3RNN/Lib/site-packages/scipy/optimize/tests/test__linprog_clean_inputs.py
2024-05-26 19:49:15 +02:00

311 lines
11 KiB
Python

"""
Unit test for Linear Programming via Simplex Algorithm.
"""
import numpy as np
from numpy.testing import assert_, assert_allclose, assert_equal
from pytest import raises as assert_raises
from scipy.optimize._linprog_util import _clean_inputs, _LPProblem
from scipy._lib._util import VisibleDeprecationWarning
from copy import deepcopy
from datetime import date
def test_aliasing():
"""
Test for ensuring that no objects referred to by `lp` attributes,
`c`, `A_ub`, `b_ub`, `A_eq`, `b_eq`, `bounds`, have been modified
by `_clean_inputs` as a side effect.
"""
lp = _LPProblem(
c=1,
A_ub=[[1]],
b_ub=[1],
A_eq=[[1]],
b_eq=[1],
bounds=(-np.inf, np.inf)
)
lp_copy = deepcopy(lp)
_clean_inputs(lp)
assert_(lp.c == lp_copy.c, "c modified by _clean_inputs")
assert_(lp.A_ub == lp_copy.A_ub, "A_ub modified by _clean_inputs")
assert_(lp.b_ub == lp_copy.b_ub, "b_ub modified by _clean_inputs")
assert_(lp.A_eq == lp_copy.A_eq, "A_eq modified by _clean_inputs")
assert_(lp.b_eq == lp_copy.b_eq, "b_eq modified by _clean_inputs")
assert_(lp.bounds == lp_copy.bounds, "bounds modified by _clean_inputs")
def test_aliasing2():
"""
Similar purpose as `test_aliasing` above.
"""
lp = _LPProblem(
c=np.array([1, 1]),
A_ub=np.array([[1, 1], [2, 2]]),
b_ub=np.array([[1], [1]]),
A_eq=np.array([[1, 1]]),
b_eq=np.array([1]),
bounds=[(-np.inf, np.inf), (None, 1)]
)
lp_copy = deepcopy(lp)
_clean_inputs(lp)
assert_allclose(lp.c, lp_copy.c, err_msg="c modified by _clean_inputs")
assert_allclose(lp.A_ub, lp_copy.A_ub, err_msg="A_ub modified by _clean_inputs")
assert_allclose(lp.b_ub, lp_copy.b_ub, err_msg="b_ub modified by _clean_inputs")
assert_allclose(lp.A_eq, lp_copy.A_eq, err_msg="A_eq modified by _clean_inputs")
assert_allclose(lp.b_eq, lp_copy.b_eq, err_msg="b_eq modified by _clean_inputs")
assert_(lp.bounds == lp_copy.bounds, "bounds modified by _clean_inputs")
def test_missing_inputs():
c = [1, 2]
A_ub = np.array([[1, 1], [2, 2]])
b_ub = np.array([1, 1])
A_eq = np.array([[1, 1], [2, 2]])
b_eq = np.array([1, 1])
assert_raises(TypeError, _clean_inputs)
assert_raises(TypeError, _clean_inputs, _LPProblem(c=None))
assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_ub=A_ub))
assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_ub=A_ub, b_ub=None))
assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, b_ub=b_ub))
assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_ub=None, b_ub=b_ub))
assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_eq=A_eq))
assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_eq=A_eq, b_eq=None))
assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, b_eq=b_eq))
assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_eq=None, b_eq=b_eq))
def test_too_many_dimensions():
cb = [1, 2, 3, 4]
A = np.random.rand(4, 4)
bad2D = [[1, 2], [3, 4]]
bad3D = np.random.rand(4, 4, 4)
assert_raises(ValueError, _clean_inputs, _LPProblem(c=bad2D, A_ub=A, b_ub=cb))
assert_raises(ValueError, _clean_inputs, _LPProblem(c=cb, A_ub=bad3D, b_ub=cb))
assert_raises(ValueError, _clean_inputs, _LPProblem(c=cb, A_ub=A, b_ub=bad2D))
assert_raises(ValueError, _clean_inputs, _LPProblem(c=cb, A_eq=bad3D, b_eq=cb))
assert_raises(ValueError, _clean_inputs, _LPProblem(c=cb, A_eq=A, b_eq=bad2D))
def test_too_few_dimensions():
bad = np.random.rand(4, 4).ravel()
cb = np.random.rand(4)
