3RNN/Lib/site-packages/pandas/tests/series/methods/test_unique.py
2024-05-26 19:49:15 +02:00

77 lines
2.2 KiB
Python

import numpy as np
from pandas import (
Categorical,
IntervalIndex,
Series,
date_range,
)
import pandas._testing as tm
class TestUnique:
def test_unique_uint64(self):
ser = Series([1, 2, 2**63, 2**63], dtype=np.uint64)
res = ser.unique()
exp = np.array([1, 2, 2**63], dtype=np.uint64)
tm.assert_numpy_array_equal(res, exp)
def test_unique_data_ownership(self):
# it works! GH#1807
Series(Series(["a", "c", "b"]).unique()).sort_values()
def test_unique(self):
# GH#714 also, dtype=float
ser = Series([1.2345] * 100)
ser[::2] = np.nan
result = ser.unique()
assert len(result) == 2
# explicit f4 dtype
ser = Series([1.2345] * 100, dtype="f4")
ser[::2] = np.nan
result = ser.unique()
assert len(result) == 2
def test_unique_nan_object_dtype(self):
# NAs in object arrays GH#714
ser = Series(["foo"] * 100, dtype="O")
ser[::2] = np.nan
result = ser.unique()
assert len(result) == 2
def test_unique_none(self):
# decision about None
ser = Series([1, 2, 3, None, None, None], dtype=object)
result = ser.unique()
expected = np.array([1, 2, 3, None], dtype=object)
tm.assert_numpy_array_equal(result, expected)
def test_unique_categorical(self):
# GH#18051
cat = Categorical([])
ser = Series(cat)
result = ser.unique()
tm.assert_categorical_equal(result, cat)
cat = Categorical([np.nan])
ser = Series(cat)
result = ser.unique()
tm.assert_categorical_equal(result, cat)
def test_tz_unique(self):
# GH 46128
dti1 = date_range("2016-01-01", periods=3)
ii1 = IntervalIndex.from_breaks(dti1)
ser1 = Series(ii1)
uni1 = ser1.unique()
tm.assert_interval_array_equal(ser1.array, uni1)
dti2 = date_range("2016-01-01", periods=3, tz="US/Eastern")
ii2 = IntervalIndex.from_breaks(dti2)
ser2 = Series(ii2)
uni2 = ser2.unique()
tm.assert_interval_array_equal(ser2.array, uni2)
assert uni1.dtype != uni2.dtype