3RNN/Lib/site-packages/sklearn/_loss/loss.py
2024-05-26 19:49:15 +02:00

1179 lines
40 KiB
Python

"""
This module contains loss classes suitable for fitting.
It is not part of the public API.
Specific losses are used for regression, binary classification or multiclass
classification.
"""
# Goals:
# - Provide a common private module for loss functions/classes.
# - To be used in:
# - LogisticRegression
# - PoissonRegressor, GammaRegressor, TweedieRegressor
# - HistGradientBoostingRegressor, HistGradientBoostingClassifier
# - GradientBoostingRegressor, GradientBoostingClassifier
# - SGDRegressor, SGDClassifier
# - Replace link module of GLMs.
import numbers
import numpy as np
from scipy.special import xlogy
from ..utils import check_scalar
from ..utils.stats import _weighted_percentile
from ._loss import (
CyAbsoluteError,
CyExponentialLoss,
CyHalfBinomialLoss,
CyHalfGammaLoss,
CyHalfMultinomialLoss,
CyHalfPoissonLoss,
CyHalfSquaredError,
CyHalfTweedieLoss,
CyHalfTweedieLossIdentity,
CyHuberLoss,
CyPinballLoss,
)
from .link import (
HalfLogitLink,
IdentityLink,
Interval,
LogitLink,
LogLink,
MultinomialLogit,
)
# Note: The shape of raw_prediction for multiclass classifications are
# - GradientBoostingClassifier: (n_samples, n_classes)
# - HistGradientBoostingClassifier: (n_classes, n_samples)
#
# Note: Instead of inheritance like
#
# class BaseLoss(BaseLink, CyLossFunction):
# ...
#
# # Note: Naturally, we would inherit in the following order
# # class HalfSquaredError(IdentityLink, CyHalfSquaredError, BaseLoss)
# # But because of https://github.com/cython/cython/issues/4350 we set BaseLoss as
# # the last one. This, of course, changes the MRO.
# class HalfSquaredError(IdentityLink, CyHalfSquaredError, BaseLoss):
#
# we use composition. This way we improve maintainability by avoiding the above
# mentioned Cython edge case and have easier to understand code (which method calls
# which code).
class BaseLoss:
"""Base class for a loss function of 1-dimensional targets.
Conventions:
- y_true.shape = sample_weight.shape = (n_samples,)
- y_pred.shape = raw_prediction.shape = (n_samples,)
- If is_multiclass is true (multiclass classification), then
y_pred.shape = raw_prediction.shape = (n_samples, n_classes)
Note that this corresponds to the return value of decision_function.
y_true, y_pred, sample_weight and raw_prediction must either be all float64
or all float32.
gradient and hessian must be either both float64 or both float32.
Note that y_pred = link.inverse(raw_prediction).
Specific loss classes can inherit specific link classes to satisfy
BaseLink's abstractmethods.
Parameters
----------
sample_weight : {None, ndarray}
If sample_weight is None, the hessian might be constant.
n_classes : {None, int}
The number of classes for classification, else None.
Attributes
----------
closs: CyLossFunction
link : BaseLink
interval_y_true : Interval
Valid interval for y_true
interval_y_pred : Interval
Valid Interval for y_pred
differentiable : bool
Indicates whether or not loss function is differentiable in
raw_prediction everywhere.
need_update_leaves_values : bool
Indicates whether decision trees in gradient boosting need to uptade
leave values after having been fit to the (negative) gradients.
approx_hessian : bool
Indicates whether the hessian is approximated or exact. If,
approximated, it should be larger or equal to the exact one.
constant_hessian : bool
Indicates whether the hessian is one for this loss.
is_multiclass : bool
Indicates whether n_classes > 2 is allowed.
"""
# For gradient boosted decision trees:
# This variable indicates whether the loss requires the leaves values to
# be updated once the tree has been trained. The trees are trained to
# predict a Newton-Raphson step (see grower._finalize_leaf()). But for
# some losses (e.g. least absolute deviation) we need to adjust the tree
# values to account for the "line search" of the gradient descent
# procedure. See the original paper Greedy Function Approximation: A
# Gradient Boosting Machine by Friedman
# (https://statweb.stanford.edu/~jhf/ftp/trebst.pdf) for the theory.
differentiable = True
need_update_leaves_values = False
is_multiclass = False
def __init__(self, closs, link, n_classes=None):
self.closs = closs
self.link = link
self.approx_hessian = False
self.constant_hessian = False
self.n_classes = n_classes
self.interval_y_true = Interval(-np.inf, np.inf, False, False)
self.interval_y_pred = self.link.interval_y_pred
def in_y_true_range(self, y):
"""Return True if y is in the valid range of y_true.
