357 lines
12 KiB
Python
357 lines
12 KiB
Python
from datetime import datetime
|
|
|
|
import dateutil.tz
|
|
import numpy as np
|
|
import pytest
|
|
import pytz
|
|
|
|
import pandas as pd
|
|
from pandas import (
|
|
DatetimeIndex,
|
|
NaT,
|
|
Series,
|
|
)
|
|
import pandas._testing as tm
|
|
|
|
|
|
@pytest.fixture(params=["s", "ms", "us", "ns"])
|
|
def unit(request):
|
|
return request.param
|
|
|
|
|
|
def test_get_values_for_csv():
|
|
index = pd.date_range(freq="1D", periods=3, start="2017-01-01")
|
|
|
|
# First, with no arguments.
|
|
expected = np.array(["2017-01-01", "2017-01-02", "2017-01-03"], dtype=object)
|
|
|
|
result = index._get_values_for_csv()
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
# No NaN values, so na_rep has no effect
|
|
result = index._get_values_for_csv(na_rep="pandas")
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
# Make sure date formatting works
|
|
expected = np.array(["01-2017-01", "01-2017-02", "01-2017-03"], dtype=object)
|
|
|
|
result = index._get_values_for_csv(date_format="%m-%Y-%d")
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
# NULL object handling should work
|
|
index = DatetimeIndex(["2017-01-01", NaT, "2017-01-03"])
|
|
expected = np.array(["2017-01-01", "NaT", "2017-01-03"], dtype=object)
|
|
|
|
result = index._get_values_for_csv(na_rep="NaT")
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
expected = np.array(["2017-01-01", "pandas", "2017-01-03"], dtype=object)
|
|
|
|
result = index._get_values_for_csv(na_rep="pandas")
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
result = index._get_values_for_csv(na_rep="NaT", date_format="%Y-%m-%d %H:%M:%S.%f")
|
|
expected = np.array(
|
|
["2017-01-01 00:00:00.000000", "NaT", "2017-01-03 00:00:00.000000"],
|
|
dtype=object,
|
|
)
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
# invalid format
|
|
result = index._get_values_for_csv(na_rep="NaT", date_format="foo")
|
|
expected = np.array(["foo", "NaT", "foo"], dtype=object)
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
|
|
class TestDatetimeIndexRendering:
|
|
@pytest.mark.parametrize("tzstr", ["US/Eastern", "dateutil/US/Eastern"])
|
|
def test_dti_with_timezone_repr(self, tzstr):
|
|
rng = pd.date_range("4/13/2010", "5/6/2010")
|
|
|
|
rng_eastern = rng.tz_localize(tzstr)
|
|
|
|
rng_repr = repr(rng_eastern)
|
|
assert "2010-04-13 00:00:00" in rng_repr
|
|
|
|
def test_dti_repr_dates(self):
|
|
text = str(pd.to_datetime([datetime(2013, 1, 1), datetime(2014, 1, 1)]))
|
|
assert "['2013-01-01'," in text
|
|
assert ", '2014-01-01']" in text
|
|
|
|
def test_dti_repr_mixed(self):
|
|
text = str(
|
|
pd.to_datetime(
|
|
[datetime(2013, 1, 1), datetime(2014, 1, 1, 12), datetime(2014, 1, 1)]
|
|
)
|
|
)
|
|
assert "'2013-01-01 00:00:00'," in text
|
|
assert "'2014-01-01 00:00:00']" in text
|
|
|
|
def test_dti_repr_short(self):
