3RNN/Lib/site-packages/pandas/tests/groupby/methods/test_value_counts.py
2024-05-26 19:49:15 +02:00

1242 lines
39 KiB
Python

"""
these are systematically testing all of the args to value_counts
with different size combinations. This is to ensure stability of the sorting
and proper parameter handling
"""
import numpy as np
import pytest
import pandas.util._test_decorators as td
from pandas import (
Categorical,
CategoricalIndex,
DataFrame,
Grouper,
Index,
MultiIndex,
Series,
date_range,
to_datetime,
)
import pandas._testing as tm
from pandas.util.version import Version
def tests_value_counts_index_names_category_column():
# GH44324 Missing name of index category column
df = DataFrame(
{
"gender": ["female"],
"country": ["US"],
}
)
df["gender"] = df["gender"].astype("category")
result = df.groupby("country")["gender"].value_counts()
# Construct expected, very specific multiindex
df_mi_expected = DataFrame([["US", "female"]], columns=["country", "gender"])
df_mi_expected["gender"] = df_mi_expected["gender"].astype("category")
mi_expected = MultiIndex.from_frame(df_mi_expected)
expected = Series([1], index=mi_expected, name="count")
tm.assert_series_equal(result, expected)
def seed_df(seed_nans, n, m):
days = date_range("2015-08-24", periods=10)
frame = DataFrame(
{
"1st": np.random.default_rng(2).choice(list("abcd"), n),
"2nd": np.random.default_rng(2).choice(days, n),
"3rd": np.random.default_rng(2).integers(1, m + 1, n),
}
)
if seed_nans:
# Explicitly cast to float to avoid implicit cast when setting nan
frame["3rd"] = frame["3rd"].astype("float")
frame.loc[1::11, "1st"] = np.nan
frame.loc[3::17, "2nd"] = np.nan
frame.loc[7::19, "3rd"] = np.nan
frame.loc[8::19, "3rd"] = np.nan
frame.loc[9::19, "3rd"] = np.nan
return frame
@pytest.mark.slow
@pytest.mark.parametrize("seed_nans", [True, False])
@pytest.mark.parametrize("num_rows", [10, 50])
@pytest.mark.parametrize("max_int", [5, 20])
@pytest.mark.parametrize("keys", ["1st", "2nd", ["1st", "2nd"]], ids=repr)
@pytest.mark.parametrize("bins", [None, [0, 5]], ids=repr)
@pytest.mark.parametrize("isort", [True, False])
@pytest.mark.parametrize("normalize, name", [(True, "proportion"), (False, "count")])
@pytest.mark.parametrize("sort", [True, False])
@pytest.mark.parametrize("ascending", [True, False])
@pytest.mark.parametrize("dropna", [True, False])
def test_series_groupby_value_counts(
seed_nans,
num_rows,
max_int,
keys,
bins,
isort,
normalize,
name,
sort,
ascending,
dropna,
):
df = seed_df(seed_nans, num_rows, max_int)
def rebuild_index(df):
arr = list(map(df.index.get_level_values, range(df.index.nlevels)))
df.index = MultiIndex.from_arrays(arr, names=df.index.names)
return df
kwargs = {
"normalize": normalize,
"sort": sort,
"ascending": ascending,
"dropna": dropna,
"bins": bins,
}
gr = df.groupby(keys, sort=isort)
left = gr["3rd"].value_counts(**kwargs)
gr = df.groupby(keys, sort=isort)
right = gr["3rd"].apply(Series.value_counts, **kwargs)
right.index.names = right.index.names[:-1] + ["3rd"]
# https://github.com/pandas-dev/pandas/issues/49909
right = right.rename(name)
# have to sort on index because of unstable sort on values
left, right = map(rebuild_index, (left, right)) # xref GH9212
tm.assert_series_equal(left.sort_index(), right.sort_index())
@pytest.mark.parametrize("utc", [True, False])
def test_series_groupby_value_counts_with_grouper(utc):
# GH28479
df = DataFrame(
{
"Timestamp": [
1565083561,
1565083561 + 86400,
1565083561 + 86500,
1565083561 + 86400 * 2,
1565083561 + 86400 * 3,
1565083561 + 86500 * 3,
1565083561 + 86400 * 4,
],
"Food": ["apple", "apple", "banana", "banana", "orange", "orange", "pear"],
}
).drop([3])
df["Datetime"] = to_datetime(df["Timestamp"], utc=utc, unit="s")
dfg = df.groupby(Grouper(freq="1D", key="Datetime"))
# have to sort on index because of unstable sort on values xref GH9212
result = dfg["Food"].value_counts().sort_index()
expected = dfg["Food"].apply(Series.value_counts).sort_index()
expected.index.names = result.index.names