Parameters
----------
y : ndarray
"""
return self.interval_y_true.includes(y)
def in_y_pred_range(self, y):
"""Return True if y is in the valid range of y_pred.
Parameters
----------
y : ndarray
"""
return self.interval_y_pred.includes(y)
def loss(
self,
y_true,
raw_prediction,
sample_weight=None,
loss_out=None,
n_threads=1,
):
"""Compute the pointwise loss value for each input.
Parameters
----------
y_true : C-contiguous array of shape (n_samples,)
Observed, true target values.
raw_prediction : C-contiguous array of shape (n_samples,) or array of \
shape (n_samples, n_classes)
Raw prediction values (in link space).
sample_weight : None or C-contiguous array of shape (n_samples,)
Sample weights.
loss_out : None or C-contiguous array of shape (n_samples,)
A location into which the result is stored. If None, a new array
might be created.
n_threads : int, default=1
Might use openmp thread parallelism.
Returns
-------
loss : array of shape (n_samples,)
Element-wise loss function.
"""
if loss_out is None:
loss_out = np.empty_like(y_true)
# Be graceful to shape (n_samples, 1) -> (n_samples,)
if raw_prediction.ndim == 2 and raw_prediction.shape[1] == 1:
raw_prediction = raw_prediction.squeeze(1)
self.closs.loss(
y_true=y_true,
raw_prediction=raw_prediction,
sample_weight=sample_weight,
loss_out=loss_out,
n_threads=n_threads,
)
return loss_out
def loss_gradient(
self,
y_true,
raw_prediction,
sample_weight=None,
loss_out=None,
gradient_out=None,
n_threads=1,
):
"""Compute loss and gradient w.r.t. raw_prediction for each input.
Parameters
----------
y_true : C-contiguous array of shape (n_samples,)
Observed, true target values.
raw_prediction : C-contiguous array of shape (n_samples,) or array of \
shape (n_samples, n_classes)
Raw prediction values (in link space).
sample_weight : None or C-contiguous array of shape (n_samples,)
Sample weights.
loss_out : None or C-contiguous array of shape (n_samples,)
A location into which the loss is stored. If None, a new array
might be created.
gradient_out : None or C-contiguous array of shape (n_samples,) or array \
of shape (n_samples, n_classes)
A location into which the gradient is stored. If None, a new array
might be created.
n_threads : int, default=1
Might use openmp thread parallelism.
Returns
-------
loss : array of shape (n_samples,)
Element-wise loss function.
gradient : array of shape (n_samples,) or (n_samples, n_classes)
Element-wise gradients.
"""
if loss_out is None:
if gradient_out is None:
loss_out = np.empty_like(y_true)
gradient_out = np.empty_like(raw_prediction)
else:
loss_out = np.empty_like(y_true, dtype=gradient_out.dtype)
elif gradient_out is None:
gradient_out = np.empty_like(raw_prediction, dtype=loss_out.dtype)
# Be graceful to shape (n_samples, 1) -> (n_samples,)
if raw_prediction.ndim == 2 and raw_prediction.shape[1] == 1:
raw_prediction = raw_prediction.squeeze(1)
if gradient_out.ndim == 2 and gradient_out.shape[1] == 1:
gradient_out = gradient_out.squeeze(1)
self.closs.loss_gradient(
y_true=y_true,
raw_prediction=raw_prediction,
sample_weight=sample_weight,
loss_out=loss_out,
gradient_out=gradient_out,
n_threads=n_threads,
)
return loss_out, gradient_out
def gradient(
self,
y_true,
raw_prediction,
sample_weight=None,
gradient_out=None,
n_threads=1,
):
"""Compute gradient of loss w.r.t raw_prediction for each input.
Parameters
----------
y_true : C-contiguous array of shape (n_samples,)
Observed, true target values.
raw_prediction : C-contiguous array of shape (n_samples,) or array of \
shape (n_samples, n_classes)
Raw prediction values (in link space).
sample_weight : None or C-contiguous array of shape (n_samples,)
Sample weights.
gradient_out : None or C-contiguous array of shape (n_samples,) or array \
of shape (n_samples, n_classes)
A location into which the result is stored. If None, a new array
might be created.
n_threads : int, default=1
Might use openmp thread parallelism.
Returns
-------
gradient : array of shape (n_samples,) or (n_samples, n_classes)
Element-wise gradients.
