3RNN/Lib/site-packages/pandas/tests/indexes/numeric/test_numeric.py
2024-05-26 19:49:15 +02:00

554 lines
18 KiB
Python

import numpy as np
import pytest
import pandas as pd
from pandas import (
Index,
Series,
)
import pandas._testing as tm
class TestFloatNumericIndex:
@pytest.fixture(params=[np.float64, np.float32])
def dtype(self, request):
return request.param
@pytest.fixture
def simple_index(self, dtype):
values = np.arange(5, dtype=dtype)
return Index(values)
@pytest.fixture(
params=[
[1.5, 2, 3, 4, 5],
[0.0, 2.5, 5.0, 7.5, 10.0],
[5, 4, 3, 2, 1.5],
[10.0, 7.5, 5.0, 2.5, 0.0],
],
ids=["mixed", "float", "mixed_dec", "float_dec"],
)
def index(self, request, dtype):
return Index(request.param, dtype=dtype)
@pytest.fixture
def mixed_index(self, dtype):
return Index([1.5, 2, 3, 4, 5], dtype=dtype)
@pytest.fixture
def float_index(self, dtype):
return Index([0.0, 2.5, 5.0, 7.5, 10.0], dtype=dtype)
def test_repr_roundtrip(self, index):
tm.assert_index_equal(eval(repr(index)), index, exact=True)
def check_coerce(self, a, b, is_float_index=True):
assert a.equals(b)
tm.assert_index_equal(a, b, exact=False)
if is_float_index:
assert isinstance(b, Index)
else:
assert type(b) is Index
def test_constructor_from_list_no_dtype(self):
index = Index([1.5, 2.5, 3.5])
assert index.dtype == np.float64
def test_constructor(self, dtype):
index_cls = Index
# explicit construction
index = index_cls([1, 2, 3, 4, 5], dtype=dtype)
assert isinstance(index, index_cls)
assert index.dtype == dtype
expected = np.array([1, 2, 3, 4, 5], dtype=dtype)
tm.assert_numpy_array_equal(index.values, expected)
index = index_cls(np.array([1, 2, 3, 4, 5]), dtype=dtype)
assert isinstance(index, index_cls)
assert index.dtype == dtype
index = index_cls([1.0, 2, 3, 4, 5], dtype=dtype)
assert isinstance(index, index_cls)
assert index.dtype == dtype
index = index_cls(np.array([1.0, 2, 3, 4, 5]), dtype=dtype)
assert isinstance(index, index_cls)
assert index.dtype == dtype
index = index_cls([1.0, 2, 3, 4, 5], dtype=dtype)
assert isinstance(index, index_cls)
assert index.dtype == dtype
index = index_cls(np.array([1.0, 2, 3, 4, 5]), dtype=dtype)
assert isinstance(index, index_cls)
assert index.dtype == dtype
# nan handling
result = index_cls([np.nan, np.nan], dtype=dtype)
assert pd.isna(result.values).all()
result = index_cls(np.array([np.nan]), dtype=dtype)
assert pd.isna(result.values).all()
def test_constructor_invalid(self):
index_cls = Index
cls_name = index_cls.__name__
# invalid
msg = (
rf"{cls_name}\(\.\.\.\) must be called with a collection of "
r"some kind, 0\.0 was passed"
)
with pytest.raises(TypeError, match=msg):
index_cls(0.0)
def test_constructor_coerce(self, mixed_index, float_index):
self.check_coerce(mixed_index, Index([1.5, 2, 3, 4, 5]))
self.check_coerce(float_index, Index(np.arange(5) * 2.5))
result = Index(np.array(np.arange(5) * 2.5, dtype=object))
assert result.dtype == object # as of 2.0 to match Series
self.check_coerce(float_index, result.astype("float64"))
def test_constructor_explicit(self, mixed_index, float_index):
# these don't auto convert
self.check_coerce(
float_index, Index((np.arange(5) * 2.5), dtype=object), is_float_index=False
)
self.check_coerce(
mixed_index, Index([1.5, 2, 3, 4, 5], dtype=object), is_float_index=False
)
def test_type_coercion_fail(self, any_int_numpy_dtype):
# see gh-15832
msg = "Trying to coerce float values to integers"
with pytest.raises(ValueError, match=msg):
Index([1, 2, 3.5], dtype=any_int_numpy_dtype)
def test_equals_numeric(self):
index_cls = Index
idx = index_cls([1.0, 2.0])
assert idx.equals(idx)
assert idx.identical(idx)
idx2 = index_cls([1.0, 2.0])
assert idx.equals(idx2)
idx = index_cls([1.0, np.nan])
assert idx.equals(idx)
assert idx.identical(idx)
idx2 = index_cls([1.0, np.nan])
assert idx.equals(idx2)
@pytest.mark.parametrize(