# https://github.com/pandas-dev/pandas/issues/49909
expected = expected.rename("count")
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("columns", [["A", "B"], ["A", "B", "C"]])
def test_series_groupby_value_counts_empty(columns):
# GH39172
df = DataFrame(columns=columns)
dfg = df.groupby(columns[:-1])
result = dfg[columns[-1]].value_counts()
expected = Series([], dtype=result.dtype, name="count")
expected.index = MultiIndex.from_arrays([[]] * len(columns), names=columns)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("columns", [["A", "B"], ["A", "B", "C"]])
def test_series_groupby_value_counts_one_row(columns):
# GH42618
df = DataFrame(data=[range(len(columns))], columns=columns)
dfg = df.groupby(columns[:-1])
result = dfg[columns[-1]].value_counts()
expected = df.value_counts()
tm.assert_series_equal(result, expected)
def test_series_groupby_value_counts_on_categorical():
# GH38672
s = Series(Categorical(["a"], categories=["a", "b"]))
result = s.groupby([0]).value_counts()
expected = Series(
data=[1, 0],
index=MultiIndex.from_arrays(
[
np.array([0, 0]),
CategoricalIndex(
["a", "b"], categories=["a", "b"], ordered=False, dtype="category"
),
]
),
name="count",
)
# Expected:
# 0 a 1
# b 0
# dtype: int64
tm.assert_series_equal(result, expected)
def test_series_groupby_value_counts_no_sort():
# GH#50482
df = DataFrame(
{
"gender": ["male", "male", "female", "male", "female", "male"],
"education": ["low", "medium", "high", "low", "high", "low"],
"country": ["US", "FR", "US", "FR", "FR", "FR"],
}
)
gb = df.groupby(["country", "gender"], sort=False)["education"]
result = gb.value_counts(sort=False)
index = MultiIndex(
levels=[["US", "FR"], ["male", "female"], ["low", "medium", "high"]],
codes=[[0, 1, 0, 1, 1], [0, 0, 1, 0, 1], [0, 1, 2, 0, 2]],
names=["country", "gender", "education"],
)
expected = Series([1, 1, 1, 2, 1], index=index, name="count")
tm.assert_series_equal(result, expected)
@pytest.fixture
def education_df():
return DataFrame(
{
"gender": ["male", "male", "female", "male", "female", "male"],
"education": ["low", "medium", "high", "low", "high", "low"],
"country": ["US", "FR", "US", "FR", "FR", "FR"],
}
)
def test_axis(education_df):
msg = "DataFrame.groupby with axis=1 is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
gp = education_df.groupby("country", axis=1)
with pytest.raises(NotImplementedError, match="axis"):
gp.value_counts()
def test_bad_subset(education_df):
gp = education_df.groupby("country")
with pytest.raises(ValueError, match="subset"):
gp.value_counts(subset=["country"])
def test_basic(education_df, request):
# gh43564
if Version(np.__version__) >= Version("1.25"):
request.applymarker(
pytest.mark.xfail(
reason=(
"pandas default unstable sorting of duplicates"
"issue with numpy>=1.25 with AVX instructions"
),
strict=False,
)
)
result = education_df.groupby("country")[["gender", "education"]].value_counts(
normalize=True
)
expected = Series(
data=[0.5, 0.25, 0.25, 0.5, 0.5],
index=MultiIndex.from_tuples(
[
("FR", "male", "low"),
("FR", "female", "high"),
("FR", "male", "medium"),
("US", "female", "high"),
("US", "male", "low"),
],
names=["country", "gender", "education"],
),
name="proportion",
)
tm.assert_series_equal(result, expected)
def _frame_value_counts(df, keys, normalize, sort, ascending):
return df[keys].value_counts(normalize=normalize, sort=sort, ascending=ascending)
@pytest.mark.parametrize("groupby", ["column", "array", "function"])
@pytest.mark.parametrize("normalize, name", [(True, "proportion"), (False, "count")])
@pytest.mark.parametrize(
"sort, ascending",
[
(False, None),
(True, True),
(True, False),
],
)
@pytest.mark.parametrize("as_index", [True, False])
@pytest.mark.parametrize("frame", [True, False])
def test_against_frame_and_seriesgroupby(
education_df, groupby, normalize, name, sort, ascending, as_index, frame, request
):
# test all parameters:
# - Use column, array or function as by= parameter
# - Whether or not to normalize
# - Whether or not to sort and how
# - Whether or not to use the groupby as an index
# - 3-way compare against:
# - apply with :meth:`~DataFrame.value_counts`
# - `~SeriesGroupBy.value_counts`
if Version(np.__version__) >= Version("1.25") and frame and sort and normalize:
