204 lines
6.5 KiB
Python
204 lines
6.5 KiB
Python
import numpy as np
|
|
import pytest
|
|
|
|
import pandas as pd
|
|
import pandas._testing as tm
|
|
from pandas.core.arrays import FloatingArray
|
|
|
|
|
|
@pytest.mark.parametrize("ufunc", [np.abs, np.sign])
|
|
# np.sign emits a warning with nans, <https://github.com/numpy/numpy/issues/15127>
|
|
@pytest.mark.filterwarnings("ignore:invalid value encountered in sign:RuntimeWarning")
|
|
def test_ufuncs_single_int(ufunc):
|
|
a = pd.array([1, 2, -3, np.nan])
|
|
result = ufunc(a)
|
|
expected = pd.array(ufunc(a.astype(float)), dtype="Int64")
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
s = pd.Series(a)
|
|
result = ufunc(s)
|
|
expected = pd.Series(pd.array(ufunc(a.astype(float)), dtype="Int64"))
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("ufunc", [np.log, np.exp, np.sin, np.cos, np.sqrt])
|
|
def test_ufuncs_single_float(ufunc):
|
|
a = pd.array([1, 2, -3, np.nan])
|
|
with np.errstate(invalid="ignore"):
|
|
result = ufunc(a)
|
|
expected = FloatingArray(ufunc(a.astype(float)), mask=a._mask)
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
s = pd.Series(a)
|
|
with np.errstate(invalid="ignore"):
|
|
result = ufunc(s)
|
|
expected = pd.Series(expected)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("ufunc", [np.add, np.subtract])
|
|
def test_ufuncs_binary_int(ufunc):
|
|
# two IntegerArrays
|
|
a = pd.array([1, 2, -3, np.nan])
|
|
result = ufunc(a, a)
|
|
expected = pd.array(ufunc(a.astype(float), a.astype(float)), dtype="Int64")
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
# IntegerArray with numpy array
|
|
arr = np.array([1, 2, 3, 4])
|
|
result = ufunc(a, arr)
|
|
expected = pd.array(ufunc(a.astype(float), arr), dtype="Int64")
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
result = ufunc(arr, a)
|
|
expected = pd.array(ufunc(arr, a.astype(float)), dtype="Int64")
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
# IntegerArray with scalar
|
|
result = ufunc(a, 1)
|
|
expected = pd.array(ufunc(a.astype(float), 1), dtype="Int64")
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
result = ufunc(1, a)
|
|
expected = pd.array(ufunc(1, a.astype(float)), dtype="Int64")
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
|
|
def test_ufunc_binary_output():
|
|
a = pd.array([1, 2, np.nan])
|
|
result = np.modf(a)
|
|
expected = np.modf(a.to_numpy(na_value=np.nan, dtype="float"))
|
|
expected = (pd.array(expected[0]), pd.array(expected[1]))
|
|
|
|
assert isinstance(result, tuple)
|
|
assert len(result) == 2
|
|
|
|
for x, y in zip(result, expected):
|
|
tm.assert_extension_array_equal(x, y)
|
|
|
|
|
|
@pytest.mark.parametrize("values", [[0, 1], [0, None]])
|
|
def test_ufunc_reduce_raises(values):
|
|
arr = pd.array(values)
|
|
|
|
res = np.add.reduce(arr)
|
|
expected = arr.sum(skipna=False)
|
|
tm.assert_almost_equal(res, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"pandasmethname, kwargs",
|
|
[
|
|
("var", {"ddof": 0}),
|
|
("var", {"ddof": 1}),
|
|
("std", {"ddof": 0}),
|
|
("std", {"ddof": 1}),
|
|
("kurtosis", {}),
|
|
("skew", {}),
|
|
("sem", {}),
|
|
],
|
|
)
|
|
def test_stat_method(pandasmethname, kwargs):
|
|
s = pd.Series(data=[1, 2, 3, 4, 5, 6, np.nan, np.nan], dtype="Int64")
|
|
pandasmeth = getattr(s, pandasmethname)
|
|
result = pandasmeth(**kwargs)
|
|