assert_raises(ValueError, _clean_inputs, _LPProblem(c=cb, A_ub=bad, b_ub=cb))
assert_raises(ValueError, _clean_inputs, _LPProblem(c=cb, A_eq=bad, b_eq=cb))
def test_inconsistent_dimensions():
m = 2
n = 4
c = [1, 2, 3, 4]
Agood = np.random.rand(m, n)
Abad = np.random.rand(m, n + 1)
bgood = np.random.rand(m)
bbad = np.random.rand(m + 1)
boundsbad = [(0, 1)] * (n + 1)
assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_ub=Abad, b_ub=bgood))
assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_ub=Agood, b_ub=bbad))
assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_eq=Abad, b_eq=bgood))
assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_eq=Agood, b_eq=bbad))
assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, bounds=boundsbad))
with np.testing.suppress_warnings() as sup:
sup.filter(VisibleDeprecationWarning, "Creating an ndarray from ragged")
assert_raises(ValueError, _clean_inputs,
_LPProblem(c=c, bounds=[[1, 2], [2, 3], [3, 4], [4, 5, 6]]))
def test_type_errors():
lp = _LPProblem(
c=[1, 2],
A_ub=np.array([[1, 1], [2, 2]]),
b_ub=np.array([1, 1]),
A_eq=np.array([[1, 1], [2, 2]]),
b_eq=np.array([1, 1]),
bounds=[(0, 1)]
)
bad = "hello"
assert_raises(TypeError, _clean_inputs, lp._replace(c=bad))
assert_raises(TypeError, _clean_inputs, lp._replace(A_ub=bad))
assert_raises(TypeError, _clean_inputs, lp._replace(b_ub=bad))
assert_raises(TypeError, _clean_inputs, lp._replace(A_eq=bad))
assert_raises(TypeError, _clean_inputs, lp._replace(b_eq=bad))
assert_raises(ValueError, _clean_inputs, lp._replace(bounds=bad))
assert_raises(ValueError, _clean_inputs, lp._replace(bounds="hi"))
assert_raises(ValueError, _clean_inputs, lp._replace(bounds=["hi"]))
assert_raises(ValueError, _clean_inputs, lp._replace(bounds=[("hi")]))
assert_raises(ValueError, _clean_inputs, lp._replace(bounds=[(1, "")]))
assert_raises(ValueError, _clean_inputs, lp._replace(bounds=[(1, 2), (1, "")]))
assert_raises(TypeError, _clean_inputs,
lp._replace(bounds=[(1, date(2020, 2, 29))]))
assert_raises(ValueError, _clean_inputs, lp._replace(bounds=[[[1, 2]]]))
def test_non_finite_errors():
lp = _LPProblem(
c=[1, 2],
A_ub=np.array([[1, 1], [2, 2]]),
b_ub=np.array([1, 1]),
A_eq=np.array([[1, 1], [2, 2]]),
b_eq=np.array([1, 1]),
bounds=[(0, 1)]
)
assert_raises(ValueError, _clean_inputs, lp._replace(c=[0, None]))
assert_raises(ValueError, _clean_inputs, lp._replace(c=[np.inf, 0]))
assert_raises(ValueError, _clean_inputs, lp._replace(c=[0, -np.inf]))
assert_raises(ValueError, _clean_inputs, lp._replace(c=[np.nan, 0]))
assert_raises(ValueError, _clean_inputs, lp._replace(A_ub=[[1, 2], [None, 1]]))
assert_raises(ValueError, _clean_inputs, lp._replace(b_ub=[np.inf, 1]))
assert_raises(ValueError, _clean_inputs, lp._replace(A_eq=[[1, 2], [1, -np.inf]]))
assert_raises(ValueError, _clean_inputs, lp._replace(b_eq=[1, np.nan]))
def test__clean_inputs1():
lp = _LPProblem(
c=[1, 2],
A_ub=[[1, 1], [2, 2]],
b_ub=[1, 1],
A_eq=[[1, 1], [2, 2]],
b_eq=[1, 1],
bounds=None
)
lp_cleaned = _clean_inputs(lp)
assert_allclose(lp_cleaned.c, np.array(lp.c))
assert_allclose(lp_cleaned.A_ub, np.array(lp.A_ub))
assert_allclose(lp_cleaned.b_ub, np.array(lp.b_ub))
assert_allclose(lp_cleaned.A_eq, np.array(lp.A_eq))
assert_allclose(lp_cleaned.b_eq, np.array(lp.b_eq))
assert_equal(lp_cleaned.bounds, [(0, np.inf)] * 2)
assert_(lp_cleaned.c.shape == (2,), "")
assert_(lp_cleaned.A_ub.shape == (2, 2), "")
assert_(lp_cleaned.b_ub.shape == (2,), "")
assert_(lp_cleaned.A_eq.shape == (2, 2), "")