request.applymarker(
pytest.mark.xfail(
reason=(
"pandas default unstable sorting of duplicates"
"issue with numpy>=1.25 with AVX instructions"
),
strict=False,
)
)
by = {
"column": "country",
"array": education_df["country"].values,
"function": lambda x: education_df["country"][x] == "US",
}[groupby]
gp = education_df.groupby(by=by, as_index=as_index)
result = gp[["gender", "education"]].value_counts(
normalize=normalize, sort=sort, ascending=ascending
)
if frame:
# compare against apply with DataFrame value_counts
warn = DeprecationWarning if groupby == "column" else None
msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(warn, match=msg):
expected = gp.apply(
_frame_value_counts, ["gender", "education"], normalize, sort, ascending
)
if as_index:
tm.assert_series_equal(result, expected)
else:
name = "proportion" if normalize else "count"
expected = expected.reset_index().rename({0: name}, axis=1)
if groupby == "column":
expected = expected.rename({"level_0": "country"}, axis=1)
expected["country"] = np.where(expected["country"], "US", "FR")
elif groupby == "function":
expected["level_0"] = expected["level_0"] == 1
else:
expected["level_0"] = np.where(expected["level_0"], "US", "FR")
tm.assert_frame_equal(result, expected)
else:
# compare against SeriesGroupBy value_counts
education_df["both"] = education_df["gender"] + "-" + education_df["education"]
expected = gp["both"].value_counts(
normalize=normalize, sort=sort, ascending=ascending
)
expected.name = name
if as_index:
index_frame = expected.index.to_frame(index=False)
index_frame["gender"] = index_frame["both"].str.split("-").str.get(0)
index_frame["education"] = index_frame["both"].str.split("-").str.get(1)
del index_frame["both"]
index_frame = index_frame.rename({0: None}, axis=1)
expected.index = MultiIndex.from_frame(index_frame)
tm.assert_series_equal(result, expected)
else:
expected.insert(1, "gender", expected["both"].str.split("-").str.get(0))
expected.insert(2, "education", expected["both"].str.split("-").str.get(1))
del expected["both"]
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"dtype",
[
object,
pytest.param("string[pyarrow_numpy]", marks=td.skip_if_no("pyarrow")),
pytest.param("string[pyarrow]", marks=td.skip_if_no("pyarrow")),
],
)
@pytest.mark.parametrize("normalize", [True, False])
@pytest.mark.parametrize(
"sort, ascending, expected_rows, expected_count, expected_group_size",
[
(False, None, [0, 1, 2, 3, 4], [1, 1, 1, 2, 1], [1, 3, 1, 3, 1]),
(True, False, [3, 0, 1, 2, 4], [2, 1, 1, 1, 1], [3, 1, 3, 1, 1]),
(True, True, [0, 1, 2, 4, 3], [1, 1, 1, 1, 2], [1, 3, 1, 1, 3]),
],
)
def test_compound(
education_df,
normalize,
sort,
ascending,
expected_rows,
expected_count,
expected_group_size,
dtype,
):
education_df = education_df.astype(dtype)
education_df.columns = education_df.columns.astype(dtype)
# Multiple groupby keys and as_index=False
gp = education_df.groupby(["country", "gender"], as_index=False, sort=False)
result = gp["education"].value_counts(
normalize=normalize, sort=sort, ascending=ascending
)
expected = DataFrame()
for column in ["country", "gender", "education"]:
expected[column] = [education_df[column][row] for row in expected_rows]
expected = expected.astype(dtype)
expected.columns = expected.columns.astype(dtype)
if normalize:
expected["proportion"] = expected_count
expected["proportion"] /= expected_group_size
if dtype == "string[pyarrow]":
expected["proportion"] = expected["proportion"].convert_dtypes()
else:
expected["count"] = expected_count
if dtype == "string[pyarrow]":
expected["count"] = expected["count"].convert_dtypes()
tm.assert_frame_equal(result, expected)
@pytest.fixture
def animals_df():
return DataFrame(
{"key": [1, 1, 1, 1], "num_legs": [2, 4, 4, 6], "num_wings": [2, 0, 0, 0]},
index=["falcon", "dog", "cat", "ant"],
)
@pytest.mark.parametrize(