"""
if gradient_out is None:
gradient_out = np.empty_like(raw_prediction)
# Be graceful to shape (n_samples, 1) -> (n_samples,)
if raw_prediction.ndim == 2 and raw_prediction.shape[1] == 1:
raw_prediction = raw_prediction.squeeze(1)
if gradient_out.ndim == 2 and gradient_out.shape[1] == 1:
gradient_out = gradient_out.squeeze(1)
self.closs.gradient(
y_true=y_true,
raw_prediction=raw_prediction,
sample_weight=sample_weight,
gradient_out=gradient_out,
n_threads=n_threads,
)
return gradient_out
def gradient_hessian(
self,
y_true,
raw_prediction,
sample_weight=None,
gradient_out=None,
hessian_out=None,
n_threads=1,
):
"""Compute gradient and hessian of loss w.r.t raw_prediction.
Parameters
----------
y_true : C-contiguous array of shape (n_samples,)
Observed, true target values.
raw_prediction : C-contiguous array of shape (n_samples,) or array of \
shape (n_samples, n_classes)
Raw prediction values (in link space).
sample_weight : None or C-contiguous array of shape (n_samples,)
Sample weights.
gradient_out : None or C-contiguous array of shape (n_samples,) or array \
of shape (n_samples, n_classes)
A location into which the gradient is stored. If None, a new array
might be created.
hessian_out : None or C-contiguous array of shape (n_samples,) or array \
of shape (n_samples, n_classes)
A location into which the hessian is stored. If None, a new array
might be created.
n_threads : int, default=1
Might use openmp thread parallelism.
Returns
-------
gradient : arrays of shape (n_samples,) or (n_samples, n_classes)
Element-wise gradients.
hessian : arrays of shape (n_samples,) or (n_samples, n_classes)
Element-wise hessians.
"""
if gradient_out is None:
if hessian_out is None:
gradient_out = np.empty_like(raw_prediction)
hessian_out = np.empty_like(raw_prediction)
else:
gradient_out = np.empty_like(hessian_out)
elif hessian_out is None:
hessian_out = np.empty_like(gradient_out)
# Be graceful to shape (n_samples, 1) -> (n_samples,)
if raw_prediction.ndim == 2 and raw_prediction.shape[1] == 1:
raw_prediction = raw_prediction.squeeze(1)
if gradient_out.ndim == 2 and gradient_out.shape[1] == 1:
gradient_out = gradient_out.squeeze(1)
if hessian_out.ndim == 2 and hessian_out.shape[1] == 1:
hessian_out = hessian_out.squeeze(1)
self.closs.gradient_hessian(
y_true=y_true,
raw_prediction=raw_prediction,
sample_weight=sample_weight,
gradient_out=gradient_out,
hessian_out=hessian_out,
n_threads=n_threads,
)
return gradient_out, hessian_out
def __call__(self, y_true, raw_prediction, sample_weight=None, n_threads=1):
"""Compute the weighted average loss.
Parameters
----------
y_true : C-contiguous array of shape (n_samples,)
Observed, true target values.
raw_prediction : C-contiguous array of shape (n_samples,) or array of \
shape (n_samples, n_classes)
Raw prediction values (in link space).
sample_weight : None or C-contiguous array of shape (n_samples,)
Sample weights.
n_threads : int, default=1
Might use openmp thread parallelism.
Returns
-------
loss : float
Mean or averaged loss function.
"""
return np.average(
self.loss(
y_true=y_true,
raw_prediction=raw_prediction,
sample_weight=None,
loss_out=None,
n_threads=n_threads,
),
weights=sample_weight,
)
def fit_intercept_only(self, y_true, sample_weight=None):
"""Compute raw_prediction of an intercept-only model.
This can be used as initial estimates of predictions, i.e. before the
first iteration in fit.
Parameters
----------
y_true : array-like of shape (n_samples,)
Observed, true target values.
sample_weight : None or array of shape (n_samples,)
Sample weights.
Returns
-------
raw_prediction : numpy scalar or array of shape (n_classes,)
Raw predictions of an intercept-only model.
"""
# As default, take weighted average of the target over the samples
# axis=0 and then transform into link-scale (raw_prediction).
y_pred = np.average(y_true, weights=sample_weight, axis=0)
eps = 10 * np.finfo(y_pred.dtype).eps
if self.interval_y_pred.low == -np.inf:
a_min = None
elif self.interval_y_pred.low_inclusive:
a_min = self.interval_y_pred.low
else:
a_min = self.interval_y_pred.low + eps
if self.interval_y_pred.high == np.inf:
a_max = None
elif self.interval_y_pred.high_inclusive:
a_max = self.interval_y_pred.high
else:
a_max = self.interval_y_pred.high - eps
if a_min is None and a_max is None:
return self.link.link(y_pred)
else:
return self.link.link(np.clip(y_pred, a_min, a_max))
def constant_to_optimal_zero(self, y_true, sample_weight=None):
"""Calculate term dropped in loss.