"other",
(
Index([1, 2], dtype=np.int64),
Index([1.0, 2.0], dtype=object),
Index([1, 2], dtype=object),
),
)
def test_equals_numeric_other_index_type(self, other):
idx = Index([1.0, 2.0])
assert idx.equals(other)
assert other.equals(idx)
@pytest.mark.parametrize(
"vals",
[
pd.date_range("2016-01-01", periods=3),
pd.timedelta_range("1 Day", periods=3),
],
)
def test_lookups_datetimelike_values(self, vals, dtype):
# If we have datetime64 or timedelta64 values, make sure they are
# wrapped correctly GH#31163
ser = Series(vals, index=range(3, 6))
ser.index = ser.index.astype(dtype)
expected = vals[1]
result = ser[4.0]
assert isinstance(result, type(expected)) and result == expected
result = ser[4]
assert isinstance(result, type(expected)) and result == expected
result = ser.loc[4.0]
assert isinstance(result, type(expected)) and result == expected
result = ser.loc[4]
assert isinstance(result, type(expected)) and result == expected
result = ser.at[4.0]
assert isinstance(result, type(expected)) and result == expected
# GH#31329 .at[4] should cast to 4.0, matching .loc behavior
result = ser.at[4]
assert isinstance(result, type(expected)) and result == expected
result = ser.iloc[1]
assert isinstance(result, type(expected)) and result == expected
result = ser.iat[1]
assert isinstance(result, type(expected)) and result == expected
def test_doesnt_contain_all_the_things(self):
idx = Index([np.nan])
assert not idx.isin([0]).item()
assert not idx.isin([1]).item()
assert idx.isin([np.nan]).item()
def test_nan_multiple_containment(self):
index_cls = Index
idx = index_cls([1.0, np.nan])
tm.assert_numpy_array_equal(idx.isin([1.0]), np.array([True, False]))
tm.assert_numpy_array_equal(idx.isin([2.0, np.pi]), np.array([False, False]))
tm.assert_numpy_array_equal(idx.isin([np.nan]), np.array([False, True]))
tm.assert_numpy_array_equal(idx.isin([1.0, np.nan]), np.array([True, True]))
idx = index_cls([1.0, 2.0])
tm.assert_numpy_array_equal(idx.isin([np.nan]), np.array([False, False]))
def test_fillna_float64(self):
index_cls = Index
# GH 11343
idx = Index([1.0, np.nan, 3.0], dtype=float, name="x")
# can't downcast
exp = Index([1.0, 0.1, 3.0], name="x")
tm.assert_index_equal(idx.fillna(0.1), exp, exact=True)
# downcast
exp = index_cls([1.0, 2.0, 3.0], name="x")
tm.assert_index_equal(idx.fillna(2), exp)
# object
exp = Index([1.0, "obj", 3.0], name="x")
tm.assert_index_equal(idx.fillna("obj"), exp, exact=True)
def test_logical_compat(self, simple_index):
idx = simple_index
assert idx.all() == idx.values.all()
assert idx.any() == idx.values.any()
assert idx.all() == idx.to_series().all()
assert idx.any() == idx.to_series().any()
class TestNumericInt:
@pytest.fixture(params=[np.int64, np.int32, np.int16, np.int8, np.uint64])
def dtype(self, request):
return request.param
@pytest.fixture
def simple_index(self, dtype):
return Index(range(0, 20, 2), dtype=dtype)
def test_is_monotonic(self):
index_cls = Index
index = index_cls([1, 2, 3, 4])
assert index.is_monotonic_increasing is True
assert index.is_monotonic_increasing is True
assert index._is_strictly_monotonic_increasing is True
assert index.is_monotonic_decreasing is False
assert index._is_strictly_monotonic_decreasing is False
index = index_cls([4, 3, 2, 1])
assert index.is_monotonic_increasing is False
assert index._is_strictly_monotonic_increasing is False
assert index._is_strictly_monotonic_decreasing is True
index = index_cls([1])
assert index.is_monotonic_increasing is True
assert index.is_monotonic_increasing is True
assert index.is_monotonic_decreasing is True
assert index._is_strictly_monotonic_increasing is True
assert index._is_strictly_monotonic_decreasing is True
def test_is_strictly_monotonic(self):
index_cls = Index
index = index_cls([1, 1, 2, 3])
assert index.is_monotonic_increasing is True
