101 lines
2.6 KiB
Python
101 lines
2.6 KiB
Python
import numpy as np
|
|
import pytest
|
|
|
|
from pandas import (
|
|
DataFrame,
|
|
Index,
|
|
NaT,
|
|
date_range,
|
|
)
|
|
|
|
|
|
@pytest.fixture
|
|
def datetime_frame() -> DataFrame:
|
|
"""
|
|
Fixture for DataFrame of floats with DatetimeIndex
|
|
|
|
Columns are ['A', 'B', 'C', 'D']
|
|
"""
|
|
return DataFrame(
|
|
np.random.default_rng(2).standard_normal((100, 4)),
|
|
columns=Index(list("ABCD"), dtype=object),
|
|
index=date_range("2000-01-01", periods=100, freq="B"),
|
|
)
|
|
|
|
|
|
@pytest.fixture
|
|
def float_string_frame():
|
|
"""
|
|
Fixture for DataFrame of floats and strings with index of unique strings
|
|
|
|
Columns are ['A', 'B', 'C', 'D', 'foo'].
|
|
"""
|
|
df = DataFrame(
|
|
np.random.default_rng(2).standard_normal((30, 4)),
|
|
index=Index([f"foo_{i}" for i in range(30)], dtype=object),
|
|
columns=Index(list("ABCD"), dtype=object),
|
|
)
|
|
df["foo"] = "bar"
|
|
return df
|
|
|
|
|
|
@pytest.fixture
|
|
def mixed_float_frame():
|
|
"""
|
|
Fixture for DataFrame of different float types with index of unique strings
|
|
|
|
Columns are ['A', 'B', 'C', 'D'].
|
|
"""
|
|
df = DataFrame(
|
|
{
|
|
col: np.random.default_rng(2).random(30, dtype=dtype)
|
|
for col, dtype in zip(
|
|
list("ABCD"), ["float32", "float32", "float32", "float64"]
|
|
)
|
|
},
|
|
index=Index([f"foo_{i}" for i in range(30)], dtype=object),
|
|
)
|
|
# not supported by numpy random
|
|
df["C"] = df["C"].astype("float16")
|
|
return df
|
|
|
|
|
|
@pytest.fixture
|
|
def mixed_int_frame():
|
|
"""
|
|
Fixture for DataFrame of different int types with index of unique strings
|
|
|
|
Columns are ['A', 'B', 'C', 'D'].
|
|
"""
|
|
return DataFrame(
|
|
{
|
|
col: np.ones(30, dtype=dtype)
|
|
for col, dtype in zip(list("ABCD"), ["int32", "uint64", "uint8", "int64"])
|
|
},
|
|
index=Index([f"foo_{i}" for i in range(30)], dtype=object),
|
|
)
|
|
|
|
|
|
@pytest.fixture
|
|
def timezone_frame():
|
|
"""
|
|
Fixture for DataFrame of date_range Series with different time zones
|
|
|
|
Columns are ['A', 'B', 'C']; some entries are missing
|
|
|
|
A B C
|
|
0 2013-01-01 2013-01-01 00:00:00-05:00 2013-01-01 00:00:00+01:00
|
|
1 2013-01-02 NaT NaT
|
|
2 2013-01-03 2013-01-03 00:00:00-05:00 2013-01-03 00:00:00+01:00
|
|
"""
|
|
df = DataFrame(
|
|
{
|
|
"A": date_range("20130101", periods=3),
|
|
"B": date_range("20130101", periods=3, tz="US/Eastern"),
|
|
"C": date_range("20130101", periods=3, tz="CET"),
|
|
}
|
|
)
|
|
df.iloc[1, 1] = NaT
|
|
df.iloc[1, 2] = NaT
|
|
return df
|