|
|
dr = pd.date_range(start="1/1/2012", periods=1)
|
|
repr(dr)
|
|
|
|
dr = pd.date_range(start="1/1/2012", periods=2)
|
|
repr(dr)
|
|
|
|
dr = pd.date_range(start="1/1/2012", periods=3)
|
|
repr(dr)
|
|
|
|
@pytest.mark.parametrize(
|
|
"dates, freq, expected_repr",
|
|
[
|
|
(
|
|
["2012-01-01 00:00:00"],
|
|
"60min",
|
|
(
|
|
"DatetimeIndex(['2012-01-01 00:00:00'], "
|
|
"dtype='datetime64[ns]', freq='60min')"
|
|
),
|
|
),
|
|
(
|
|
["2012-01-01 00:00:00", "2012-01-01 01:00:00"],
|
|
"60min",
|
|
"DatetimeIndex(['2012-01-01 00:00:00', '2012-01-01 01:00:00'], "
|
|
"dtype='datetime64[ns]', freq='60min')",
|
|
),
|
|
(
|
|
["2012-01-01"],
|
|
"24h",
|
|
"DatetimeIndex(['2012-01-01'], dtype='datetime64[ns]', freq='24h')",
|
|
),
|
|
],
|
|
)
|
|
def test_dti_repr_time_midnight(self, dates, freq, expected_repr, unit):
|
|
# GH53634
|
|
dti = DatetimeIndex(dates, freq).as_unit(unit)
|
|
actual_repr = repr(dti)
|
|
assert actual_repr == expected_repr.replace("[ns]", f"[{unit}]")
|
|
|
|
def test_dti_representation(self, unit):
|
|
idxs = []
|
|
idxs.append(DatetimeIndex([], freq="D"))
|
|
idxs.append(DatetimeIndex(["2011-01-01"], freq="D"))
|
|
idxs.append(DatetimeIndex(["2011-01-01", "2011-01-02"], freq="D"))
|
|
idxs.append(DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03"], freq="D"))
|
|
idxs.append(
|
|
DatetimeIndex(
|
|
["2011-01-01 09:00", "2011-01-01 10:00", "2011-01-01 11:00"],
|
|
freq="h",
|
|
tz="Asia/Tokyo",
|
|
)
|
|
)
|
|
idxs.append(
|
|
DatetimeIndex(
|
|
["2011-01-01 09:00", "2011-01-01 10:00", NaT], tz="US/Eastern"
|
|
)
|
|
)
|
|
idxs.append(
|
|
DatetimeIndex(["2011-01-01 09:00", "2011-01-01 10:00", NaT], tz="UTC")
|
|
)
|
|
|
|
exp = []
|
|
exp.append("DatetimeIndex([], dtype='datetime64[ns]', freq='D')")
|
|
exp.append("DatetimeIndex(['2011-01-01'], dtype='datetime64[ns]', freq='D')")
|
|
exp.append(
|
|
"DatetimeIndex(['2011-01-01', '2011-01-02'], "
|
|
"dtype='datetime64[ns]', freq='D')"
|
|
)
|
|
exp.append(
|
|
"DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], "
|
|
"dtype='datetime64[ns]', freq='D')"
|
|
)
|
|
exp.append(
|
|
"DatetimeIndex(['2011-01-01 09:00:00+09:00', "
|
|
"'2011-01-01 10:00:00+09:00', '2011-01-01 11:00:00+09:00']"
|
|
", dtype='datetime64[ns, Asia/Tokyo]', freq='h')"
|
|
)
|
|
exp.append(
|
|
"DatetimeIndex(['2011-01-01 09:00:00-05:00', "
|
|
"'2011-01-01 10:00:00-05:00', 'NaT'], "
|
|
"dtype='datetime64[ns, US/Eastern]', freq=None)"
|
|
)
|
|
exp.append(
|
|
"DatetimeIndex(['2011-01-01 09:00:00+00:00', "
|
|
"'2011-01-01 10:00:00+00:00', 'NaT'], "
|
|
"dtype='datetime64[ns, UTC]', freq=None)"
|
|
""
|
|
)
|
|
|
|
with pd.option_context("display.width", 300):
|
|
for index, expected in zip(idxs, exp):
|
|
index = index.as_unit(unit)
|
|
expected = expected.replace("[ns", f"[{unit}")
|
|
result = repr(index)
|
|
assert result == expected