assert index._is_strictly_monotonic_increasing is False
index = index_cls([3, 2, 1, 1])
assert index.is_monotonic_decreasing is True
assert index._is_strictly_monotonic_decreasing is False
index = index_cls([1, 1])
assert index.is_monotonic_increasing
assert index.is_monotonic_decreasing
assert not index._is_strictly_monotonic_increasing
assert not index._is_strictly_monotonic_decreasing
def test_logical_compat(self, simple_index):
idx = simple_index
assert idx.all() == idx.values.all()
assert idx.any() == idx.values.any()
def test_identical(self, simple_index, dtype):
index = simple_index
idx = Index(index.copy())
assert idx.identical(index)
same_values_different_type = Index(idx, dtype=object)
assert not idx.identical(same_values_different_type)
idx = index.astype(dtype=object)
idx = idx.rename("foo")
same_values = Index(idx, dtype=object)
assert same_values.identical(idx)
assert not idx.identical(index)
assert Index(same_values, name="foo", dtype=object).identical(idx)
assert not index.astype(dtype=object).identical(index.astype(dtype=dtype))
def test_cant_or_shouldnt_cast(self, dtype):
msg = r"invalid literal for int\(\) with base 10: 'foo'"
# can't
data = ["foo", "bar", "baz"]
with pytest.raises(ValueError, match=msg):
Index(data, dtype=dtype)
def test_view_index(self, simple_index):
index = simple_index
msg = "Passing a type in .*Index.view is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
index.view(Index)
def test_prevent_casting(self, simple_index):
index = simple_index
result = index.astype("O")
assert result.dtype == np.object_
class TestIntNumericIndex:
@pytest.fixture(params=[np.int64, np.int32, np.int16, np.int8])
def dtype(self, request):
return request.param
def test_constructor_from_list_no_dtype(self):
index = Index([1, 2, 3])
assert index.dtype == np.int64
def test_constructor(self, dtype):
index_cls = Index
# scalar raise Exception
msg = (
rf"{index_cls.__name__}\(\.\.\.\) must be called with a collection of some "
"kind, 5 was passed"
)
with pytest.raises(TypeError, match=msg):
index_cls(5)
# copy
# pass list, coerce fine
index = index_cls([-5, 0, 1, 2], dtype=dtype)
arr = index.values.copy()
new_index = index_cls(arr, copy=True)
tm.assert_index_equal(new_index, index, exact=True)
val = int(arr[0]) + 3000
# this should not change index
if dtype != np.int8:
# NEP 50 won't allow assignment that would overflow
arr[0] = val
assert new_index[0] != val
if dtype == np.int64:
# pass list, coerce fine
index = index_cls([-5, 0, 1, 2], dtype=dtype)
expected = Index([-5, 0, 1, 2], dtype=dtype)
tm.assert_index_equal(index, expected)
# from iterable
index = index_cls(iter([-5, 0, 1, 2]), dtype=dtype)
expected = index_cls([-5, 0, 1, 2], dtype=dtype)
tm.assert_index_equal(index, expected, exact=True)
# interpret list-like
expected = index_cls([5, 0], dtype=dtype)
for cls in [Index, index_cls]:
for idx in [
cls([5, 0], dtype=dtype),
cls(np.array([5, 0]), dtype=dtype),
cls(Series([5, 0]), dtype=dtype),
]:
tm.assert_index_equal(idx, expected)
def test_constructor_corner(self, dtype):
index_cls = Index
arr = np.array([1, 2, 3, 4], dtype=object)
index = index_cls(arr, dtype=dtype)
assert index.values.dtype == index.dtype
if dtype == np.int64:
without_dtype = Index(arr)
# as of 2.0 we do not infer a dtype when we get an object-dtype
# ndarray of numbers, matching Series behavior
assert without_dtype.dtype == object
tm.assert_index_equal(index, without_dtype.astype(np.int64))
# preventing casting
arr = np.array([1, "2", 3, "4"], dtype=object)
msg = "Trying to coerce float values to integers"
with pytest.raises(ValueError, match=msg):
index_cls(arr, dtype=dtype)
def test_constructor_coercion_signed_to_unsigned(
self,
any_unsigned_int_numpy_dtype,
):
# see gh-15832
msg = "|".join(
[
"Trying to coerce negative values to unsigned integers",
"The elements provided in the data cannot all be casted",
