3RNN/Lib/site-packages/sklearn/cluster/_hdbscan/_tree.pyx
2024-05-26 19:49:15 +02:00

800 lines
27 KiB
Cython

# Tree handling (condensing, finding stable clusters) for hdbscan
# Authors: Leland McInnes
# Copyright (c) 2015, Leland McInnes
# All rights reserved.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
# 3. Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software without
# specific prior written permission.
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
cimport numpy as cnp
from libc.math cimport isinf
import cython
import numpy as np
cnp.import_array()
cdef extern from "numpy/arrayobject.h":
intp_t * PyArray_SHAPE(cnp.PyArrayObject *)
cdef cnp.float64_t INFTY = np.inf
cdef cnp.intp_t NOISE = -1
HIERARCHY_dtype = np.dtype([
("left_node", np.intp),
("right_node", np.intp),
("value", np.float64),
("cluster_size", np.intp),
])
CONDENSED_dtype = np.dtype([
("parent", np.intp),
("child", np.intp),
("value", np.float64),
("cluster_size", np.intp),
])
cpdef tuple tree_to_labels(
const HIERARCHY_t[::1] single_linkage_tree,
cnp.intp_t min_cluster_size=10,
cluster_selection_method="eom",
bint allow_single_cluster=False,
cnp.float64_t cluster_selection_epsilon=0.0,
max_cluster_size=None,
):
cdef:
cnp.ndarray[CONDENSED_t, ndim=1, mode='c'] condensed_tree
cnp.ndarray[cnp.intp_t, ndim=1, mode='c'] labels
cnp.ndarray[cnp.float64_t, ndim=1, mode='c'] probabilities
condensed_tree = _condense_tree(single_linkage_tree, min_cluster_size)
labels, probabilities = _get_clusters(
condensed_tree,
_compute_stability(condensed_tree),
cluster_selection_method,
allow_single_cluster,
cluster_selection_epsilon,
max_cluster_size,
)
return (labels, probabilities)
cdef list bfs_from_hierarchy(
const HIERARCHY_t[::1] hierarchy,
cnp.intp_t bfs_root
):
"""
Perform a breadth first search on a tree in scipy hclust format.
"""
cdef list process_queue, next_queue, result
cdef cnp.intp_t n_samples = hierarchy.shape[0] + 1
cdef cnp.intp_t node
process_queue = [bfs_root]
result = []
while process_queue:
result.extend(process_queue)
# By construction, node i is formed by the union of nodes
# hierarchy[i - n_samples, 0] and hierarchy[i - n_samples, 1]
process_queue = [
x - n_samples
for x in process_queue
if x >= n_samples
]
if process_queue:
next_queue = []
for node in process_queue:
next_queue.extend(
[
hierarchy[node].left_node,
hierarchy[node].right_node,
]
)
process_queue = next_queue
return result
cpdef cnp.ndarray[CONDENSED_t, ndim=1, mode='c'] _condense_tree(
const HIERARCHY_t[::1] hierarchy,
cnp.intp_t min_cluster_size=10
):
"""Condense a tree according to a minimum cluster size. This is akin
to the runt pruning procedure of Stuetzle. The result is a much simpler
tree that is easier to visualize. We include extra information on the
lambda value at which individual points depart clusters for later
analysis and computation.
Parameters
----------
hierarchy : ndarray of shape (n_samples,), dtype=HIERARCHY_dtype
A single linkage hierarchy in scipy.cluster.hierarchy format.
min_cluster_size : int, optional (default 10)
The minimum size of clusters to consider. Clusters smaller than this
are pruned from the tree.
Returns
-------
condensed_tree : ndarray of shape (n_samples,), dtype=CONDENSED_dtype
Effectively an edgelist encoding a parent/child pair, along with a
value and the corresponding cluster_size in each row providing a tree
structure.
