249 lines
8.2 KiB
Python
249 lines
8.2 KiB
Python
"""
|
|
Note: for naming purposes, most tests are title with as e.g. "test_nlargest_foo"
|
|
but are implicitly also testing nsmallest_foo.
|
|
"""
|
|
from itertools import product
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import pandas as pd
|
|
from pandas import Series
|
|
import pandas._testing as tm
|
|
|
|
main_dtypes = [
|
|
"datetime",
|
|
"datetimetz",
|
|
"timedelta",
|
|
"int8",
|
|
"int16",
|
|
"int32",
|
|
"int64",
|
|
"float32",
|
|
"float64",
|
|
"uint8",
|
|
"uint16",
|
|
"uint32",
|
|
"uint64",
|
|
]
|
|
|
|
|
|
@pytest.fixture
|
|
def s_main_dtypes():
|
|
"""
|
|
A DataFrame with many dtypes
|
|
|
|
* datetime
|
|
* datetimetz
|
|
* timedelta
|
|
* [u]int{8,16,32,64}
|
|
* float{32,64}
|
|
|
|
The columns are the name of the dtype.
|
|
"""
|
|
df = pd.DataFrame(
|
|
{
|
|
"datetime": pd.to_datetime(["2003", "2002", "2001", "2002", "2005"]),
|
|
"datetimetz": pd.to_datetime(
|
|
["2003", "2002", "2001", "2002", "2005"]
|
|
).tz_localize("US/Eastern"),
|
|
"timedelta": pd.to_timedelta(["3d", "2d", "1d", "2d", "5d"]),
|
|
}
|
|
)
|
|
|
|
for dtype in [
|
|
"int8",
|
|
"int16",
|
|
"int32",
|
|
"int64",
|
|
"float32",
|
|
"float64",
|
|
"uint8",
|
|
"uint16",
|
|
"uint32",
|
|
"uint64",
|
|
]:
|
|
df[dtype] = Series([3, 2, 1, 2, 5], dtype=dtype)
|
|
|
|
return df
|
|
|
|
|
|
@pytest.fixture(params=main_dtypes)
|
|
def s_main_dtypes_split(request, s_main_dtypes):
|
|
"""Each series in s_main_dtypes."""
|
|
return s_main_dtypes[request.param]
|
|
|
|
|
|
def assert_check_nselect_boundary(vals, dtype, method):
|
|
# helper function for 'test_boundary_{dtype}' tests
|
|
ser = Series(vals, dtype=dtype)
|
|
result = getattr(ser, method)(3)
|
|
expected_idxr = [0, 1, 2] if method == "nsmallest" else [3, 2, 1]
|
|
expected = ser.loc[expected_idxr]
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
class TestSeriesNLargestNSmallest:
|
|
@pytest.mark.parametrize(
|
|
"r",
|
|
[
|
|
Series([3.0, 2, 1, 2, "5"], dtype="object"),
|
|
Series([3.0, 2, 1, 2, 5], dtype="object"),
|
|
# not supported on some archs
|
|
# Series([3., 2, 1, 2, 5], dtype='complex256'),
|
|
Series([3.0, 2, 1, 2, 5], dtype="complex128"),
|
|
Series(list("abcde")),
|
|
Series(list("abcde"), dtype="category"),
|
|
],
|
|
)
|
|
def test_nlargest_error(self, r):
|
|
dt = r.dtype
|
|
msg = f"Cannot use method 'n(largest|smallest)' with dtype {dt}"
|
|
args = 2, len(r), 0, -1
|
|
methods = r.nlargest, r.nsmallest
|
|
for method, arg in product(methods, args):
|
|
with pytest.raises(TypeError, match=msg):
|
|
method(arg)
|
|
|
|
def test_nsmallest_nlargest(self, s_main_dtypes_split):
|
|
# float, int, datetime64 (use i8), timedelts64 (same),
|
|
# object that are numbers, object that are strings
|
|
ser = s_main_dtypes_split
|
|
|
|
tm.assert_series_equal(ser.nsmallest(2), ser.iloc[[2, 1]])
|
|
tm.assert_series_equal(ser.nsmallest(2, keep="last"), ser.iloc[[2, 3]])
|
|
|
|
empty = ser.iloc[0:0]
|
|
tm.assert_series_equal(ser.nsmallest(0), empty)
|
|
tm.assert_series_equal(ser.nsmallest(-1), empty)
|
|
tm.assert_series_equal(ser.nlargest(0), empty)
|
|
tm.assert_series_equal(ser.nlargest(-1), empty)
|
|
|
|
tm.assert_series_equal(ser.nsmallest(len(ser)), ser.sort_values())
|
|
tm.assert_series_equal(ser.nsmallest(len(ser) + 1), ser.sort_values())
|
|
tm.assert_series_equal(ser.nlargest(len(ser)), ser.iloc[[4, 0, 1, 3, 2]])
|
|
tm.assert_series_equal(ser.nlargest(len(ser) + 1), ser.iloc[[4, 0, 1, 3, 2]])
|
|
|
|
def test_nlargest_misc(self):
|
|
ser = Series([3.0, np.nan, 1, 2, 5])
|
|
result = ser.nlargest()
|
|
expected = ser.iloc[[4, 0, 3, 2, 1]]
|
|
tm.assert_series_equal(result, expected)
|
|
result = ser.nsmallest()
|
|
expected = ser.iloc[[2, 3, 0, 4, 1]]
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
msg = 'keep must be either "first", "last"'
|
|
with pytest.raises(ValueError, match=msg):
|
|
ser.nsmallest(keep="invalid")
|
|
with pytest.raises(ValueError, match=msg):