]
)
with pytest.raises(OverflowError, match=msg):
Index([-1], dtype=any_unsigned_int_numpy_dtype)
def test_constructor_np_signed(self, any_signed_int_numpy_dtype):
# GH#47475
scalar = np.dtype(any_signed_int_numpy_dtype).type(1)
result = Index([scalar])
expected = Index([1], dtype=any_signed_int_numpy_dtype)
tm.assert_index_equal(result, expected, exact=True)
def test_constructor_np_unsigned(self, any_unsigned_int_numpy_dtype):
# GH#47475
scalar = np.dtype(any_unsigned_int_numpy_dtype).type(1)
result = Index([scalar])
expected = Index([1], dtype=any_unsigned_int_numpy_dtype)
tm.assert_index_equal(result, expected, exact=True)
def test_coerce_list(self):
# coerce things
arr = Index([1, 2, 3, 4])
assert isinstance(arr, Index)
# but not if explicit dtype passed
arr = Index([1, 2, 3, 4], dtype=object)
assert type(arr) is Index
class TestFloat16Index:
# float 16 indexes not supported
# GH 49535
def test_constructor(self):
index_cls = Index
dtype = np.float16
msg = "float16 indexes are not supported"
# explicit construction
with pytest.raises(NotImplementedError, match=msg):
index_cls([1, 2, 3, 4, 5], dtype=dtype)
with pytest.raises(NotImplementedError, match=msg):
index_cls(np.array([1, 2, 3, 4, 5]), dtype=dtype)
with pytest.raises(NotImplementedError, match=msg):
index_cls([1.0, 2, 3, 4, 5], dtype=dtype)
with pytest.raises(NotImplementedError, match=msg):
index_cls(np.array([1.0, 2, 3, 4, 5]), dtype=dtype)
with pytest.raises(NotImplementedError, match=msg):
index_cls([1.0, 2, 3, 4, 5], dtype=dtype)
with pytest.raises(NotImplementedError, match=msg):
index_cls(np.array([1.0, 2, 3, 4, 5]), dtype=dtype)
# nan handling
with pytest.raises(NotImplementedError, match=msg):
index_cls([np.nan, np.nan], dtype=dtype)
with pytest.raises(NotImplementedError, match=msg):
index_cls(np.array([np.nan]), dtype=dtype)
@pytest.mark.parametrize(
"box",
[list, lambda x: np.array(x, dtype=object), lambda x: Index(x, dtype=object)],
)
def test_uint_index_does_not_convert_to_float64(box):
# https://github.com/pandas-dev/pandas/issues/28279
# https://github.com/pandas-dev/pandas/issues/28023
series = Series(
[0, 1, 2, 3, 4, 5],
index=[
7606741985629028552,
17876870360202815256,
17876870360202815256,
13106359306506049338,
8991270399732411471,
8991270399732411472,
],
)
result = series.loc[box([7606741985629028552, 17876870360202815256])]
expected = Index(
[7606741985629028552, 17876870360202815256, 17876870360202815256],
dtype="uint64",
)
tm.assert_index_equal(result.index, expected)
tm.assert_equal(result, series.iloc[:3])
def test_float64_index_equals():
# https://github.com/pandas-dev/pandas/issues/35217
float_index = Index([1.0, 2, 3])
string_index = Index(["1", "2", "3"])
result = float_index.equals(string_index)
assert result is False
result = string_index.equals(float_index)
assert result is False
def test_map_dtype_inference_unsigned_to_signed():
# GH#44609 cases where we don't retain dtype
idx = Index([1, 2, 3], dtype=np.uint64)
result = idx.map(lambda x: -x)
expected = Index([-1, -2, -3], dtype=np.int64)
tm.assert_index_equal(result, expected)
def test_map_dtype_inference_overflows():
# GH#44609 case where we have to upcast
idx = Index(np.array([1, 2, 3], dtype=np.int8))
result = idx.map(lambda x: x * 1000)
# TODO: we could plausibly try to infer down to int16 here
expected = Index([1000, 2000, 3000], dtype=np.int64)
tm.assert_index_equal(result, expected)
def test_view_to_datetimelike():
# GH#55710
idx = Index([1, 2, 3])
res = idx.view("m8[s]")
expected = pd.TimedeltaIndex(idx.values.view("m8[s]"))
tm.assert_index_equal(res, expected)
res2 = idx.view("m8[D]")
expected2 = idx.values.view("m8[D]")
tm.assert_numpy_array_equal(res2, expected2)
res3 = idx.view("M8[h]")
expected3 = idx.values.view("M8[h]")
tm.assert_numpy_array_equal(res3, expected3)