|
|
result = str(index)
|
|
assert result == expected
|
|
|
|
# TODO: this is a Series.__repr__ test
|
|
def test_dti_representation_to_series(self, unit):
|
|
idx1 = DatetimeIndex([], freq="D")
|
|
idx2 = DatetimeIndex(["2011-01-01"], freq="D")
|
|
idx3 = DatetimeIndex(["2011-01-01", "2011-01-02"], freq="D")
|
|
idx4 = DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03"], freq="D")
|
|
idx5 = DatetimeIndex(
|
|
["2011-01-01 09:00", "2011-01-01 10:00", "2011-01-01 11:00"],
|
|
freq="h",
|
|
tz="Asia/Tokyo",
|
|
)
|
|
idx6 = DatetimeIndex(
|
|
["2011-01-01 09:00", "2011-01-01 10:00", NaT], tz="US/Eastern"
|
|
)
|
|
idx7 = DatetimeIndex(["2011-01-01 09:00", "2011-01-02 10:15"])
|
|
|
|
exp1 = """Series([], dtype: datetime64[ns])"""
|
|
|
|
exp2 = "0 2011-01-01\ndtype: datetime64[ns]"
|
|
|
|
exp3 = "0 2011-01-01\n1 2011-01-02\ndtype: datetime64[ns]"
|
|
|
|
exp4 = (
|
|
"0 2011-01-01\n"
|
|
"1 2011-01-02\n"
|
|
"2 2011-01-03\n"
|
|
"dtype: datetime64[ns]"
|
|
)
|
|
|
|
exp5 = (
|
|
"0 2011-01-01 09:00:00+09:00\n"
|
|
"1 2011-01-01 10:00:00+09:00\n"
|
|
"2 2011-01-01 11:00:00+09:00\n"
|
|
"dtype: datetime64[ns, Asia/Tokyo]"
|
|
)
|
|
|
|
exp6 = (
|
|
"0 2011-01-01 09:00:00-05:00\n"
|
|
"1 2011-01-01 10:00:00-05:00\n"
|
|
"2 NaT\n"
|
|
"dtype: datetime64[ns, US/Eastern]"
|
|
)
|
|
|
|
exp7 = (
|
|
"0 2011-01-01 09:00:00\n"
|
|
"1 2011-01-02 10:15:00\n"
|
|
"dtype: datetime64[ns]"
|
|
)
|
|
|
|
with pd.option_context("display.width", 300):
|
|
for idx, expected in zip(
|
|
[idx1, idx2, idx3, idx4, idx5, idx6, idx7],
|
|
[exp1, exp2, exp3, exp4, exp5, exp6, exp7],
|
|
):
|
|
ser = Series(idx.as_unit(unit))
|
|
result = repr(ser)
|
|
assert result == expected.replace("[ns", f"[{unit}")
|
|
|
|
def test_dti_summary(self):
|
|
# GH#9116
|
|
idx1 = DatetimeIndex([], freq="D")
|
|
idx2 = DatetimeIndex(["2011-01-01"], freq="D")
|
|
idx3 = DatetimeIndex(["2011-01-01", "2011-01-02"], freq="D")
|
|
idx4 = DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03"], freq="D")
|
|
idx5 = DatetimeIndex(
|
|
["2011-01-01 09:00", "2011-01-01 10:00", "2011-01-01 11:00"],
|
|
freq="h",
|
|
tz="Asia/Tokyo",
|
|
)
|
|
idx6 = DatetimeIndex(
|
|
["2011-01-01 09:00", "2011-01-01 10:00", NaT], tz="US/Eastern"
|
|
)
|
|
|
|
exp1 = "DatetimeIndex: 0 entries\nFreq: D"
|
|
|
|
exp2 = "DatetimeIndex: 1 entries, 2011-01-01 to 2011-01-01\nFreq: D"
|
|
|
|
exp3 = "DatetimeIndex: 2 entries, 2011-01-01 to 2011-01-02\nFreq: D"
|
|
|
|
exp4 = "DatetimeIndex: 3 entries, 2011-01-01 to 2011-01-03\nFreq: D"
|
|
|
|
exp5 = (
|
|
"DatetimeIndex: 3 entries, 2011-01-01 09:00:00+09:00 "
|
|
"to 2011-01-01 11:00:00+09:00\n"
|
|
"Freq: h"
|
|
)
|
|
|
|
exp6 = """DatetimeIndex: 3 entries, 2011-01-01 09:00:00-05:00 to NaT"""
|
|
|
|
for idx, expected in zip(
|
|
[idx1, idx2, idx3, idx4, idx5, idx6], [exp1, exp2, exp3, exp4, exp5, exp6]
|
|
):
|
|