"sort, ascending, normalize, name, expected_data, expected_index",
[
(False, None, False, "count", [1, 2, 1], [(1, 1, 1), (2, 4, 6), (2, 0, 0)]),
(True, True, False, "count", [1, 1, 2], [(1, 1, 1), (2, 6, 4), (2, 0, 0)]),
(True, False, False, "count", [2, 1, 1], [(1, 1, 1), (4, 2, 6), (0, 2, 0)]),
(
True,
False,
True,
"proportion",
[0.5, 0.25, 0.25],
[(1, 1, 1), (4, 2, 6), (0, 2, 0)],
),
],
)
def test_data_frame_value_counts(
animals_df, sort, ascending, normalize, name, expected_data, expected_index
):
# 3-way compare with :meth:`~DataFrame.value_counts`
# Tests from frame/methods/test_value_counts.py
result_frame = animals_df.value_counts(
sort=sort, ascending=ascending, normalize=normalize
)
expected = Series(
data=expected_data,
index=MultiIndex.from_arrays(
expected_index, names=["key", "num_legs", "num_wings"]
),
name=name,
)
tm.assert_series_equal(result_frame, expected)
result_frame_groupby = animals_df.groupby("key").value_counts(
sort=sort, ascending=ascending, normalize=normalize
)
tm.assert_series_equal(result_frame_groupby, expected)
@pytest.fixture
def nulls_df():
n = np.nan
return DataFrame(
{
"A": [1, 1, n, 4, n, 6, 6, 6, 6],
"B": [1, 1, 3, n, n, 6, 6, 6, 6],
"C": [1, 2, 3, 4, 5, 6, n, 8, n],
"D": [1, 2, 3, 4, 5, 6, 7, n, n],
}
)
@pytest.mark.parametrize(
"group_dropna, count_dropna, expected_rows, expected_values",
[
(
False,
False,
[0, 1, 3, 5, 7, 6, 8, 2, 4],
[0.5, 0.5, 1.0, 0.25, 0.25, 0.25, 0.25, 1.0, 1.0],
),
(False, True, [0, 1, 3, 5, 2, 4], [0.5, 0.5, 1.0, 1.0, 1.0, 1.0]),
(True, False, [0, 1, 5, 7, 6, 8], [0.5, 0.5, 0.25, 0.25, 0.25, 0.25]),
(True, True, [0, 1, 5], [0.5, 0.5, 1.0]),
],
)
def test_dropna_combinations(
nulls_df, group_dropna, count_dropna, expected_rows, expected_values, request
):
if Version(np.__version__) >= Version("1.25") and not group_dropna:
request.applymarker(
pytest.mark.xfail(
reason=(
"pandas default unstable sorting of duplicates"
"issue with numpy>=1.25 with AVX instructions"
),
strict=False,
)
)
gp = nulls_df.groupby(["A", "B"], dropna=group_dropna)
result = gp.value_counts(normalize=True, sort=True, dropna=count_dropna)
columns = DataFrame()
for column in nulls_df.columns:
columns[column] = [nulls_df[column][row] for row in expected_rows]
index = MultiIndex.from_frame(columns)
expected = Series(data=expected_values, index=index, name="proportion")
tm.assert_series_equal(result, expected)
@pytest.fixture
def names_with_nulls_df(nulls_fixture):
return DataFrame(
{
"key": [1, 1, 1, 1],
"first_name": ["John", "Anne", "John", "Beth"],
"middle_name": ["Smith", nulls_fixture, nulls_fixture, "Louise"],
},
)
@pytest.mark.parametrize(
"dropna, expected_data, expected_index",
[
(
True,
[1, 1],
MultiIndex.from_arrays(
[(1, 1), ("Beth", "John"), ("Louise", "Smith")],
names=["key", "first_name", "middle_name"],
),
),
(
False,
[1, 1, 1, 1],
MultiIndex(
levels=[
Index([1]),
Index(["Anne", "Beth", "John"]),
Index(["Louise", "Smith", np.nan]),
],
codes=[[0, 0, 0, 0], [0, 1, 2, 2], [2, 0, 1, 2]],
names=["key", "first_name", "middle_name"],
),
),
],
)
@pytest.mark.parametrize("normalize, name", [(False, "count"), (True, "proportion")])
def test_data_frame_value_counts_dropna(
names_with_nulls_df, dropna, normalize, name, expected_data, expected_index
):
# GH 41334
# 3-way compare with :meth:`~DataFrame.value_counts`
# Tests with nulls from frame/methods/test_value_counts.py
result_frame = names_with_nulls_df.value_counts(dropna=dropna, normalize=normalize)
expected = Series(
data=expected_data,
index=expected_index,
name=name,
)
if normalize:
expected /= float(len(expected_data))
tm.assert_series_equal(result_frame, expected)
result_frame_groupby = names_with_nulls_df.groupby("key").value_counts(
dropna=dropna, normalize=normalize
)
tm.assert_series_equal(result_frame_groupby, expected)
@pytest.mark.parametrize("as_index", [False, True])
@pytest.mark.parametrize("observed", [False, True])
@pytest.mark.parametrize(
"normalize, name, expected_data",
[
(
False,
"count",
np.array([2, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0], dtype=np.int64),
