120 lines
3.8 KiB
Python
120 lines
3.8 KiB
Python
import numpy as np
|
|
import pytest
|
|
|
|
from pandas._config import using_pyarrow_string_dtype
|
|
|
|
from pandas import (
|
|
DataFrame,
|
|
DatetimeIndex,
|
|
Index,
|
|
Interval,
|
|
IntervalIndex,
|
|
Series,
|
|
Timedelta,
|
|
Timestamp,
|
|
)
|
|
import pandas._testing as tm
|
|
|
|
|
|
class TestIntervalIndexRendering:
|
|
# TODO: this is a test for DataFrame/Series, not IntervalIndex
|
|
@pytest.mark.parametrize(
|
|
"constructor,expected",
|
|
[
|
|
(
|
|
Series,
|
|
(
|
|
"(0.0, 1.0] a\n"
|
|
"NaN b\n"
|
|
"(2.0, 3.0] c\n"
|
|
"dtype: object"
|
|
),
|
|
),
|
|
(DataFrame, (" 0\n(0.0, 1.0] a\nNaN b\n(2.0, 3.0] c")),
|
|
],
|
|
)
|
|
def test_repr_missing(self, constructor, expected, using_infer_string, request):
|
|
# GH 25984
|
|
if using_infer_string and constructor is Series:
|
|
request.applymarker(pytest.mark.xfail(reason="repr different"))
|
|
index = IntervalIndex.from_tuples([(0, 1), np.nan, (2, 3)])
|
|
obj = constructor(list("abc"), index=index)
|
|
result = repr(obj)
|
|
assert result == expected
|
|
|
|
@pytest.mark.xfail(using_pyarrow_string_dtype(), reason="repr different")
|
|
def test_repr_floats(self):
|
|
# GH 32553
|
|
|
|
markers = Series(
|
|
["foo", "bar"],
|
|
index=IntervalIndex(
|
|
[
|
|
Interval(left, right)
|
|
for left, right in zip(
|
|
Index([329.973, 345.137], dtype="float64"),
|
|
Index([345.137, 360.191], dtype="float64"),
|
|
)
|
|
]
|
|
),
|
|
)
|
|
result = str(markers)
|
|
expected = "(329.973, 345.137] foo\n(345.137, 360.191] bar\ndtype: object"
|
|
assert result == expected
|
|
|
|
@pytest.mark.parametrize(
|
|
"tuples, closed, expected_data",
|
|
[
|
|
([(0, 1), (1, 2), (2, 3)], "left", ["[0, 1)", "[1, 2)", "[2, 3)"]),
|
|
(
|
|
[(0.5, 1.0), np.nan, (2.0, 3.0)],
|
|
"right",
|
|
["(0.5, 1.0]", "NaN", "(2.0, 3.0]"],
|
|
),
|
|
(
|
|
[
|
|
(Timestamp("20180101"), Timestamp("20180102")),
|
|
np.nan,
|
|
((Timestamp("20180102"), Timestamp("20180103"))),
|
|
],
|
|
"both",
|
|
[
|
|
"[2018-01-01 00:00:00, 2018-01-02 00:00:00]",
|
|
"NaN",
|
|
"[2018-01-02 00:00:00, 2018-01-03 00:00:00]",
|
|
],
|
|
),
|
|
(
|
|
[
|
|
(Timedelta("0 days"), Timedelta("1 days")),
|
|
(Timedelta("1 days"), Timedelta("2 days")),
|
|
np.nan,
|
|
],
|
|
"neither",
|
|
[
|
|
"(0 days 00:00:00, 1 days 00:00:00)",
|
|
"(1 days 00:00:00, 2 days 00:00:00)",
|
|
"NaN",
|
|
],
|
|
),
|
|
],
|
|
)
|
|
def test_get_values_for_csv(self, tuples, closed, expected_data):
|
|
# GH 28210
|
|
index = IntervalIndex.from_tuples(tuples, closed=closed)
|
|
result = index._get_values_for_csv(na_rep="NaN")
|
|
expected = np.array(expected_data)
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
def test_timestamp_with_timezone(self, unit):
|
|
# GH 55035
|
|
left = DatetimeIndex(["2020-01-01"], dtype=f"M8[{unit}, UTC]")
|
|
right = DatetimeIndex(["2020-01-02"], dtype=f"M8[{unit}, UTC]")
|
|
index = IntervalIndex.from_arrays(left, right)
|
|
result = repr(index)
|
|
expected = (
|
|
"IntervalIndex([(2020-01-01 00:00:00+00:00, 2020-01-02 00:00:00+00:00]], "
|
|
f"dtype='interval[datetime64[{unit}, UTC], right]')"
|
|
)
|
|
assert result == expected
|