3RNN/Lib/site-packages/pandas/tests/series/methods/test_combine_first.py
2024-05-26 19:49:15 +02:00

150 lines
5.3 KiB
Python

from datetime import datetime
import numpy as np
import pandas as pd
from pandas import (
Period,
Series,
date_range,
period_range,
to_datetime,
)
import pandas._testing as tm
class TestCombineFirst:
def test_combine_first_period_datetime(self):
# GH#3367
didx = date_range(start="1950-01-31", end="1950-07-31", freq="ME")
pidx = period_range(start=Period("1950-1"), end=Period("1950-7"), freq="M")
# check to be consistent with DatetimeIndex
for idx in [didx, pidx]:
a = Series([1, np.nan, np.nan, 4, 5, np.nan, 7], index=idx)
b = Series([9, 9, 9, 9, 9, 9, 9], index=idx)
result = a.combine_first(b)
expected = Series([1, 9, 9, 4, 5, 9, 7], index=idx, dtype=np.float64)
tm.assert_series_equal(result, expected)
def test_combine_first_name(self, datetime_series):
result = datetime_series.combine_first(datetime_series[:5])
assert result.name == datetime_series.name
def test_combine_first(self):
values = np.arange(20, dtype=np.float64)
series = Series(values, index=np.arange(20, dtype=np.int64))
series_copy = series * 2
series_copy[::2] = np.nan
# nothing used from the input
combined = series.combine_first(series_copy)
tm.assert_series_equal(combined, series)
# Holes filled from input
combined = series_copy.combine_first(series)
assert np.isfinite(combined).all()
tm.assert_series_equal(combined[::2], series[::2])
tm.assert_series_equal(combined[1::2], series_copy[1::2])
# mixed types
index = pd.Index([str(i) for i in range(20)])
floats = Series(np.random.default_rng(2).standard_normal(20), index=index)
strings = Series([str(i) for i in range(10)], index=index[::2], dtype=object)
combined = strings.combine_first(floats)
tm.assert_series_equal(strings, combined.loc[index[::2]])
tm.assert_series_equal(floats[1::2].astype(object), combined.loc[index[1::2]])
# corner case
ser = Series([1.0, 2, 3], index=[0, 1, 2])
empty = Series([], index=[], dtype=object)
msg = "The behavior of array concatenation with empty entries is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
result = ser.combine_first(empty)
ser.index = ser.index.astype("O")
tm.assert_series_equal(ser, result)
def test_combine_first_dt64(self, unit):
s0 = to_datetime(Series(["2010", np.nan])).dt.as_unit(unit)
s1 = to_datetime(Series([np.nan, "2011"])).dt.as_unit(unit)
rs = s0.combine_first(s1)
xp = to_datetime(Series(["2010", "2011"])).dt.as_unit(unit)
tm.assert_series_equal(rs, xp)
s0 = to_datetime(Series(["2010", np.nan])).dt.as_unit(unit)
s1 = Series([np.nan, "2011"])
rs = s0.combine_first(s1)
xp = Series([datetime(2010, 1, 1), "2011"], dtype="datetime64[ns]")
tm.assert_series_equal(rs, xp)
def test_combine_first_dt_tz_values(self, tz_naive_fixture):
ser1 = Series(
pd.DatetimeIndex(["20150101", "20150102", "20150103"], tz=tz_naive_fixture),
name="ser1",
)
ser2 = Series(
pd.DatetimeIndex(["20160514", "20160515", "20160516"], tz=tz_naive_fixture),
index=[2, 3, 4],
name="ser2",
)
result = ser1.combine_first(ser2)
exp_vals = pd.DatetimeIndex(
["20150101", "20150102", "20150103", "20160515", "20160516"],
tz=tz_naive_fixture,
)
exp = Series(exp_vals, name="ser1")
tm.assert_series_equal(exp, result)
def test_combine_first_timezone_series_with_empty_series(self):
# GH 41800
time_index = date_range(
datetime(2021, 1, 1, 1),
datetime(2021, 1, 1, 10),
freq="h",
tz="Europe/Rome",
)
s1 = Series(range(10), index=time_index)
s2 = Series(index=time_index)
msg = "The behavior of array concatenation with empty entries is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
result = s1.combine_first(s2)
tm.assert_series_equal(result, s1)
def test_combine_first_preserves_dtype(self):
# GH51764
s1 = Series([1666880195890293744, 1666880195890293837])
s2 = Series([1, 2, 3])
result = s1.combine_first(s2)
expected = Series([1666880195890293744, 1666880195890293837, 3])
tm.assert_series_equal(result, expected)
def test_combine_mixed_timezone(self):
# GH 26283
uniform_tz = Series({pd.Timestamp("2019-05-01", tz="UTC"): 1.0})
multi_tz = Series(
{
pd.Timestamp("2019-05-01 01:00:00+0100", tz="Europe/London"): 2.0,
pd.Timestamp("2019-05-02", tz="UTC"): 3.0,
}
)
result = uniform_tz.combine_first(multi_tz)
expected = Series(
[1.0, 3.0],
index=pd.Index(
[
pd.Timestamp("2019-05-01 00:00:00+00:00", tz="UTC"),
pd.Timestamp("2019-05-02 00:00:00+00:00", tz="UTC"),
],
dtype="object",
),
)
tm.assert_series_equal(result, expected)