),
(
True,
"proportion",
np.array([0.5, 0.25, 0.25, 0.0, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 0.0]),
),
],
)
def test_categorical_single_grouper_with_only_observed_categories(
education_df, as_index, observed, normalize, name, expected_data, request
):
# Test single categorical grouper with only observed grouping categories
# when non-groupers are also categorical
if Version(np.__version__) >= Version("1.25"):
request.applymarker(
pytest.mark.xfail(
reason=(
"pandas default unstable sorting of duplicates"
"issue with numpy>=1.25 with AVX instructions"
),
strict=False,
)
)
gp = education_df.astype("category").groupby(
"country", as_index=as_index, observed=observed
)
result = gp.value_counts(normalize=normalize)
expected_index = MultiIndex.from_tuples(
[
("FR", "male", "low"),
("FR", "female", "high"),
("FR", "male", "medium"),
("FR", "female", "low"),
("FR", "female", "medium"),
("FR", "male", "high"),
("US", "female", "high"),
("US", "male", "low"),
("US", "female", "low"),
("US", "female", "medium"),
("US", "male", "high"),
("US", "male", "medium"),
],
names=["country", "gender", "education"],
)
expected_series = Series(
data=expected_data,
index=expected_index,
name=name,
)
for i in range(3):
expected_series.index = expected_series.index.set_levels(
CategoricalIndex(expected_series.index.levels[i]), level=i
)
if as_index:
tm.assert_series_equal(result, expected_series)
else:
expected = expected_series.reset_index(
name="proportion" if normalize else "count"
)
tm.assert_frame_equal(result, expected)
def assert_categorical_single_grouper(
education_df, as_index, observed, expected_index, normalize, name, expected_data
):
# Test single categorical grouper when non-groupers are also categorical
education_df = education_df.copy().astype("category")
# Add non-observed grouping categories
education_df["country"] = education_df["country"].cat.add_categories(["ASIA"])
gp = education_df.groupby("country", as_index=as_index, observed=observed)
result = gp.value_counts(normalize=normalize)
expected_series = Series(
data=expected_data,
index=MultiIndex.from_tuples(
expected_index,
names=["country", "gender", "education"],
),
name=name,
)
for i in range(3):
index_level = CategoricalIndex(expected_series.index.levels[i])
if i == 0:
index_level = index_level.set_categories(
education_df["country"].cat.categories
)
expected_series.index = expected_series.index.set_levels(index_level, level=i)
if as_index:
tm.assert_series_equal(result, expected_series)
else:
expected = expected_series.reset_index(name=name)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("as_index", [True, False])
@pytest.mark.parametrize(
"normalize, name, expected_data",
[
(
False,
"count",
np.array([2, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0], dtype=np.int64),
),
(
True,
"proportion",
np.array([0.5, 0.25, 0.25, 0.0, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 0.0]),
),
],
)
def test_categorical_single_grouper_observed_true(
education_df, as_index, normalize, name, expected_data, request
):
# GH#46357
if Version(np.__version__) >= Version("1.25"):
request.applymarker(
pytest.mark.xfail(
reason=(
"pandas default unstable sorting of duplicates"
"issue with numpy>=1.25 with AVX instructions"
),
strict=False,
)
)
expected_index = [
("FR", "male", "low"),
("FR", "female", "high"),
("FR", "male", "medium"),
("FR", "female", "low"),
("FR", "female", "medium"),
("FR", "male", "high"),
("US", "female", "high"),
("US", "male", "low"),
("US", "female", "low"),
("US", "female", "medium"),
("US", "male", "high"),
("US", "male", "medium"),
]
assert_categorical_single_grouper(
education_df=education_df,
as_index=as_index,
observed=True,
expected_index=expected_index,
normalize=normalize,
name=name,
expected_data=expected_data,
)
@pytest.mark.parametrize("as_index", [True, False])
@pytest.mark.parametrize(
"normalize, name, expected_data",
[
(
False,
"count",
np.array(
[2, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=np.int64
),
),
(
True,