|
|
ser.nlargest(keep="invalid")
|
|
|
|
# GH#15297
|
|
ser = Series([1] * 5, index=[1, 2, 3, 4, 5])
|
|
expected_first = Series([1] * 3, index=[1, 2, 3])
|
|
expected_last = Series([1] * 3, index=[5, 4, 3])
|
|
|
|
result = ser.nsmallest(3)
|
|
tm.assert_series_equal(result, expected_first)
|
|
|
|
result = ser.nsmallest(3, keep="last")
|
|
tm.assert_series_equal(result, expected_last)
|
|
|
|
result = ser.nlargest(3)
|
|
tm.assert_series_equal(result, expected_first)
|
|
|
|
result = ser.nlargest(3, keep="last")
|
|
tm.assert_series_equal(result, expected_last)
|
|
|
|
@pytest.mark.parametrize("n", range(1, 5))
|
|
def test_nlargest_n(self, n):
|
|
# GH 13412
|
|
ser = Series([1, 4, 3, 2], index=[0, 0, 1, 1])
|
|
result = ser.nlargest(n)
|
|
expected = ser.sort_values(ascending=False).head(n)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = ser.nsmallest(n)
|
|
expected = ser.sort_values().head(n)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_nlargest_boundary_integer(self, nselect_method, any_int_numpy_dtype):
|
|
# GH#21426
|
|
dtype_info = np.iinfo(any_int_numpy_dtype)
|
|
min_val, max_val = dtype_info.min, dtype_info.max
|
|
vals = [min_val, min_val + 1, max_val - 1, max_val]
|
|
assert_check_nselect_boundary(vals, any_int_numpy_dtype, nselect_method)
|
|
|
|
def test_nlargest_boundary_float(self, nselect_method, float_numpy_dtype):
|
|
# GH#21426
|
|
dtype_info = np.finfo(float_numpy_dtype)
|
|
min_val, max_val = dtype_info.min, dtype_info.max
|
|
min_2nd, max_2nd = np.nextafter([min_val, max_val], 0, dtype=float_numpy_dtype)
|
|
vals = [min_val, min_2nd, max_2nd, max_val]
|
|
assert_check_nselect_boundary(vals, float_numpy_dtype, nselect_method)
|
|
|
|
@pytest.mark.parametrize("dtype", ["datetime64[ns]", "timedelta64[ns]"])
|
|
def test_nlargest_boundary_datetimelike(self, nselect_method, dtype):
|
|
# GH#21426
|
|
# use int64 bounds and +1 to min_val since true minimum is NaT
|
|
# (include min_val/NaT at end to maintain same expected_idxr)
|
|
dtype_info = np.iinfo("int64")
|
|
min_val, max_val = dtype_info.min, dtype_info.max
|
|
vals = [min_val + 1, min_val + 2, max_val - 1, max_val, min_val]
|
|
assert_check_nselect_boundary(vals, dtype, nselect_method)
|
|
|
|
def test_nlargest_duplicate_keep_all_ties(self):
|
|
# see GH#16818
|
|
ser = Series([10, 9, 8, 7, 7, 7, 7, 6])
|
|
result = ser.nlargest(4, keep="all")
|
|
expected = Series([10, 9, 8, 7, 7, 7, 7])
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = ser.nsmallest(2, keep="all")
|
|
expected = Series([6, 7, 7, 7, 7], index=[7, 3, 4, 5, 6])
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"data,expected", [([True, False], [True]), ([True, False, True, True], [True])]
|
|
)
|
|
def test_nlargest_boolean(self, data, expected):
|
|
# GH#26154 : ensure True > False
|
|
ser = Series(data)
|
|
result = ser.nlargest(1)
|
|
expected = Series(expected)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_nlargest_nullable(self, any_numeric_ea_dtype):
|
|
# GH#42816
|
|
dtype = any_numeric_ea_dtype
|
|
if dtype.startswith("UInt"):
|
|
# Can't cast from negative float to uint on some platforms
|
|
arr = np.random.default_rng(2).integers(1, 10, 10)
|
|
else:
|
|
arr = np.random.default_rng(2).standard_normal(10)
|
|
arr = arr.astype(dtype.lower(), copy=False)
|
|
|
|
ser = Series(arr.copy(), dtype=dtype)
|
|
ser[1] = pd.NA
|
|
result = ser.nlargest(5)
|
|
|
|
expected = (
|
|
Series(np.delete(arr, 1), index=ser.index.delete(1))
|
|
.nlargest(5)
|
|
.astype(dtype)
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_nsmallest_nan_when_keep_is_all(self):
|
|
# GH#46589
|
|
s = Series([1, 2, 3, 3, 3, None])
|
|
result = s.nsmallest(3, keep="all")
|
|
expected = Series([1.0, 2.0, 3.0, 3.0, 3.0])
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
s = Series([1, 2, None, None, None])
|
|
result = s.nsmallest(3, keep="all")
|
|
expected = Series([1, 2, None, None, None])
|
|
tm.assert_series_equal(result, expected)
|