assert_(lp_cleaned.b_eq.shape == (2,), "")
def test__clean_inputs2():
lp = _LPProblem(
c=1,
A_ub=[[1]],
b_ub=1,
A_eq=[[1]],
b_eq=1,
bounds=(0, 1)
)
lp_cleaned = _clean_inputs(lp)
assert_allclose(lp_cleaned.c, np.array(lp.c))
assert_allclose(lp_cleaned.A_ub, np.array(lp.A_ub))
assert_allclose(lp_cleaned.b_ub, np.array(lp.b_ub))
assert_allclose(lp_cleaned.A_eq, np.array(lp.A_eq))
assert_allclose(lp_cleaned.b_eq, np.array(lp.b_eq))
assert_equal(lp_cleaned.bounds, [(0, 1)])
assert_(lp_cleaned.c.shape == (1,), "")
assert_(lp_cleaned.A_ub.shape == (1, 1), "")
assert_(lp_cleaned.b_ub.shape == (1,), "")
assert_(lp_cleaned.A_eq.shape == (1, 1), "")
assert_(lp_cleaned.b_eq.shape == (1,), "")
def test__clean_inputs3():
lp = _LPProblem(
c=[[1, 2]],
A_ub=np.random.rand(2, 2),
b_ub=[[1], [2]],
A_eq=np.random.rand(2, 2),
b_eq=[[1], [2]],
bounds=[(0, 1)]
)
lp_cleaned = _clean_inputs(lp)
assert_allclose(lp_cleaned.c, np.array([1, 2]))
assert_allclose(lp_cleaned.b_ub, np.array([1, 2]))
assert_allclose(lp_cleaned.b_eq, np.array([1, 2]))
assert_equal(lp_cleaned.bounds, [(0, 1)] * 2)
assert_(lp_cleaned.c.shape == (2,), "")
assert_(lp_cleaned.b_ub.shape == (2,), "")
assert_(lp_cleaned.b_eq.shape == (2,), "")
def test_bad_bounds():
lp = _LPProblem(c=[1, 2])
assert_raises(ValueError, _clean_inputs, lp._replace(bounds=(1, 2, 2)))
assert_raises(ValueError, _clean_inputs, lp._replace(bounds=[(1, 2, 2)]))
with np.testing.suppress_warnings() as sup:
sup.filter(VisibleDeprecationWarning, "Creating an ndarray from ragged")
assert_raises(ValueError, _clean_inputs,
lp._replace(bounds=[(1, 2), (1, 2, 2)]))
assert_raises(ValueError, _clean_inputs,
lp._replace(bounds=[(1, 2), (1, 2), (1, 2)]))
lp = _LPProblem(c=[1, 2, 3, 4])
assert_raises(ValueError, _clean_inputs,
lp._replace(bounds=[(1, 2, 3, 4), (1, 2, 3, 4)]))
def test_good_bounds():
lp = _LPProblem(c=[1, 2])
lp_cleaned = _clean_inputs(lp) # lp.bounds is None by default
assert_equal(lp_cleaned.bounds, [(0, np.inf)] * 2)
lp_cleaned = _clean_inputs(lp._replace(bounds=[]))
assert_equal(lp_cleaned.bounds, [(0, np.inf)] * 2)
lp_cleaned = _clean_inputs(lp._replace(bounds=[[]]))
assert_equal(lp_cleaned.bounds, [(0, np.inf)] * 2)
lp_cleaned = _clean_inputs(lp._replace(bounds=(1, 2)))
assert_equal(lp_cleaned.bounds, [(1, 2)] * 2)
lp_cleaned = _clean_inputs(lp._replace(bounds=[(1, 2)]))
assert_equal(lp_cleaned.bounds, [(1, 2)] * 2)
lp_cleaned = _clean_inputs(lp._replace(bounds=[(1, None)]))
assert_equal(lp_cleaned.bounds, [(1, np.inf)] * 2)
lp_cleaned = _clean_inputs(lp._replace(bounds=[(None, 1)]))
assert_equal(lp_cleaned.bounds, [(-np.inf, 1)] * 2)
lp_cleaned = _clean_inputs(lp._replace(bounds=[(None, None), (-np.inf, None)]))
assert_equal(lp_cleaned.bounds, [(-np.inf, np.inf)] * 2)
lp = _LPProblem(c=[1, 2, 3, 4])
lp_cleaned = _clean_inputs(lp) # lp.bounds is None by default
assert_equal(lp_cleaned.bounds, [(0, np.inf)] * 4)
lp_cleaned = _clean_inputs(lp._replace(bounds=(1, 2)))
assert_equal(lp_cleaned.bounds, [(1, 2)] * 4)
lp_cleaned = _clean_inputs(lp._replace(bounds=[(1, 2)]))
assert_equal(lp_cleaned.bounds, [(1, 2)] * 4)
lp_cleaned = _clean_inputs(lp._replace(bounds=[(1, None)]))
assert_equal(lp_cleaned.bounds, [(1, np.inf)] * 4)
lp_cleaned = _clean_inputs(lp._replace(bounds=[(None, 1)]))
assert_equal(lp_cleaned.bounds, [(-np.inf, 1)] * 4)
lp_cleaned = _clean_inputs(lp._replace(bounds=[(None, None),
(-np.inf, None),
(None, np.inf),
(-np.inf, np.inf)]))
assert_equal(lp_cleaned.bounds, [(-np.inf, np.inf)] * 4)