With this term added, the loss of perfect predictions is zero.
"""
return np.zeros_like(y_true)
def init_gradient_and_hessian(self, n_samples, dtype=np.float64, order="F"):
"""Initialize arrays for gradients and hessians.
Unless hessians are constant, arrays are initialized with undefined values.
Parameters
----------
n_samples : int
The number of samples, usually passed to `fit()`.
dtype : {np.float64, np.float32}, default=np.float64
The dtype of the arrays gradient and hessian.
order : {'C', 'F'}, default='F'
Order of the arrays gradient and hessian. The default 'F' makes the arrays
contiguous along samples.
Returns
-------
gradient : C-contiguous array of shape (n_samples,) or array of shape \
(n_samples, n_classes)
Empty array (allocated but not initialized) to be used as argument
gradient_out.
hessian : C-contiguous array of shape (n_samples,), array of shape
(n_samples, n_classes) or shape (1,)
Empty (allocated but not initialized) array to be used as argument
hessian_out.
If constant_hessian is True (e.g. `HalfSquaredError`), the array is
initialized to ``1``.
"""
if dtype not in (np.float32, np.float64):
raise ValueError(
"Valid options for 'dtype' are np.float32 and np.float64. "
f"Got dtype={dtype} instead."
)
if self.is_multiclass:
shape = (n_samples, self.n_classes)
else:
shape = (n_samples,)
gradient = np.empty(shape=shape, dtype=dtype, order=order)
if self.constant_hessian:
# If the hessians are constant, we consider them equal to 1.
# - This is correct for HalfSquaredError
# - For AbsoluteError, hessians are actually 0, but they are
# always ignored anyway.
hessian = np.ones(shape=(1,), dtype=dtype)
else:
hessian = np.empty(shape=shape, dtype=dtype, order=order)
return gradient, hessian
# Note: Naturally, we would inherit in the following order
# class HalfSquaredError(IdentityLink, CyHalfSquaredError, BaseLoss)
# But because of https://github.com/cython/cython/issues/4350 we
# set BaseLoss as the last one. This, of course, changes the MRO.
class HalfSquaredError(BaseLoss):
"""Half squared error with identity link, for regression.
Domain:
y_true and y_pred all real numbers
Link:
y_pred = raw_prediction
For a given sample x_i, half squared error is defined as::
loss(x_i) = 0.5 * (y_true_i - raw_prediction_i)**2
The factor of 0.5 simplifies the computation of gradients and results in a
unit hessian (and is consistent with what is done in LightGBM). It is also
half the Normal distribution deviance.
"""
def __init__(self, sample_weight=None):
super().__init__(closs=CyHalfSquaredError(), link=IdentityLink())
self.constant_hessian = sample_weight is None
class AbsoluteError(BaseLoss):
"""Absolute error with identity link, for regression.
Domain:
y_true and y_pred all real numbers
Link:
y_pred = raw_prediction
For a given sample x_i, the absolute error is defined as::
loss(x_i) = |y_true_i - raw_prediction_i|
Note that the exact hessian = 0 almost everywhere (except at one point, therefore
differentiable = False). Optimization routines like in HGBT, however, need a
hessian > 0. Therefore, we assign 1.
"""
differentiable = False
need_update_leaves_values = True
def __init__(self, sample_weight=None):
super().__init__(closs=CyAbsoluteError(), link=IdentityLink())
self.approx_hessian = True
self.constant_hessian = sample_weight is None
def fit_intercept_only(self, y_true, sample_weight=None):
"""Compute raw_prediction of an intercept-only model.
This is the weighted median of the target, i.e. over the samples
axis=0.
"""
if sample_weight is None:
return np.median(y_true, axis=0)
else:
return _weighted_percentile(y_true, sample_weight, 50)
class PinballLoss(BaseLoss):
"""Quantile loss aka pinball loss, for regression.
Domain:
y_true and y_pred all real numbers
quantile in (0, 1)
Link:
y_pred = raw_prediction
For a given sample x_i, the pinball loss is defined as::
loss(x_i) = rho_{quantile}(y_true_i - raw_prediction_i)
rho_{quantile}(u) = u * (quantile - 1_{u<0})
= -u *(1 - quantile) if u < 0
u * quantile if u >= 0
Note: 2 * PinballLoss(quantile=0.5) equals AbsoluteError().
Note that the exact hessian = 0 almost everywhere (except at one point, therefore
differentiable = False). Optimization routines like in HGBT, however, need a
hessian > 0. Therefore, we assign 1.