"proportion",
np.array(
[
0.5,
0.25,
0.25,
0.0,
0.0,
0.0,
0.5,
0.5,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
]
),
),
],
)
def test_categorical_single_grouper_observed_false(
education_df, as_index, normalize, name, expected_data, request
):
# GH#46357
if Version(np.__version__) >= Version("1.25"):
request.applymarker(
pytest.mark.xfail(
reason=(
"pandas default unstable sorting of duplicates"
"issue with numpy>=1.25 with AVX instructions"
),
strict=False,
)
)
expected_index = [
("FR", "male", "low"),
("FR", "female", "high"),
("FR", "male", "medium"),
("FR", "female", "low"),
("FR", "female", "medium"),
("FR", "male", "high"),
("US", "female", "high"),
("US", "male", "low"),
("US", "female", "low"),
("US", "female", "medium"),
("US", "male", "high"),
("US", "male", "medium"),
("ASIA", "female", "high"),
("ASIA", "female", "low"),
("ASIA", "female", "medium"),
("ASIA", "male", "high"),
("ASIA", "male", "low"),
("ASIA", "male", "medium"),
]
assert_categorical_single_grouper(
education_df=education_df,
as_index=as_index,
observed=False,
expected_index=expected_index,
normalize=normalize,
name=name,
expected_data=expected_data,
)
@pytest.mark.parametrize("as_index", [True, False])
@pytest.mark.parametrize(
"observed, expected_index",
[
(
False,
[
("FR", "high", "female"),
("FR", "high", "male"),
("FR", "low", "male"),
("FR", "low", "female"),
("FR", "medium", "male"),
("FR", "medium", "female"),
("US", "high", "female"),
("US", "high", "male"),
("US", "low", "male"),
("US", "low", "female"),
("US", "medium", "female"),
("US", "medium", "male"),
],
),
(
True,
[
("FR", "high", "female"),
("FR", "low", "male"),
("FR", "medium", "male"),
("US", "high", "female"),
("US", "low", "male"),
],
),
],
)
@pytest.mark.parametrize(
"normalize, name, expected_data",
[
(
False,
"count",
np.array([1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 0, 0], dtype=np.int64),
),
(
True,
"proportion",
# NaN values corresponds to non-observed groups
np.array([1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0]),
),
],
)
def test_categorical_multiple_groupers(
education_df, as_index, observed, expected_index, normalize, name, expected_data
):
# GH#46357
# Test multiple categorical groupers when non-groupers are non-categorical
education_df = education_df.copy()
education_df["country"] = education_df["country"].astype("category")
education_df["education"] = education_df["education"].astype("category")
gp = education_df.groupby(
["country", "education"], as_index=as_index, observed=observed
)
result = gp.value_counts(normalize=normalize)
expected_series = Series(
data=expected_data[expected_data > 0.0] if observed else expected_data,
index=MultiIndex.from_tuples(
expected_index,
names=["country", "education", "gender"],
),
name=name,
)
for i in range(2):
expected_series.index = expected_series.index.set_levels(
CategoricalIndex(expected_series.index.levels[i]), level=i
)
if as_index:
tm.assert_series_equal(result, expected_series)
else:
expected = expected_series.reset_index(
name="proportion" if normalize else "count"
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("as_index", [False, True])
@pytest.mark.parametrize("observed", [False, True])
@pytest.mark.parametrize(
"normalize, name, expected_data",
[
(
False,
"count",
np.array([2, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0], dtype=np.int64),
),
(
True,
"proportion",
# NaN values corresponds to non-observed groups
np.array([0.5, 0.25, 0.25, 0.0, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 0.0]),
),
],
)
def test_categorical_non_groupers(
education_df, as_index, observed, normalize, name, expected_data, request
):
# GH#46357 Test non-observed categories are included in the result,
# regardless of `observed`
if Version(np.__version__) >= Version("1.25"):
request.applymarker(
pytest.mark.xfail(
reason=(
"pandas default unstable sorting of duplicates"
"issue with numpy>=1.25 with AVX instructions"
),
strict=False,
)
)
education_df = education_df.copy()
