62 lines
2.0 KiB
Python
62 lines
2.0 KiB
Python
import numpy as np
|
|
from numpy.testing import (assert_array_equal,
|
|
assert_array_almost_equal_nulp, assert_almost_equal)
|
|
from pytest import raises as assert_raises
|
|
|
|
from scipy.special import gammaln, multigammaln
|
|
|
|
|
|
class TestMultiGammaLn:
|
|
|
|
def test1(self):
|
|
# A test of the identity
|
|
# Gamma_1(a) = Gamma(a)
|
|
np.random.seed(1234)
|
|
a = np.abs(np.random.randn())
|
|
assert_array_equal(multigammaln(a, 1), gammaln(a))
|
|
|
|
def test2(self):
|
|
# A test of the identity
|
|
# Gamma_2(a) = sqrt(pi) * Gamma(a) * Gamma(a - 0.5)
|
|
a = np.array([2.5, 10.0])
|
|
result = multigammaln(a, 2)
|
|
expected = np.log(np.sqrt(np.pi)) + gammaln(a) + gammaln(a - 0.5)
|
|
assert_almost_equal(result, expected)
|
|
|
|
def test_bararg(self):
|
|
assert_raises(ValueError, multigammaln, 0.5, 1.2)
|
|
|
|
|
|
def _check_multigammaln_array_result(a, d):
|
|
# Test that the shape of the array returned by multigammaln
|
|
# matches the input shape, and that all the values match
|
|
# the value computed when multigammaln is called with a scalar.
|
|
result = multigammaln(a, d)
|
|
assert_array_equal(a.shape, result.shape)
|
|
a1 = a.ravel()
|
|
result1 = result.ravel()
|
|
for i in range(a.size):
|
|
assert_array_almost_equal_nulp(result1[i], multigammaln(a1[i], d))
|
|
|
|
|
|
def test_multigammaln_array_arg():
|
|
# Check that the array returned by multigammaln has the correct
|
|
# shape and contains the correct values. The cases have arrays
|
|
# with several different shapes.
|
|
# The cases include a regression test for ticket #1849
|
|
# (a = np.array([2.0]), an array with a single element).
|
|
np.random.seed(1234)
|
|
|
|
cases = [
|
|
# a, d
|
|
(np.abs(np.random.randn(3, 2)) + 5, 5),
|
|
(np.abs(np.random.randn(1, 2)) + 5, 5),
|
|
(np.arange(10.0, 18.0).reshape(2, 2, 2), 3),
|
|
(np.array([2.0]), 3),
|
|
(np.float64(2.0), 3),
|
|
]
|
|
|
|
for a, d in cases:
|
|
_check_multigammaln_array_result(a, d)
|
|
|