281 lines
9.2 KiB
Python
281 lines
9.2 KiB
Python
import numpy as np
|
|
import pytest
|
|
|
|
import pandas.util._test_decorators as td
|
|
|
|
from pandas import (
|
|
DataFrame,
|
|
NaT,
|
|
Series,
|
|
Timestamp,
|
|
date_range,
|
|
period_range,
|
|
)
|
|
import pandas._testing as tm
|
|
|
|
|
|
class TestDataFrameValues:
|
|
@td.skip_array_manager_invalid_test
|
|
def test_values(self, float_frame, using_copy_on_write):
|
|
if using_copy_on_write:
|
|
with pytest.raises(ValueError, match="read-only"):
|
|
float_frame.values[:, 0] = 5.0
|
|
assert (float_frame.values[:, 0] != 5).all()
|
|
else:
|
|
float_frame.values[:, 0] = 5.0
|
|
assert (float_frame.values[:, 0] == 5).all()
|
|
|
|
def test_more_values(self, float_string_frame):
|
|
values = float_string_frame.values
|
|
assert values.shape[1] == len(float_string_frame.columns)
|
|
|
|
def test_values_mixed_dtypes(self, float_frame, float_string_frame):
|
|
frame = float_frame
|
|
arr = frame.values
|
|
|
|
frame_cols = frame.columns
|
|
for i, row in enumerate(arr):
|
|
for j, value in enumerate(row):
|
|
col = frame_cols[j]
|
|
if np.isnan(value):
|
|
assert np.isnan(frame[col].iloc[i])
|
|
else:
|
|
assert value == frame[col].iloc[i]
|
|
|
|
# mixed type
|
|
arr = float_string_frame[["foo", "A"]].values
|
|
assert arr[0, 0] == "bar"
|
|
|
|
df = DataFrame({"complex": [1j, 2j, 3j], "real": [1, 2, 3]})
|
|
arr = df.values
|
|
assert arr[0, 0] == 1j
|
|
|
|
def test_values_duplicates(self):
|
|
df = DataFrame(
|
|
[[1, 2, "a", "b"], [1, 2, "a", "b"]], columns=["one", "one", "two", "two"]
|
|
)
|
|
|
|
result = df.values
|
|
expected = np.array([[1, 2, "a", "b"], [1, 2, "a", "b"]], dtype=object)
|
|
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
def test_values_with_duplicate_columns(self):
|
|
df = DataFrame([[1, 2.5], [3, 4.5]], index=[1, 2], columns=["x", "x"])
|
|
result = df.values
|
|
expected = np.array([[1, 2.5], [3, 4.5]])
|
|
assert (result == expected).all().all()
|
|
|
|
@pytest.mark.parametrize("constructor", [date_range, period_range])
|
|
def test_values_casts_datetimelike_to_object(self, constructor):
|
|
series = Series(constructor("2000-01-01", periods=10, freq="D"))
|
|
|
|
expected = series.astype("object")
|
|
|
|
df = DataFrame(
|
|
{"a": series, "b": np.random.default_rng(2).standard_normal(len(series))}
|
|
)
|
|
|
|
result = df.values.squeeze()
|
|
assert (result[:, 0] == expected.values).all()
|
|
|
|
df = DataFrame({"a": series, "b": ["foo"] * len(series)})
|
|
|
|
result = df.values.squeeze()
|
|
assert (result[:, 0] == expected.values).all()
|
|
|
|
def test_frame_values_with_tz(self):
|
|
tz = "US/Central"
|
|
df = DataFrame({"A": date_range("2000", periods=4, tz=tz)})
|
|
result = df.values
|
|
expected = np.array(
|
|
[
|
|
[Timestamp("2000-01-01", tz=tz)],
|
|
[Timestamp("2000-01-02", tz=tz)],
|
|
[Timestamp("2000-01-03", tz=tz)],
|
|
[Timestamp("2000-01-04", tz=tz)],
|
|
]
|
|
)
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
# two columns, homogeneous
|
|
|
|
df["B"] = df["A"]
|
|
result = df.values
|
|
expected = np.concatenate([expected, expected], axis=1)
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
# three columns, heterogeneous
|
|
est = "US/Eastern"
|
|
df["C"] = df["A"].dt.tz_convert(est)
|
|
|
|
new = np.array(
|
|
[
|
|
[Timestamp("2000-01-01T01:00:00", tz=est)],
|
|
[Timestamp("2000-01-02T01:00:00", tz=est)],
|
|
[Timestamp("2000-01-03T01:00:00", tz=est)],
|
|
[Timestamp("2000-01-04T01:00:00", tz=est)],
|
|
]
|
|
)
|
|
expected = np.concatenate([expected, new], axis=1)
|
|
result = df.values
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
def test_interleave_with_tzaware(self, timezone_frame):
|
|
# interleave with object
|
|
result = timezone_frame.assign(D="foo").values
|
|
expected = np.array(
|
|
[
|
|
[
|
|
Timestamp("2013-01-01 00:00:00"),
|
|
Timestamp("2013-01-02 00:00:00"),
|
|
Timestamp("2013-01-03 00:00:00"),
|
|
],
|
|
[
|
|
Timestamp("2013-01-01 00:00:00-0500", tz="US/Eastern"),
|
|
NaT,
|
|
Timestamp("2013-01-03 00:00:00-0500", tz="US/Eastern"),
|
|
],
|
|
[
|
|
Timestamp("2013-01-01 00:00:00+0100", tz="CET"),
|
|
NaT,
|
|