result = idx._summary()
|
|
assert result == expected
|
|
|
|
@pytest.mark.parametrize("tz", [None, pytz.utc, dateutil.tz.tzutc()])
|
|
@pytest.mark.parametrize("freq", ["B", "C"])
|
|
def test_dti_business_repr_etc_smoke(self, tz, freq):
|
|
# only really care that it works
|
|
dti = pd.bdate_range(
|
|
datetime(2009, 1, 1), datetime(2010, 1, 1), tz=tz, freq=freq
|
|
)
|
|
repr(dti)
|
|
dti._summary()
|
|
dti[2:2]._summary()
|
|
|
|
|
|
class TestFormat:
|
|
def test_format(self):
|
|
# GH#35439
|
|
idx = pd.date_range("20130101", periods=5)
|
|
expected = [f"{x:%Y-%m-%d}" for x in idx]
|
|
msg = r"DatetimeIndex\.format is deprecated"
|
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
|
assert idx.format() == expected
|
|
|
|
def test_format_with_name_time_info(self):
|
|
# bug I fixed 12/20/2011
|
|
dates = pd.date_range("2011-01-01 04:00:00", periods=10, name="something")
|
|
|
|
msg = "DatetimeIndex.format is deprecated"
|
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
|
formatted = dates.format(name=True)
|
|
assert formatted[0] == "something"
|
|
|
|
def test_format_datetime_with_time(self):
|
|
dti = DatetimeIndex([datetime(2012, 2, 7), datetime(2012, 2, 7, 23)])
|
|
|
|
msg = "DatetimeIndex.format is deprecated"
|
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
|
result = dti.format()
|
|
expected = ["2012-02-07 00:00:00", "2012-02-07 23:00:00"]
|
|
assert len(result) == 2
|
|
assert result == expected
|
|
|
|
def test_format_datetime(self):
|
|
msg = "DatetimeIndex.format is deprecated"
|
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
|
formatted = pd.to_datetime([datetime(2003, 1, 1, 12), NaT]).format()
|
|
assert formatted[0] == "2003-01-01 12:00:00"
|
|
assert formatted[1] == "NaT"
|
|
|
|
def test_format_date(self):
|
|
msg = "DatetimeIndex.format is deprecated"
|
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
|
formatted = pd.to_datetime([datetime(2003, 1, 1), NaT]).format()
|
|
assert formatted[0] == "2003-01-01"
|
|
assert formatted[1] == "NaT"
|
|
|
|
def test_format_date_tz(self):
|
|
dti = pd.to_datetime([datetime(2013, 1, 1)], utc=True)
|
|
msg = "DatetimeIndex.format is deprecated"
|
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
|
formatted = dti.format()
|
|
assert formatted[0] == "2013-01-01 00:00:00+00:00"
|
|
|
|
dti = pd.to_datetime([datetime(2013, 1, 1), NaT], utc=True)
|
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
|
formatted = dti.format()
|
|
assert formatted[0] == "2013-01-01 00:00:00+00:00"
|
|
|
|
def test_format_date_explicit_date_format(self):
|
|
dti = pd.to_datetime([datetime(2003, 2, 1), NaT])
|
|
msg = "DatetimeIndex.format is deprecated"
|
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
|
formatted = dti.format(date_format="%m-%d-%Y", na_rep="UT")
|
|
assert formatted[0] == "02-01-2003"
|
|
assert formatted[1] == "UT"
|