have no dtype -> always int64
result = constructor([1, 2])
assert result.dtype == Int64Dtype()
def test_to_integer_array_dtype_keyword(constructor):
result = constructor([1, 2], dtype="Int8")
assert result.dtype == Int8Dtype()
# if values has dtype -> override it
result = constructor(np.array([1, 2], dtype="int8"), dtype="Int32")
assert result.dtype == Int32Dtype()
def test_to_integer_array_float():
result = IntegerArray._from_sequence([1.0, 2.0], dtype="Int64")
expected = pd.array([1, 2], dtype="Int64")
tm.assert_extension_array_equal(result, expected)
with pytest.raises(TypeError, match="cannot safely cast non-equivalent"):
IntegerArray._from_sequence([1.5, 2.0], dtype="Int64")
# for float dtypes, the itemsize is not preserved
result = IntegerArray._from_sequence(
np.array([1.0, 2.0], dtype="float32"), dtype="Int64"
)
assert result.dtype == Int64Dtype()
def test_to_integer_array_str():
result = IntegerArray._from_sequence(["1", "2", None], dtype="Int64")
expected = pd.array([1, 2, np.nan], dtype="Int64")
tm.assert_extension_array_equal(result, expected)
with pytest.raises(
ValueError, match=r"invalid literal for int\(\) with base 10: .*"
):
IntegerArray._from_sequence(["1", "2", ""], dtype="Int64")
with pytest.raises(
ValueError, match=r"invalid literal for int\(\) with base 10: .*"
):
IntegerArray._from_sequence(["1.5", "2.0"], dtype="Int64")
@pytest.mark.parametrize(
"bool_values, int_values, target_dtype, expected_dtype",
[
([False, True], [0, 1], Int64Dtype(), Int64Dtype()),
([False, True], [0, 1], "Int64", Int64Dtype()),
([False, True, np.nan], [0, 1, np.nan], Int64Dtype(), Int64Dtype()),
],
)
def test_to_integer_array_bool(
constructor, bool_values, int_values, target_dtype, expected_dtype
):
result = constructor(bool_values, dtype=target_dtype)
assert result.dtype == expected_dtype
expected = pd.array(int_values, dtype=target_dtype)
tm.assert_extension_array_equal(result, expected)
@pytest.mark.parametrize(
"values, to_dtype, result_dtype",
[
(np.array([1], dtype="int64"), None, Int64Dtype),
(np.array([1, np.nan]), None, Int64Dtype),
(np.array([1, np.nan]), "int8", Int8Dtype),
],
)
def test_to_integer_array(values, to_dtype, result_dtype):
# convert existing arrays to IntegerArrays
result = IntegerArray._from_sequence(values, dtype=to_dtype)
assert result.dtype == result_dtype()
expected = pd.array(values, dtype=result_dtype())
tm.assert_extension_array_equal(result, expected)
def test_integer_array_from_boolean():
# GH31104
expected = pd.array(np.array([True, False]), dtype="Int64")
result = pd.array(np.array([True, False], dtype=object), dtype="Int64")
tm.assert_extension_array_equal(result, expected)