Timestamp("2013-01-03 00:00:00+0100", tz="CET"),
|
|
],
|
|
["foo", "foo", "foo"],
|
|
],
|
|
dtype=object,
|
|
).T
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
# interleave with only datetime64[ns]
|
|
result = timezone_frame.values
|
|
expected = np.array(
|
|
[
|
|
[
|
|
Timestamp("2013-01-01 00:00:00"),
|
|
Timestamp("2013-01-02 00:00:00"),
|
|
Timestamp("2013-01-03 00:00:00"),
|
|
],
|
|
[
|
|
Timestamp("2013-01-01 00:00:00-0500", tz="US/Eastern"),
|
|
NaT,
|
|
Timestamp("2013-01-03 00:00:00-0500", tz="US/Eastern"),
|
|
],
|
|
[
|
|
Timestamp("2013-01-01 00:00:00+0100", tz="CET"),
|
|
NaT,
|
|
Timestamp("2013-01-03 00:00:00+0100", tz="CET"),
|
|
],
|
|
],
|
|
dtype=object,
|
|
).T
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
def test_values_interleave_non_unique_cols(self):
|
|
df = DataFrame(
|
|
[[Timestamp("20130101"), 3.5], [Timestamp("20130102"), 4.5]],
|
|
columns=["x", "x"],
|
|
index=[1, 2],
|
|
)
|
|
|
|
df_unique = df.copy()
|
|
df_unique.columns = ["x", "y"]
|
|
assert df_unique.values.shape == df.values.shape
|
|
tm.assert_numpy_array_equal(df_unique.values[0], df.values[0])
|
|
tm.assert_numpy_array_equal(df_unique.values[1], df.values[1])
|
|
|
|
def test_values_numeric_cols(self, float_frame):
|
|
float_frame["foo"] = "bar"
|
|
|
|
values = float_frame[["A", "B", "C", "D"]].values
|
|
assert values.dtype == np.float64
|
|
|
|
def test_values_lcd(self, mixed_float_frame, mixed_int_frame):
|
|
# mixed lcd
|
|
values = mixed_float_frame[["A", "B", "C", "D"]].values
|
|
assert values.dtype == np.float64
|
|
|
|
values = mixed_float_frame[["A", "B", "C"]].values
|
|
assert values.dtype == np.float32
|
|
|
|
values = mixed_float_frame[["C"]].values
|
|
assert values.dtype == np.float16
|
|
|
|
# GH#10364
|
|
# B uint64 forces float because there are other signed int types
|
|
values = mixed_int_frame[["A", "B", "C", "D"]].values
|
|
assert values.dtype == np.float64
|
|
|
|
values = mixed_int_frame[["A", "D"]].values
|
|
assert values.dtype == np.int64
|
|
|
|
# B uint64 forces float because there are other signed int types
|
|
values = mixed_int_frame[["A", "B", "C"]].values
|
|
assert values.dtype == np.float64
|
|
|
|
# as B and C are both unsigned, no forcing to float is needed
|
|
values = mixed_int_frame[["B", "C"]].values
|
|
assert values.dtype == np.uint64
|
|
|
|
values = mixed_int_frame[["A", "C"]].values
|
|
assert values.dtype == np.int32
|
|
|
|
values = mixed_int_frame[["C", "D"]].values
|
|
assert values.dtype == np.int64
|
|
|
|
values = mixed_int_frame[["A"]].values
|
|
assert values.dtype == np.int32
|
|
|
|
values = mixed_int_frame[["C"]].values
|
|
assert values.dtype == np.uint8
|
|
|
|
|
|
class TestPrivateValues:
|
|
@td.skip_array_manager_invalid_test
|
|
def test_private_values_dt64tz(self, using_copy_on_write):
|
|
dta = date_range("2000", periods=4, tz="US/Central")._data.reshape(-1, 1)
|
|
|
|
df = DataFrame(dta, columns=["A"])
|
|
tm.assert_equal(df._values, dta)
|
|
|
|
if using_copy_on_write:
|
|
assert not np.shares_memory(df._values._ndarray, dta._ndarray)
|
|
else:
|
|
# we have a view
|
|
assert np.shares_memory(df._values._ndarray, dta._ndarray)
|
|
|
|
# TimedeltaArray
|
|
tda = dta - dta
|
|
df2 = df - df
|
|
tm.assert_equal(df2._values, tda)
|
|
|
|
@td.skip_array_manager_invalid_test
|
|
def test_private_values_dt64tz_multicol(self, using_copy_on_write):
|
|
dta = date_range("2000", periods=8, tz="US/Central")._data.reshape(-1, 2)
|
|
|
|
df = DataFrame(dta, columns=["A", "B"])
|
|
tm.assert_equal(df._values, dta)
|
|
|
|
if using_copy_on_write:
|
|
assert not np.shares_memory(df._values._ndarray, dta._ndarray)
|
|
else:
|
|
# we have a view
|
|
assert np.shares_memory(df._values._ndarray, dta._ndarray)
|
|
|
|
# TimedeltaArray
|
|
tda = dta - dta
|
|
df2 = df - df
|
|
tm.assert_equal(df2._values, tda)
|
|
|
|
def test_private_values_dt64_multiblock(self):
|
|
dta = date_range("2000", periods=8)._data
|
|
|
|
df = DataFrame({"A": dta[:4]}, copy=False)
|
|
df["B"] = dta[4:]
|
|
|
|
assert len(df._mgr.arrays) == 2
|
|
|
|
result = df._values
|
|
expected = dta.reshape(2, 4).T
|
|
tm.assert_equal(result, expected)
|