"""
cdef:
cnp.intp_t root = 2 * hierarchy.shape[0]
cnp.intp_t n_samples = hierarchy.shape[0] + 1
cnp.intp_t next_label = n_samples + 1
list result_list, node_list = bfs_from_hierarchy(hierarchy, root)
cnp.intp_t[::1] relabel
cnp.uint8_t[::1] ignore
cnp.intp_t node, sub_node, left, right
cnp.float64_t lambda_value, distance
cnp.intp_t left_count, right_count
HIERARCHY_t children
relabel = np.empty(root + 1, dtype=np.intp)
relabel[root] = n_samples
result_list = []
ignore = np.zeros(len(node_list), dtype=bool)
for node in node_list:
if ignore[node] or node < n_samples:
continue
children = hierarchy[node - n_samples]
left = children.left_node
right = children.right_node
distance = children.value
if distance > 0.0:
lambda_value = 1.0 / distance
else:
lambda_value = INFTY
if left >= n_samples:
left_count = hierarchy[left - n_samples].cluster_size
else:
left_count = 1
if right >= n_samples:
right_count = <cnp.intp_t> hierarchy[right - n_samples].cluster_size
else:
right_count = 1
if left_count >= min_cluster_size and right_count >= min_cluster_size:
relabel[left] = next_label
next_label += 1
result_list.append(
(relabel[node], relabel[left], lambda_value, left_count)
)
relabel[right] = next_label
next_label += 1
result_list.append(
(relabel[node], relabel[right], lambda_value, right_count)
)
elif left_count < min_cluster_size and right_count < min_cluster_size:
for sub_node in bfs_from_hierarchy(hierarchy, left):
if sub_node < n_samples:
result_list.append(
(relabel[node], sub_node, lambda_value, 1)
)
ignore[sub_node] = True
for sub_node in bfs_from_hierarchy(hierarchy, right):
if sub_node < n_samples:
result_list.append(
(relabel[node], sub_node, lambda_value, 1)
)
ignore[sub_node] = True
elif left_count < min_cluster_size:
relabel[right] = relabel[node]
for sub_node in bfs_from_hierarchy(hierarchy, left):
if sub_node < n_samples:
result_list.append(
(relabel[node], sub_node, lambda_value, 1)
)
ignore[sub_node] = True
else:
relabel[left] = relabel[node]
for sub_node in bfs_from_hierarchy(hierarchy, right):
if sub_node < n_samples:
result_list.append(
(relabel[node], sub_node, lambda_value, 1)
)
ignore[sub_node] = True
return np.array(result_list, dtype=CONDENSED_dtype)
cdef dict _compute_stability(
cnp.ndarray[CONDENSED_t, ndim=1, mode='c'] condensed_tree
):
cdef:
cnp.float64_t[::1] result, births
cnp.intp_t[:] parents = condensed_tree['parent']
cnp.intp_t parent, cluster_size, result_index, idx
cnp.float64_t lambda_val
CONDENSED_t condensed_node
cnp.intp_t largest_child = condensed_tree['child'].max()
cnp.intp_t smallest_cluster = np.min(parents)
cnp.intp_t num_clusters = np.max(parents) - smallest_cluster + 1
dict stability_dict = {}
largest_child = max(largest_child, smallest_cluster)
births = np.full(largest_child + 1, np.nan, dtype=np.float64)
for idx in range(PyArray_SHAPE(<cnp.PyArrayObject*> condensed_tree)[0]):
condensed_node = condensed_tree[idx]
births[condensed_node.child] = condensed_node.value
births[smallest_cluster] = 0.0
result = np.zeros(num_clusters, dtype=np.float64)
for idx in range(PyArray_SHAPE(<cnp.PyArrayObject*> condensed_tree)[0]):
condensed_node = condensed_tree[idx]
parent = condensed_node.parent
lambda_val = condensed_node.value
cluster_size = condensed_node.cluster_size
result_index = parent - smallest_cluster
result[result_index] += (lambda_val - births[parent]) * cluster_size
for idx in range(num_clusters):
stability_dict[idx + smallest_cluster] = result[idx]
return stability_dict
cdef list bfs_from_cluster_tree(
cnp.ndarray[CONDENSED_t, ndim=1, mode='c'] condensed_tree,
cnp.intp_t bfs_root
):
cdef:
list result = []
cnp.ndarray[cnp.intp_t, ndim=1] process_queue = (
np.array([bfs_root], dtype=np.intp)
)
cnp.ndarray[cnp.intp_t, ndim=1] children = condensed_tree['child']
cnp.intp_t[:] parents = condensed_tree['parent']
while len(process_queue) > 0:
result.extend(process_queue.tolist())
process_queue = children[np.isin(parents, process_queue)]
return result