education_df["gender"] = education_df["gender"].astype("category")
education_df["education"] = education_df["education"].astype("category")
gp = education_df.groupby("country", as_index=as_index, observed=observed)
result = gp.value_counts(normalize=normalize)
expected_index = [
("FR", "male", "low"),
("FR", "female", "high"),
("FR", "male", "medium"),
("FR", "female", "low"),
("FR", "female", "medium"),
("FR", "male", "high"),
("US", "female", "high"),
("US", "male", "low"),
("US", "female", "low"),
("US", "female", "medium"),
("US", "male", "high"),
("US", "male", "medium"),
]
expected_series = Series(
data=expected_data,
index=MultiIndex.from_tuples(
expected_index,
names=["country", "gender", "education"],
),
name=name,
)
for i in range(1, 3):
expected_series.index = expected_series.index.set_levels(
CategoricalIndex(expected_series.index.levels[i]), level=i
)
if as_index:
tm.assert_series_equal(result, expected_series)
else:
expected = expected_series.reset_index(
name="proportion" if normalize else "count"
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"normalize, expected_label, expected_values",
[
(False, "count", [1, 1, 1]),
(True, "proportion", [0.5, 0.5, 1.0]),
],
)
def test_mixed_groupings(normalize, expected_label, expected_values):
# Test multiple groupings
df = DataFrame({"A": [1, 2, 1], "B": [1, 2, 3]})
gp = df.groupby([[4, 5, 4], "A", lambda i: 7 if i == 1 else 8], as_index=False)
result = gp.value_counts(sort=True, normalize=normalize)
expected = DataFrame(
{
"level_0": np.array([4, 4, 5], dtype=int),
"A": [1, 1, 2],
"level_2": [8, 8, 7],
"B": [1, 3, 2],
expected_label: expected_values,
}
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"test, columns, expected_names",
[
("repeat", list("abbde"), ["a", None, "d", "b", "b", "e"]),
("level", list("abcd") + ["level_1"], ["a", None, "d", "b", "c", "level_1"]),
],
)
@pytest.mark.parametrize("as_index", [False, True])
def test_column_label_duplicates(test, columns, expected_names, as_index):
# GH 44992
# Test for duplicate input column labels and generated duplicate labels
df = DataFrame([[1, 3, 5, 7, 9], [2, 4, 6, 8, 10]], columns=columns)
expected_data = [(1, 0, 7, 3, 5, 9), (2, 1, 8, 4, 6, 10)]
keys = ["a", np.array([0, 1], dtype=np.int64), "d"]
result = df.groupby(keys, as_index=as_index).value_counts()
if as_index:
expected = Series(
data=(1, 1),
index=MultiIndex.from_tuples(
expected_data,
names=expected_names,
),
name="count",
)
tm.assert_series_equal(result, expected)
else:
expected_data = [list(row) + [1] for row in expected_data]
expected_columns = list(expected_names)
expected_columns[1] = "level_1"
expected_columns.append("count")
expected = DataFrame(expected_data, columns=expected_columns)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"normalize, expected_label",
[
(False, "count"),
(True, "proportion"),
],
)
def test_result_label_duplicates(normalize, expected_label):
# Test for result column label duplicating an input column label
gb = DataFrame([[1, 2, 3]], columns=["a", "b", expected_label]).groupby(
"a", as_index=False
)
msg = f"Column label '{expected_label}' is duplicate of result column"
with pytest.raises(ValueError, match=msg):
gb.value_counts(normalize=normalize)
def test_ambiguous_grouping():
# Test that groupby is not confused by groupings length equal to row count
df = DataFrame({"a": [1, 1]})
gb = df.groupby(np.array([1, 1], dtype=np.int64))
result = gb.value_counts()
expected = Series(
[2], index=MultiIndex.from_tuples([[1, 1]], names=[None, "a"]), name="count"
)
tm.assert_series_equal(result, expected)
def test_subset_overlaps_gb_key_raises():
# GH 46383
df = DataFrame({"c1": ["a", "b", "c"], "c2": ["x", "y", "y"]}, index=[0, 1, 1])
msg = "Keys {'c1'} in subset cannot be in the groupby column keys."
with pytest.raises(ValueError, match=msg):
df.groupby("c1").value_counts(subset=["c1"])
def test_subset_doesnt_exist_in_frame():
# GH 46383
df = DataFrame({"c1": ["a", "b", "c"], "c2": ["x", "y", "y"]}, index=[0, 1, 1])
msg = "Keys {'c3'} in subset do not exist in the DataFrame."
