3RNN/Lib/site-packages/pandas/tests/groupby/methods/test_nlargest_nsmallest.py
2024-05-26 19:49:15 +02:00

116 lines
3.3 KiB
Python

import numpy as np
import pytest
from pandas import (
MultiIndex,
Series,
date_range,
)
import pandas._testing as tm
def test_nlargest():
a = Series([1, 3, 5, 7, 2, 9, 0, 4, 6, 10])
b = Series(list("a" * 5 + "b" * 5))
gb = a.groupby(b)
r = gb.nlargest(3)
e = Series(
[7, 5, 3, 10, 9, 6],
index=MultiIndex.from_arrays([list("aaabbb"), [3, 2, 1, 9, 5, 8]]),
)
tm.assert_series_equal(r, e)
a = Series([1, 1, 3, 2, 0, 3, 3, 2, 1, 0])
gb = a.groupby(b)
e = Series(
[3, 2, 1, 3, 3, 2],
index=MultiIndex.from_arrays([list("aaabbb"), [2, 3, 1, 6, 5, 7]]),
)
tm.assert_series_equal(gb.nlargest(3, keep="last"), e)
def test_nlargest_mi_grouper():
# see gh-21411
npr = np.random.default_rng(2)
dts = date_range("20180101", periods=10)
iterables = [dts, ["one", "two"]]
idx = MultiIndex.from_product(iterables, names=["first", "second"])
s = Series(npr.standard_normal(20), index=idx)
result = s.groupby("first").nlargest(1)
exp_idx = MultiIndex.from_tuples(
[
(dts[0], dts[0], "one"),
(dts[1], dts[1], "one"),
(dts[2], dts[2], "one"),
(dts[3], dts[3], "two"),
(dts[4], dts[4], "one"),
(dts[5], dts[5], "one"),
(dts[6], dts[6], "one"),
(dts[7], dts[7], "one"),
(dts[8], dts[8], "one"),
(dts[9], dts[9], "one"),
],
names=["first", "first", "second"],
)
exp_values = [
0.18905338179353307,
-0.41306354339189344,
1.799707382720902,
0.7738065867276614,
0.28121066979764925,
0.9775674511260357,
-0.3288239040579627,
0.45495807124085547,
0.5452887139646817,
0.12682784711186987,
]
expected = Series(exp_values, index=exp_idx)
tm.assert_series_equal(result, expected, check_exact=False, rtol=1e-3)
def test_nsmallest():
a = Series([1, 3, 5, 7, 2, 9, 0, 4, 6, 10])
b = Series(list("a" * 5 + "b" * 5))
gb = a.groupby(b)
r = gb.nsmallest(3)
e = Series(
[1, 2, 3, 0, 4, 6],
index=MultiIndex.from_arrays([list("aaabbb"), [0, 4, 1, 6, 7, 8]]),
)
tm.assert_series_equal(r, e)
a = Series([1, 1, 3, 2, 0, 3, 3, 2, 1, 0])
gb = a.groupby(b)
e = Series(
[0, 1, 1, 0, 1, 2],
index=MultiIndex.from_arrays([list("aaabbb"), [4, 1, 0, 9, 8, 7]]),
)
tm.assert_series_equal(gb.nsmallest(3, keep="last"), e)
@pytest.mark.parametrize(
"data, groups",
[([0, 1, 2, 3], [0, 0, 1, 1]), ([0], [0])],
)
@pytest.mark.parametrize("dtype", [None, *tm.ALL_INT_NUMPY_DTYPES])
@pytest.mark.parametrize("method", ["nlargest", "nsmallest"])
def test_nlargest_and_smallest_noop(data, groups, dtype, method):
# GH 15272, GH 16345, GH 29129
# Test nlargest/smallest when it results in a noop,
# i.e. input is sorted and group size <= n
if dtype is not None:
data = np.array(data, dtype=dtype)
if method == "nlargest":
data = list(reversed(data))
ser = Series(data, name="a")
result = getattr(ser.groupby(groups), method)(n=2)
expidx = np.array(groups, dtype=int) if isinstance(groups, list) else groups
expected = Series(data, index=MultiIndex.from_arrays([expidx, ser.index]), name="a")
tm.assert_series_equal(result, expected)