cdef cnp.float64_t[::1] max_lambdas(cnp.ndarray[CONDENSED_t, ndim=1, mode='c'] condensed_tree):
cdef:
cnp.intp_t parent, current_parent, idx
cnp.float64_t lambda_val, max_lambda
cnp.float64_t[::1] deaths
cnp.intp_t largest_parent = condensed_tree['parent'].max()
deaths = np.zeros(largest_parent + 1, dtype=np.float64)
current_parent = condensed_tree[0].parent
max_lambda = condensed_tree[0].value
for idx in range(1, PyArray_SHAPE(<cnp.PyArrayObject*> condensed_tree)[0]):
parent = condensed_tree[idx].parent
lambda_val = condensed_tree[idx].value
if parent == current_parent:
max_lambda = max(max_lambda, lambda_val)
else:
deaths[current_parent] = max_lambda
current_parent = parent
max_lambda = lambda_val
deaths[current_parent] = max_lambda # value for last parent
return deaths
@cython.final
cdef class TreeUnionFind:
cdef cnp.intp_t[:, ::1] data
cdef cnp.uint8_t[::1] is_component
def __init__(self, size):
cdef cnp.intp_t idx
self.data = np.zeros((size, 2), dtype=np.intp)
for idx in range(size):
self.data[idx, 0] = idx
self.is_component = np.ones(size, dtype=np.uint8)
cdef void union(self, cnp.intp_t x, cnp.intp_t y):
cdef cnp.intp_t x_root = self.find(x)
cdef cnp.intp_t y_root = self.find(y)
if self.data[x_root, 1] < self.data[y_root, 1]:
self.data[x_root, 0] = y_root
elif self.data[x_root, 1] > self.data[y_root, 1]:
self.data[y_root, 0] = x_root
else:
self.data[y_root, 0] = x_root
self.data[x_root, 1] += 1
return
cdef cnp.intp_t find(self, cnp.intp_t x):
if self.data[x, 0] != x:
self.data[x, 0] = self.find(self.data[x, 0])
self.is_component[x] = False
return self.data[x, 0]
cpdef cnp.ndarray[cnp.intp_t, ndim=1, mode='c'] labelling_at_cut(
const HIERARCHY_t[::1] linkage,
cnp.float64_t cut,
cnp.intp_t min_cluster_size
):
"""Given a single linkage tree and a cut value, return the
vector of cluster labels at that cut value. This is useful
for Robust Single Linkage, and extracting DBSCAN results
from a single HDBSCAN run.
Parameters
----------
linkage : ndarray of shape (n_samples,), dtype=HIERARCHY_dtype
The single linkage tree in scipy.cluster.hierarchy format.
cut : double
The cut value at which to find clusters.
min_cluster_size : int
The minimum cluster size; clusters below this size at
the cut will be considered noise.
Returns
-------
labels : ndarray of shape (n_samples,)
The cluster labels for each point in the data set;
a label of -1 denotes a noise assignment.
"""
cdef:
cnp.intp_t n, cluster, root, n_samples, cluster_label
cnp.intp_t[::1] unique_labels, cluster_size
cnp.ndarray[cnp.intp_t, ndim=1, mode='c'] result
TreeUnionFind union_find
dict cluster_label_map
HIERARCHY_t node
root = 2 * linkage.shape[0]
n_samples = root // 2 + 1
result = np.empty(n_samples, dtype=np.intp)
union_find = TreeUnionFind(root + 1)
cluster = n_samples
for node in linkage:
if node.value < cut:
union_find.union(node.left_node, cluster)
union_find.union(node.right_node, cluster)
cluster += 1
cluster_size = np.zeros(cluster, dtype=np.intp)
for n in range(n_samples):
cluster = union_find.find(n)
cluster_size[cluster] += 1
result[n] = cluster
cluster_label_map = {-1: NOISE}
cluster_label = 0
unique_labels = np.unique(result)
for cluster in unique_labels:
if cluster_size[cluster] < min_cluster_size:
cluster_label_map[cluster] = NOISE
else:
cluster_label_map[cluster] = cluster_label
cluster_label += 1
for n in range(n_samples):
result[n] = cluster_label_map[result[n]]
return result
cpdef cnp.ndarray[cnp.intp_t, ndim=1, mode='c'] _do_labelling(
cnp.ndarray[CONDENSED_t, ndim=1, mode='c'] condensed_tree,
set clusters,
dict cluster_label_map,
cnp.intp_t allow_single_cluster,
cnp.float64_t cluster_selection_epsilon
):
"""Given a condensed tree, clusters and a labeling map for the clusters,
return an array containing the labels of each point based on cluster
membership. Note that this is where points may be marked as noisy
outliers. The determination of some points as noise is in large, single-
cluster datasets is controlled by the `allow_single_cluster` and
`cluster_selection_epsilon` parameters.