Additional Attributes
---------------------
quantile : float
The quantile level of the quantile to be estimated. Must be in range (0, 1).
"""
differentiable = False
need_update_leaves_values = True
def __init__(self, sample_weight=None, quantile=0.5):
check_scalar(
quantile,
"quantile",
target_type=numbers.Real,
min_val=0,
max_val=1,
include_boundaries="neither",
)
super().__init__(
closs=CyPinballLoss(quantile=float(quantile)),
link=IdentityLink(),
)
self.approx_hessian = True
self.constant_hessian = sample_weight is None
def fit_intercept_only(self, y_true, sample_weight=None):
"""Compute raw_prediction of an intercept-only model.
This is the weighted median of the target, i.e. over the samples
axis=0.
"""
if sample_weight is None:
return np.percentile(y_true, 100 * self.closs.quantile, axis=0)
else:
return _weighted_percentile(
y_true, sample_weight, 100 * self.closs.quantile
)
class HuberLoss(BaseLoss):
"""Huber loss, for regression.
Domain:
y_true and y_pred all real numbers
quantile in (0, 1)
Link:
y_pred = raw_prediction
For a given sample x_i, the Huber loss is defined as::
loss(x_i) = 1/2 * abserr**2 if abserr <= delta
delta * (abserr - delta/2) if abserr > delta
abserr = |y_true_i - raw_prediction_i|
delta = quantile(abserr, self.quantile)
Note: HuberLoss(quantile=1) equals HalfSquaredError and HuberLoss(quantile=0)
equals delta * (AbsoluteError() - delta/2).
Additional Attributes
---------------------
quantile : float
The quantile level which defines the breaking point `delta` to distinguish
between absolute error and squared error. Must be in range (0, 1).
Reference
---------
.. [1] Friedman, J.H. (2001). :doi:`Greedy function approximation: A gradient
boosting machine <10.1214/aos/1013203451>`.
Annals of Statistics, 29, 1189-1232.
"""
differentiable = False
need_update_leaves_values = True
def __init__(self, sample_weight=None, quantile=0.9, delta=0.5):
check_scalar(
quantile,
"quantile",
target_type=numbers.Real,
min_val=0,
max_val=1,
include_boundaries="neither",
)
self.quantile = quantile # This is better stored outside of Cython.
super().__init__(
closs=CyHuberLoss(delta=float(delta)),
link=IdentityLink(),
)
self.approx_hessian = True
self.constant_hessian = False
def fit_intercept_only(self, y_true, sample_weight=None):
"""Compute raw_prediction of an intercept-only model.
This is the weighted median of the target, i.e. over the samples
axis=0.
"""
# See formula before algo 4 in Friedman (2001), but we apply it to y_true,
# not to the residual y_true - raw_prediction. An estimator like
# HistGradientBoostingRegressor might then call it on the residual, e.g.
# fit_intercept_only(y_true - raw_prediction).
if sample_weight is None:
median = np.percentile(y_true, 50, axis=0)
else:
median = _weighted_percentile(y_true, sample_weight, 50)
diff = y_true - median
term = np.sign(diff) * np.minimum(self.closs.delta, np.abs(diff))
return median + np.average(term, weights=sample_weight)
class HalfPoissonLoss(BaseLoss):
"""Half Poisson deviance loss with log-link, for regression.
Domain:
y_true in non-negative real numbers
y_pred in positive real numbers
Link:
y_pred = exp(raw_prediction)
For a given sample x_i, half the Poisson deviance is defined as::
loss(x_i) = y_true_i * log(y_true_i/exp(raw_prediction_i))
- y_true_i + exp(raw_prediction_i)
Half the Poisson deviance is actually the negative log-likelihood up to
constant terms (not involving raw_prediction) and simplifies the
computation of the gradients.
We also skip the constant term `y_true_i * log(y_true_i) - y_true_i`.
"""
def __init__(self, sample_weight=None):
super().__init__(closs=CyHalfPoissonLoss(), link=LogLink())
self.interval_y_true = Interval(0, np.inf, True, False)
def constant_to_optimal_zero(self, y_true, sample_weight=None):
term = xlogy(y_true, y_true) - y_true
if sample_weight is not None:
term *= sample_weight
return term
class HalfGammaLoss(BaseLoss):
"""Half Gamma deviance loss with log-link, for regression.
Domain:
y_true and y_pred in positive real numbers
Link:
y_pred = exp(raw_prediction)
For a given sample x_i, half Gamma deviance loss is defined as::
loss(x_i) = log(exp(raw_prediction_i)/y_true_i)
+ y_true/exp(raw_prediction_i) - 1
Half the Gamma deviance is actually proportional to the negative log-
likelihood up to constant terms (not involving raw_prediction) and
simplifies the computation of the gradients.