with pytest.raises(ValueError, match=msg):
df.groupby("c1").value_counts(subset=["c3"])
def test_subset():
# GH 46383
df = DataFrame({"c1": ["a", "b", "c"], "c2": ["x", "y", "y"]}, index=[0, 1, 1])
result = df.groupby(level=0).value_counts(subset=["c2"])
expected = Series(
[1, 2],
index=MultiIndex.from_arrays([[0, 1], ["x", "y"]], names=[None, "c2"]),
name="count",
)
tm.assert_series_equal(result, expected)
def test_subset_duplicate_columns():
# GH 46383
df = DataFrame(
[["a", "x", "x"], ["b", "y", "y"], ["b", "y", "y"]],
index=[0, 1, 1],
columns=["c1", "c2", "c2"],
)
result = df.groupby(level=0).value_counts(subset=["c2"])
expected = Series(
[1, 2],
index=MultiIndex.from_arrays(
[[0, 1], ["x", "y"], ["x", "y"]], names=[None, "c2", "c2"]
),
name="count",
)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("utc", [True, False])
def test_value_counts_time_grouper(utc, unit):
# GH#50486
df = DataFrame(
{
"Timestamp": [
1565083561,
1565083561 + 86400,
1565083561 + 86500,
1565083561 + 86400 * 2,
1565083561 + 86400 * 3,
1565083561 + 86500 * 3,
1565083561 + 86400 * 4,
],
"Food": ["apple", "apple", "banana", "banana", "orange", "orange", "pear"],
}
).drop([3])
df["Datetime"] = to_datetime(df["Timestamp"], utc=utc, unit="s").dt.as_unit(unit)
gb = df.groupby(Grouper(freq="1D", key="Datetime"))
result = gb.value_counts()
dates = to_datetime(
["2019-08-06", "2019-08-07", "2019-08-09", "2019-08-10"], utc=utc
).as_unit(unit)
timestamps = df["Timestamp"].unique()
index = MultiIndex(
levels=[dates, timestamps, ["apple", "banana", "orange", "pear"]],
codes=[[0, 1, 1, 2, 2, 3], range(6), [0, 0, 1, 2, 2, 3]],
names=["Datetime", "Timestamp", "Food"],
)
expected = Series(1, index=index, name="count")
tm.assert_series_equal(result, expected)
def test_value_counts_integer_columns():
# GH#55627
df = DataFrame({1: ["a", "a", "a"], 2: ["a", "a", "d"], 3: ["a", "b", "c"]})
gp = df.groupby([1, 2], as_index=False, sort=False)
result = gp[3].value_counts()
expected = DataFrame(
{1: ["a", "a", "a"], 2: ["a", "a", "d"], 3: ["a", "b", "c"], "count": 1}
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("vc_sort", [True, False])
@pytest.mark.parametrize("normalize", [True, False])
def test_value_counts_sort(sort, vc_sort, normalize):
# GH#55951
df = DataFrame({"a": [2, 1, 1, 1], 0: [3, 4, 3, 3]})
gb = df.groupby("a", sort=sort)
result = gb.value_counts(sort=vc_sort, normalize=normalize)
if normalize:
values = [2 / 3, 1 / 3, 1.0]
else:
values = [2, 1, 1]
index = MultiIndex(
levels=[[1, 2], [3, 4]], codes=[[0, 0, 1], [0, 1, 0]], names=["a", 0]
)
expected = Series(values, index=index, name="proportion" if normalize else "count")
if sort and vc_sort:
taker = [0, 1, 2]
elif sort and not vc_sort:
taker = [0, 1, 2]
elif not sort and vc_sort:
taker = [0, 2, 1]
else:
taker = [2, 1, 0]
expected = expected.take(taker)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("vc_sort", [True, False])
@pytest.mark.parametrize("normalize", [True, False])
def test_value_counts_sort_categorical(sort, vc_sort, normalize):
# GH#55951
df = DataFrame({"a": [2, 1, 1, 1], 0: [3, 4, 3, 3]}, dtype="category")
gb = df.groupby("a", sort=sort, observed=True)
result = gb.value_counts(sort=vc_sort, normalize=normalize)
if normalize:
values = [2 / 3, 1 / 3, 1.0, 0.0]
else:
values = [2, 1, 1, 0]
name = "proportion" if normalize else "count"
expected = DataFrame(
{
"a": Categorical([1, 1, 2, 2]),
0: Categorical([3, 4, 3, 4]),
name: values,
}
).set_index(["a", 0])[name]
if sort and vc_sort:
taker = [0, 1, 2, 3]
elif sort and not vc_sort:
taker = [0, 1, 2, 3]
elif not sort and vc_sort:
taker = [0, 2, 1, 3]
else:
taker = [2, 3, 0, 1]
expected = expected.take(taker)
tm.assert_series_equal(result, expected)