Parameters
----------
condensed_tree : ndarray of shape (n_samples,), dtype=CONDENSED_dtype
Effectively an edgelist encoding a parent/child pair, along with a
value and the corresponding cluster_size in each row providing a tree
structure.
clusters : set
The set of nodes corresponding to identified clusters. These node
values should be the same as those present in `condensed_tree`.
cluster_label_map : dict
A mapping from the node values present in `clusters` to the labels
which will be returned.
Returns
-------
labels : ndarray of shape (n_samples,)
The cluster labels for each point in the data set;
a label of -1 denotes a noise assignment.
"""
cdef:
cnp.intp_t root_cluster
cnp.ndarray[cnp.intp_t, ndim=1, mode='c'] result
cnp.ndarray[cnp.intp_t, ndim=1] parent_array, child_array
cnp.ndarray[cnp.float64_t, ndim=1] lambda_array
TreeUnionFind union_find
cnp.intp_t n, parent, child, cluster
cnp.float64_t threshold
child_array = condensed_tree['child']
parent_array = condensed_tree['parent']
lambda_array = condensed_tree['value']
root_cluster = np.min(parent_array)
result = np.empty(root_cluster, dtype=np.intp)
union_find = TreeUnionFind(np.max(parent_array) + 1)
for n in range(PyArray_SHAPE(<cnp.PyArrayObject*> condensed_tree)[0]):
child = child_array[n]
parent = parent_array[n]
if child not in clusters:
union_find.union(parent, child)
for n in range(root_cluster):
cluster = union_find.find(n)
label = NOISE
if cluster != root_cluster:
label = cluster_label_map[cluster]
elif len(clusters) == 1 and allow_single_cluster:
# There can only be one edge with this particular child hence this
# expression extracts a unique, scalar lambda value.
parent_lambda = lambda_array[child_array == n]
if cluster_selection_epsilon != 0.0:
threshold = 1 / cluster_selection_epsilon
else:
# The threshold should be calculated per-sample based on the
# largest lambda of any simbling node.
threshold = lambda_array[parent_array == cluster].max()
if parent_lambda >= threshold:
label = cluster_label_map[cluster]
result[n] = label
return result
cdef cnp.ndarray[cnp.float64_t, ndim=1, mode='c'] get_probabilities(
cnp.ndarray[CONDENSED_t, ndim=1, mode='c'] condensed_tree,
dict cluster_map,
cnp.intp_t[::1] labels
):
cdef:
cnp.ndarray[cnp.float64_t, ndim=1, mode='c'] result
cnp.float64_t[:] lambda_array
cnp.float64_t[::1] deaths
cnp.intp_t[:] child_array, parent_array
cnp.intp_t root_cluster, n, point, cluster_num, cluster
cnp.float64_t max_lambda, lambda_val
child_array = condensed_tree['child']
parent_array = condensed_tree['parent']
lambda_array = condensed_tree['value']
result = np.zeros(labels.shape[0])
deaths = max_lambdas(condensed_tree)
root_cluster = np.min(parent_array)
for n in range(PyArray_SHAPE(<cnp.PyArrayObject*> condensed_tree)[0]):
point = child_array[n]
if point >= root_cluster:
continue
cluster_num = labels[point]
if cluster_num == -1:
continue
cluster = cluster_map[cluster_num]
max_lambda = deaths[cluster]
if max_lambda == 0.0 or isinf(lambda_array[n]):
result[point] = 1.0
else:
lambda_val = min(lambda_array[n], max_lambda)
result[point] = lambda_val / max_lambda
return result
cpdef list recurse_leaf_dfs(
cnp.ndarray[CONDENSED_t, ndim=1, mode='c'] cluster_tree,
cnp.intp_t current_node
):
cdef cnp.intp_t[:] children
cdef cnp.intp_t child
children = cluster_tree[cluster_tree['parent'] == current_node]['child']