We also skip the constant term `-log(y_true_i) - 1`.
"""
def __init__(self, sample_weight=None):
super().__init__(closs=CyHalfGammaLoss(), link=LogLink())
self.interval_y_true = Interval(0, np.inf, False, False)
def constant_to_optimal_zero(self, y_true, sample_weight=None):
term = -np.log(y_true) - 1
if sample_weight is not None:
term *= sample_weight
return term
class HalfTweedieLoss(BaseLoss):
"""Half Tweedie deviance loss with log-link, for regression.
Domain:
y_true in real numbers for power <= 0
y_true in non-negative real numbers for 0 < power < 2
y_true in positive real numbers for 2 <= power
y_pred in positive real numbers
power in real numbers
Link:
y_pred = exp(raw_prediction)
For a given sample x_i, half Tweedie deviance loss with p=power is defined
as::
loss(x_i) = max(y_true_i, 0)**(2-p) / (1-p) / (2-p)
- y_true_i * exp(raw_prediction_i)**(1-p) / (1-p)
+ exp(raw_prediction_i)**(2-p) / (2-p)
Taking the limits for p=0, 1, 2 gives HalfSquaredError with a log link,
HalfPoissonLoss and HalfGammaLoss.
We also skip constant terms, but those are different for p=0, 1, 2.
Therefore, the loss is not continuous in `power`.
Note furthermore that although no Tweedie distribution exists for
0 < power < 1, it still gives a strictly consistent scoring function for
the expectation.
"""
def __init__(self, sample_weight=None, power=1.5):
super().__init__(
closs=CyHalfTweedieLoss(power=float(power)),
link=LogLink(),
)
if self.closs.power <= 0:
self.interval_y_true = Interval(-np.inf, np.inf, False, False)
elif self.closs.power < 2:
self.interval_y_true = Interval(0, np.inf, True, False)
else:
self.interval_y_true = Interval(0, np.inf, False, False)
def constant_to_optimal_zero(self, y_true, sample_weight=None):
if self.closs.power == 0:
return HalfSquaredError().constant_to_optimal_zero(
y_true=y_true, sample_weight=sample_weight
)
elif self.closs.power == 1:
return HalfPoissonLoss().constant_to_optimal_zero(
y_true=y_true, sample_weight=sample_weight
)
elif self.closs.power == 2:
return HalfGammaLoss().constant_to_optimal_zero(
y_true=y_true, sample_weight=sample_weight
)
else:
p = self.closs.power
term = np.power(np.maximum(y_true, 0), 2 - p) / (1 - p) / (2 - p)
if sample_weight is not None:
term *= sample_weight
return term
class HalfTweedieLossIdentity(BaseLoss):
"""Half Tweedie deviance loss with identity link, for regression.
Domain:
y_true in real numbers for power <= 0
y_true in non-negative real numbers for 0 < power < 2
y_true in positive real numbers for 2 <= power
y_pred in positive real numbers for power != 0
y_pred in real numbers for power = 0
power in real numbers
Link:
y_pred = raw_prediction
For a given sample x_i, half Tweedie deviance loss with p=power is defined
as::
loss(x_i) = max(y_true_i, 0)**(2-p) / (1-p) / (2-p)
- y_true_i * raw_prediction_i**(1-p) / (1-p)
+ raw_prediction_i**(2-p) / (2-p)
Note that the minimum value of this loss is 0.
Note furthermore that although no Tweedie distribution exists for
0 < power < 1, it still gives a strictly consistent scoring function for
the expectation.
"""
def __init__(self, sample_weight=None, power=1.5):
super().__init__(
closs=CyHalfTweedieLossIdentity(power=float(power)),
link=IdentityLink(),
)
if self.closs.power <= 0:
self.interval_y_true = Interval(-np.inf, np.inf, False, False)
elif self.closs.power < 2:
self.interval_y_true = Interval(0, np.inf, True, False)
else:
self.interval_y_true = Interval(0, np.inf, False, False)
if self.closs.power == 0:
self.interval_y_pred = Interval(-np.inf, np.inf, False, False)
else:
self.interval_y_pred = Interval(0, np.inf, False, False)
class HalfBinomialLoss(BaseLoss):
"""Half Binomial deviance loss with logit link, for binary classification.
This is also know as binary cross entropy, log-loss and logistic loss.