s2 = pd.Series(data=[1, 2, 3, 4, 5, 6], dtype="Int64")
|
|
pandasmeth = getattr(s2, pandasmethname)
|
|
expected = pandasmeth(**kwargs)
|
|
assert expected == result
|
|
|
|
|
|
def test_value_counts_na():
|
|
arr = pd.array([1, 2, 1, pd.NA], dtype="Int64")
|
|
result = arr.value_counts(dropna=False)
|
|
ex_index = pd.Index([1, 2, pd.NA], dtype="Int64")
|
|
assert ex_index.dtype == "Int64"
|
|
expected = pd.Series([2, 1, 1], index=ex_index, dtype="Int64", name="count")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = arr.value_counts(dropna=True)
|
|
expected = pd.Series([2, 1], index=arr[:2], dtype="Int64", name="count")
|
|
assert expected.index.dtype == arr.dtype
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_value_counts_empty():
|
|
# https://github.com/pandas-dev/pandas/issues/33317
|
|
ser = pd.Series([], dtype="Int64")
|
|
result = ser.value_counts()
|
|
idx = pd.Index([], dtype=ser.dtype)
|
|
assert idx.dtype == ser.dtype
|
|
expected = pd.Series([], index=idx, dtype="Int64", name="count")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_value_counts_with_normalize():
|
|
# GH 33172
|
|
ser = pd.Series([1, 2, 1, pd.NA], dtype="Int64")
|
|
result = ser.value_counts(normalize=True)
|
|
expected = pd.Series([2, 1], index=ser[:2], dtype="Float64", name="proportion") / 3
|
|
assert expected.index.dtype == ser.dtype
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("skipna", [True, False])
|
|
@pytest.mark.parametrize("min_count", [0, 4])
|
|
def test_integer_array_sum(skipna, min_count, any_int_ea_dtype):
|
|
dtype = any_int_ea_dtype
|
|
arr = pd.array([1, 2, 3, None], dtype=dtype)
|
|
result = arr.sum(skipna=skipna, min_count=min_count)
|
|
if skipna and min_count == 0:
|
|
assert result == 6
|
|
else:
|
|
assert result is pd.NA
|
|
|
|
|
|
@pytest.mark.parametrize("skipna", [True, False])
|
|
@pytest.mark.parametrize("method", ["min", "max"])
|
|
def test_integer_array_min_max(skipna, method, any_int_ea_dtype):
|
|
dtype = any_int_ea_dtype
|
|
arr = pd.array([0, 1, None], dtype=dtype)
|
|
func = getattr(arr, method)
|
|
result = func(skipna=skipna)
|
|
if skipna:
|
|
assert result == (0 if method == "min" else 1)
|
|
else:
|
|
assert result is pd.NA
|
|
|
|
|
|
@pytest.mark.parametrize("skipna", [True, False])
|
|
@pytest.mark.parametrize("min_count", [0, 9])
|
|
def test_integer_array_prod(skipna, min_count, any_int_ea_dtype):
|
|
dtype = any_int_ea_dtype
|
|
arr = pd.array([1, 2, None], dtype=dtype)
|
|
result = arr.prod(skipna=skipna, min_count=min_count)
|
|
if skipna and min_count == 0:
|
|
assert result == 2
|
|
else:
|
|
assert result is pd.NA
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"values, expected", [([1, 2, 3], 6), ([1, 2, 3, None], 6), ([None], 0)]
|
|
)
|
|
def test_integer_array_numpy_sum(values, expected):
|
|
arr = pd.array(values, dtype="Int64")
|
|
result = np.sum(arr)
|
|
assert result == expected
|
|
|
|
|
|
@pytest.mark.parametrize("op", ["sum", "prod", "min", "max"])
|
|
def test_dataframe_reductions(op):
|
|
# https://github.com/pandas-dev/pandas/pull/32867
|
|
# ensure the integers are not cast to float during reductions
|
|
df = pd.DataFrame({"a": pd.array([1, 2], dtype="Int64")})
|
|
result = df.max()
|
|
assert isinstance(result["a"], np.int64)
|
|
|
|
|
|
# TODO(jreback) - these need testing / are broken
|
|
|
|
# shift
|
|
|
|
# set_index (destroys type)
|