if children.shape[0] == 0:
return [current_node,]
else:
return sum([recurse_leaf_dfs(cluster_tree, child) for child in children], [])
cpdef list get_cluster_tree_leaves(cnp.ndarray[CONDENSED_t, ndim=1, mode='c'] cluster_tree):
cdef cnp.intp_t root
if PyArray_SHAPE(<cnp.PyArrayObject*> cluster_tree)[0] == 0:
return []
root = cluster_tree['parent'].min()
return recurse_leaf_dfs(cluster_tree, root)
cdef cnp.intp_t traverse_upwards(
cnp.ndarray[CONDENSED_t, ndim=1, mode='c'] cluster_tree,
cnp.float64_t cluster_selection_epsilon,
cnp.intp_t leaf,
cnp.intp_t allow_single_cluster
):
cdef cnp.intp_t root, parent
cdef cnp.float64_t parent_eps
root = cluster_tree['parent'].min()
parent = cluster_tree[cluster_tree['child'] == leaf]['parent']
if parent == root:
if allow_single_cluster:
return parent
else:
return leaf # return node closest to root
parent_eps = 1 / cluster_tree[cluster_tree['child'] == parent]['value']
if parent_eps > cluster_selection_epsilon:
return parent
else:
return traverse_upwards(
cluster_tree,
cluster_selection_epsilon,
parent,
allow_single_cluster
)
cdef set epsilon_search(
set leaves,
cnp.ndarray[CONDENSED_t, ndim=1, mode='c'] cluster_tree,
cnp.float64_t cluster_selection_epsilon,
cnp.intp_t allow_single_cluster
):
cdef:
list selected_clusters = list()
list processed = list()
cnp.intp_t leaf, epsilon_child, sub_node
cnp.float64_t eps
cnp.uint8_t[:] leaf_nodes
cnp.ndarray[cnp.intp_t, ndim=1] children = cluster_tree['child']
cnp.ndarray[cnp.float64_t, ndim=1] distances = cluster_tree['value']
for leaf in leaves:
leaf_nodes = children == leaf
eps = 1 / distances[leaf_nodes][0]
if eps < cluster_selection_epsilon:
if leaf not in processed:
epsilon_child = traverse_upwards(
cluster_tree,
cluster_selection_epsilon,
leaf,
allow_single_cluster
)
selected_clusters.append(epsilon_child)
for sub_node in bfs_from_cluster_tree(cluster_tree, epsilon_child):
if sub_node != epsilon_child:
processed.append(sub_node)
else:
selected_clusters.append(leaf)
return set(selected_clusters)
@cython.wraparound(True)
cdef tuple _get_clusters(
cnp.ndarray[CONDENSED_t, ndim=1, mode='c'] condensed_tree,
dict stability,
cluster_selection_method='eom',
cnp.uint8_t allow_single_cluster=False,
cnp.float64_t cluster_selection_epsilon=0.0,
max_cluster_size=None
):
"""Given a tree and stability dict, produce the cluster labels
(and probabilities) for a flat clustering based on the chosen
cluster selection method.
Parameters
----------
condensed_tree : ndarray of shape (n_samples,), dtype=CONDENSED_dtype
Effectively an edgelist encoding a parent/child pair, along with a
value and the corresponding cluster_size in each row providing a tree
structure.
stability : dict
A dictionary mapping cluster_ids to stability values
cluster_selection_method : string, optional (default 'eom')
The method of selecting clusters. The default is the
Excess of Mass algorithm specified by 'eom'. The alternate
option is 'leaf'.
allow_single_cluster : boolean, optional (default False)
Whether to allow a single cluster to be selected by the
Excess of Mass algorithm.
cluster_selection_epsilon: double, optional (default 0.0)
A distance threshold for cluster splits.
max_cluster_size: int, default=None
The maximum size for clusters located by the EOM clusterer. Can
be overridden by the cluster_selection_epsilon parameter in
rare cases.