Domain:
y_true in [0, 1], i.e. regression on the unit interval
y_pred in (0, 1), i.e. boundaries excluded
Link:
y_pred = expit(raw_prediction)
For a given sample x_i, half Binomial deviance is defined as the negative
log-likelihood of the Binomial/Bernoulli distribution and can be expressed
as::
loss(x_i) = log(1 + exp(raw_pred_i)) - y_true_i * raw_pred_i
See The Elements of Statistical Learning, by Hastie, Tibshirani, Friedman,
section 4.4.1 (about logistic regression).
Note that the formulation works for classification, y = {0, 1}, as well as
logistic regression, y = [0, 1].
If you add `constant_to_optimal_zero` to the loss, you get half the
Bernoulli/binomial deviance.
More details: Inserting the predicted probability y_pred = expit(raw_prediction)
in the loss gives the well known::
loss(x_i) = - y_true_i * log(y_pred_i) - (1 - y_true_i) * log(1 - y_pred_i)
"""
def __init__(self, sample_weight=None):
super().__init__(
closs=CyHalfBinomialLoss(),
link=LogitLink(),
n_classes=2,
)
self.interval_y_true = Interval(0, 1, True, True)
def constant_to_optimal_zero(self, y_true, sample_weight=None):
# This is non-zero only if y_true is neither 0 nor 1.
term = xlogy(y_true, y_true) + xlogy(1 - y_true, 1 - y_true)
if sample_weight is not None:
term *= sample_weight
return term
def predict_proba(self, raw_prediction):
"""Predict probabilities.
Parameters
----------
raw_prediction : array of shape (n_samples,) or (n_samples, 1)
Raw prediction values (in link space).
Returns
-------
proba : array of shape (n_samples, 2)
Element-wise class probabilities.
"""
# Be graceful to shape (n_samples, 1) -> (n_samples,)
if raw_prediction.ndim == 2 and raw_prediction.shape[1] == 1:
raw_prediction = raw_prediction.squeeze(1)
proba = np.empty((raw_prediction.shape[0], 2), dtype=raw_prediction.dtype)
proba[:, 1] = self.link.inverse(raw_prediction)
proba[:, 0] = 1 - proba[:, 1]
return proba
class HalfMultinomialLoss(BaseLoss):
"""Categorical cross-entropy loss, for multiclass classification.
Domain:
y_true in {0, 1, 2, 3, .., n_classes - 1}
y_pred has n_classes elements, each element in (0, 1)
Link:
y_pred = softmax(raw_prediction)
Note: We assume y_true to be already label encoded. The inverse link is
softmax. But the full link function is the symmetric multinomial logit
function.
For a given sample x_i, the categorical cross-entropy loss is defined as
the negative log-likelihood of the multinomial distribution, it
generalizes the binary cross-entropy to more than 2 classes::
loss_i = log(sum(exp(raw_pred_{i, k}), k=0..n_classes-1))
- sum(y_true_{i, k} * raw_pred_{i, k}, k=0..n_classes-1)
See [1].
Note that for the hessian, we calculate only the diagonal part in the
classes: If the full hessian for classes k and l and sample i is H_i_k_l,
we calculate H_i_k_k, i.e. k=l.
Reference
---------
.. [1] :arxiv:`Simon, Noah, J. Friedman and T. Hastie.
"A Blockwise Descent Algorithm for Group-penalized Multiresponse and
Multinomial Regression".
<1311.6529>`
"""
is_multiclass = True
def __init__(self, sample_weight=None, n_classes=3):
super().__init__(
closs=CyHalfMultinomialLoss(),
link=MultinomialLogit(),
n_classes=n_classes,
)
self.interval_y_true = Interval(0, np.inf, True, False)
self.interval_y_pred = Interval(0, 1, False, False)
def in_y_true_range(self, y):
"""Return True if y is in the valid range of y_true.
Parameters
----------
y : ndarray
"""
return self.interval_y_true.includes(y) and np.all(y.astype(int) == y)
def fit_intercept_only(self, y_true, sample_weight=None):
"""Compute raw_prediction of an intercept-only model.
This is the softmax of the weighted average of the target, i.e. over
the samples axis=0.
"""
out = np.zeros(self.n_classes, dtype=y_true.dtype)
eps = np.finfo(y_true.dtype).eps
for k in range(self.n_classes):
out[k] = np.average(y_true == k, weights=sample_weight, axis=0)
out[k] = np.clip(out[k], eps, 1 - eps)
return self.link.link(out[None, :]).reshape(-1)
def predict_proba(self, raw_prediction):
"""Predict probabilities.
Parameters
----------
raw_prediction : array of shape (n_samples, n_classes)
Raw prediction values (in link space).
Returns
-------
proba : array of shape (n_samples, n_classes)
Element-wise class probabilities.