Returns
-------
labels : ndarray of shape (n_samples,)
An integer array of cluster labels, with -1 denoting noise.
probabilities : ndarray (n_samples,)
The cluster membership strength of each sample.
stabilities : ndarray (n_clusters,)
The cluster coherence strengths of each cluster.
"""
cdef:
list node_list
cnp.ndarray[CONDENSED_t, ndim=1, mode='c'] cluster_tree
cnp.uint8_t[::1] child_selection
cnp.ndarray[cnp.intp_t, ndim=1, mode='c'] labels
dict is_cluster, cluster_sizes
cnp.float64_t subtree_stability
cnp.intp_t node, sub_node, cluster, n_samples
cnp.ndarray[cnp.float64_t, ndim=1, mode='c'] probs
# Assume clusters are ordered by numeric id equivalent to
# a topological sort of the tree; This is valid given the
# current implementation above, so don't change that ... or
# if you do, change this accordingly!
if allow_single_cluster:
node_list = sorted(stability.keys(), reverse=True)
else:
node_list = sorted(stability.keys(), reverse=True)[:-1]
# (exclude root)
cluster_tree = condensed_tree[condensed_tree['cluster_size'] > 1]
is_cluster = {cluster: True for cluster in node_list}
n_samples = np.max(condensed_tree[condensed_tree['cluster_size'] == 1]['child']) + 1
if max_cluster_size is None:
max_cluster_size = n_samples + 1 # Set to a value that will never be triggered
cluster_sizes = {
child: cluster_size for child, cluster_size
in zip(cluster_tree['child'], cluster_tree['cluster_size'])
}
if allow_single_cluster:
# Compute cluster size for the root node
cluster_sizes[node_list[-1]] = np.sum(
cluster_tree[cluster_tree['parent'] == node_list[-1]]['cluster_size'])
if cluster_selection_method == 'eom':
for node in node_list:
child_selection = (cluster_tree['parent'] == node)
subtree_stability = np.sum([
stability[child] for
child in cluster_tree['child'][child_selection]])
if subtree_stability > stability[node] or cluster_sizes[node] > max_cluster_size:
is_cluster[node] = False
stability[node] = subtree_stability
else:
for sub_node in bfs_from_cluster_tree(cluster_tree, node):
if sub_node != node:
is_cluster[sub_node] = False
if cluster_selection_epsilon != 0.0 and PyArray_SHAPE(<cnp.PyArrayObject*> cluster_tree)[0] > 0:
eom_clusters = [c for c in is_cluster if is_cluster[c]]
selected_clusters = []
# first check if eom_clusters only has root node, which skips epsilon check.
if (len(eom_clusters) == 1 and eom_clusters[0] == cluster_tree['parent'].min()):
if allow_single_cluster:
selected_clusters = eom_clusters
else:
selected_clusters = epsilon_search(
set(eom_clusters),
cluster_tree,
cluster_selection_epsilon,
allow_single_cluster
)
for c in is_cluster:
if c in selected_clusters:
is_cluster[c] = True
else:
is_cluster[c] = False
elif cluster_selection_method == 'leaf':
leaves = set(get_cluster_tree_leaves(cluster_tree))
if len(leaves) == 0:
for c in is_cluster:
is_cluster[c] = False
is_cluster[condensed_tree['parent'].min()] = True
if cluster_selection_epsilon != 0.0:
selected_clusters = epsilon_search(
leaves,
cluster_tree,
cluster_selection_epsilon,
allow_single_cluster
)
else:
selected_clusters = leaves
for c in is_cluster:
if c in selected_clusters:
is_cluster[c] = True
else:
is_cluster[c] = False
clusters = set([c for c in is_cluster if is_cluster[c]])
cluster_map = {c: n for n, c in enumerate(sorted(list(clusters)))}
reverse_cluster_map = {n: c for c, n in cluster_map.items()}
labels = _do_labelling(
condensed_tree,
clusters,
cluster_map,
allow_single_cluster,
cluster_selection_epsilon
)
probs = get_probabilities(condensed_tree, reverse_cluster_map, labels)
return (labels, probs)