"""
return self.link.inverse(raw_prediction)
def gradient_proba(
self,
y_true,
raw_prediction,
sample_weight=None,
gradient_out=None,
proba_out=None,
n_threads=1,
):
"""Compute gradient and class probabilities fow raw_prediction.
Parameters
----------
y_true : C-contiguous array of shape (n_samples,)
Observed, true target values.
raw_prediction : array of shape (n_samples, n_classes)
Raw prediction values (in link space).
sample_weight : None or C-contiguous array of shape (n_samples,)
Sample weights.
gradient_out : None or array of shape (n_samples, n_classes)
A location into which the gradient is stored. If None, a new array
might be created.
proba_out : None or array of shape (n_samples, n_classes)
A location into which the class probabilities are stored. If None,
a new array might be created.
n_threads : int, default=1
Might use openmp thread parallelism.
Returns
-------
gradient : array of shape (n_samples, n_classes)
Element-wise gradients.
proba : array of shape (n_samples, n_classes)
Element-wise class probabilities.
"""
if gradient_out is None:
if proba_out is None:
gradient_out = np.empty_like(raw_prediction)
proba_out = np.empty_like(raw_prediction)
else:
gradient_out = np.empty_like(proba_out)
elif proba_out is None:
proba_out = np.empty_like(gradient_out)
self.closs.gradient_proba(
y_true=y_true,
raw_prediction=raw_prediction,
sample_weight=sample_weight,
gradient_out=gradient_out,
proba_out=proba_out,
n_threads=n_threads,
)
return gradient_out, proba_out
class ExponentialLoss(BaseLoss):
"""Exponential loss with (half) logit link, for binary classification.
This is also know as boosting loss.
Domain:
y_true in [0, 1], i.e. regression on the unit interval
y_pred in (0, 1), i.e. boundaries excluded
Link:
y_pred = expit(2 * raw_prediction)
For a given sample x_i, the exponential loss is defined as::
loss(x_i) = y_true_i * exp(-raw_pred_i)) + (1 - y_true_i) * exp(raw_pred_i)
See:
- J. Friedman, T. Hastie, R. Tibshirani.
"Additive logistic regression: a statistical view of boosting (With discussion
and a rejoinder by the authors)." Ann. Statist. 28 (2) 337 - 407, April 2000.
https://doi.org/10.1214/aos/1016218223
- A. Buja, W. Stuetzle, Y. Shen. (2005).
"Loss Functions for Binary Class Probability Estimation and Classification:
Structure and Applications."
Note that the formulation works for classification, y = {0, 1}, as well as
"exponential logistic" regression, y = [0, 1].
Note that this is a proper scoring rule, but without it's canonical link.
More details: Inserting the predicted probability
y_pred = expit(2 * raw_prediction) in the loss gives::
loss(x_i) = y_true_i * sqrt((1 - y_pred_i) / y_pred_i)
+ (1 - y_true_i) * sqrt(y_pred_i / (1 - y_pred_i))
"""
def __init__(self, sample_weight=None):
super().__init__(
closs=CyExponentialLoss(),
link=HalfLogitLink(),
n_classes=2,
)
self.interval_y_true = Interval(0, 1, True, True)
def constant_to_optimal_zero(self, y_true, sample_weight=None):
# This is non-zero only if y_true is neither 0 nor 1.
term = -2 * np.sqrt(y_true * (1 - y_true))
if sample_weight is not None:
term *= sample_weight
return term
def predict_proba(self, raw_prediction):
"""Predict probabilities.
Parameters
----------
raw_prediction : array of shape (n_samples,) or (n_samples, 1)
Raw prediction values (in link space).
Returns
-------
proba : array of shape (n_samples, 2)
Element-wise class probabilities.
"""
# Be graceful to shape (n_samples, 1) -> (n_samples,)
if raw_prediction.ndim == 2 and raw_prediction.shape[1] == 1:
raw_prediction = raw_prediction.squeeze(1)
proba = np.empty((raw_prediction.shape[0], 2), dtype=raw_prediction.dtype)
proba[:, 1] = self.link.inverse(raw_prediction)
proba[:, 0] = 1 - proba[:, 1]
return proba
_LOSSES = {
"squared_error": HalfSquaredError,
"absolute_error": AbsoluteError,
"pinball_loss": PinballLoss,
"huber_loss": HuberLoss,
"poisson_loss": HalfPoissonLoss,
"gamma_loss": HalfGammaLoss,
"tweedie_loss": HalfTweedieLoss,
"binomial_loss": HalfBinomialLoss,
"multinomial_loss": HalfMultinomialLoss,
"exponential_loss": ExponentialLoss,
}