3RNN/Lib/site-packages/sklearn/cluster/_k_means_lloyd.pyx
2024-05-26 19:49:15 +02:00

421 lines
16 KiB
Cython

# Licence: BSD 3 clause
from cython cimport floating
from cython.parallel import prange, parallel
from libc.stdlib cimport malloc, calloc, free
from libc.string cimport memset
from libc.float cimport DBL_MAX, FLT_MAX
from ..utils._openmp_helpers cimport omp_lock_t
from ..utils._openmp_helpers cimport omp_init_lock
from ..utils._openmp_helpers cimport omp_destroy_lock
from ..utils._openmp_helpers cimport omp_set_lock
from ..utils._openmp_helpers cimport omp_unset_lock
from ..utils.extmath import row_norms
from ..utils._cython_blas cimport _gemm
from ..utils._cython_blas cimport RowMajor, Trans, NoTrans
from ._k_means_common import CHUNK_SIZE
from ._k_means_common cimport _relocate_empty_clusters_dense
from ._k_means_common cimport _relocate_empty_clusters_sparse
from ._k_means_common cimport _average_centers, _center_shift
def lloyd_iter_chunked_dense(
const floating[:, ::1] X, # IN
const floating[::1] sample_weight, # IN
const floating[:, ::1] centers_old, # IN
floating[:, ::1] centers_new, # OUT
floating[::1] weight_in_clusters, # OUT
int[::1] labels, # OUT
floating[::1] center_shift, # OUT
int n_threads,
bint update_centers=True):
"""Single iteration of K-means lloyd algorithm with dense input.
Update labels and centers (inplace), for one iteration, distributed
over data chunks.
Parameters
----------
X : ndarray of shape (n_samples, n_features), dtype=floating
The observations to cluster.
sample_weight : ndarray of shape (n_samples,), dtype=floating
The weights for each observation in X.
centers_old : ndarray of shape (n_clusters, n_features), dtype=floating
Centers before previous iteration, placeholder for the centers after
previous iteration.
centers_new : ndarray of shape (n_clusters, n_features), dtype=floating
Centers after previous iteration, placeholder for the new centers
computed during this iteration. `centers_new` can be `None` if
`update_centers` is False.
weight_in_clusters : ndarray of shape (n_clusters,), dtype=floating
Placeholder for the sums of the weights of every observation assigned
to each center. `weight_in_clusters` can be `None` if `update_centers`
is False.
labels : ndarray of shape (n_samples,), dtype=int
labels assignment.
center_shift : ndarray of shape (n_clusters,), dtype=floating
Distance between old and new centers.
n_threads : int
The number of threads to be used by openmp.
update_centers : bool
- If True, the labels and the new centers will be computed, i.e. runs
the E-step and the M-step of the algorithm.
- If False, only the labels will be computed, i.e runs the E-step of
the algorithm. This is useful especially when calling predict on a
fitted model.
"""
cdef:
int n_samples = X.shape[0]
int n_features = X.shape[1]
int n_clusters = centers_old.shape[0]
if n_samples == 0:
# An empty array was passed, do nothing and return early (before
# attempting to compute n_chunks). This can typically happen when
# calling the prediction function of a bisecting k-means model with a
# large fraction of outiers.
return
cdef:
# hard-coded number of samples per chunk. Appeared to be close to
# optimal in all situations.
int n_samples_chunk = CHUNK_SIZE if n_samples > CHUNK_SIZE else n_samples
int n_chunks = n_samples // n_samples_chunk
int n_samples_rem = n_samples % n_samples_chunk
int chunk_idx
int start, end
int j, k
floating[::1] centers_squared_norms = row_norms(centers_old, squared=True)
floating *centers_new_chunk
floating *weight_in_clusters_chunk
floating *pairwise_distances_chunk
omp_lock_t lock
# count remainder chunk in total number of chunks
n_chunks += n_samples != n_chunks * n_samples_chunk
# number of threads should not be bigger than number of chunks
n_threads = min(n_threads, n_chunks)
if update_centers:
memset(&centers_new[0, 0], 0, n_clusters * n_features * sizeof(floating))
memset(&weight_in_clusters[0], 0, n_clusters * sizeof(floating))
omp_init_lock(&lock)
with nogil, parallel(num_threads=n_threads):
# thread local buffers
centers_new_chunk = <floating*> calloc(n_clusters * n_features, sizeof(floating))
weight_in_clusters_chunk = <floating*> calloc(n_clusters, sizeof(floating))
pairwise_distances_chunk = <floating*> malloc(n_samples_chunk * n_clusters * sizeof(floating))
for chunk_idx in prange(n_chunks, schedule='static'):
start = chunk_idx * n_samples_chunk
if chunk_idx == n_chunks - 1 and n_samples_rem > 0:
end = start + n_samples_rem
else:
end = start + n_samples_chunk
_update_chunk_dense(
X[start: end],
sample_weight[start: end],
centers_old,
centers_squared_norms,
labels[start: end],
centers_new_chunk,
weight_in_clusters_chunk,
pairwise_distances_chunk,
update_centers)
# reduction from local buffers.
if update_centers:
# The lock is necessary to avoid race conditions when aggregating
# info from different thread-local buffers.
omp_set_lock(&lock)
for j in range(n_clusters):
weight_in_clusters[j] += weight_in_clusters_chunk[j]
for k in range(n_features):
centers_new[j, k] += centers_new_chunk[j * n_features + k]
omp_unset_lock(&lock)
free(centers_new_chunk)
free(weight_in_clusters_chunk)
free(pairwise_distances_chunk)
if update_centers:
omp_destroy_lock(&lock)
_relocate_empty_clusters_dense(
X, sample_weight, centers_old, centers_new, weight_in_clusters, labels
)
_average_centers(centers_new, weight_in_clusters)
_center_shift(centers_old, centers_new, center_shift)
cdef void _update_chunk_dense(
const floating[:, ::1] X, # IN
const floating[::1] sample_weight, # IN
const floating[:, ::1] centers_old, # IN
const floating[::1] centers_squared_norms, # IN
int[::1] labels, # OUT
floating *centers_new, # OUT
floating *weight_in_clusters, # OUT
floating *pairwise_distances, # OUT
bint update_centers) noexcept nogil:
"""K-means combined EM step for one dense data chunk.
Compute the partial contribution of a single data chunk to the labels and
centers.
"""
cdef:
int n_samples = labels.shape[0]
int n_clusters = centers_old.shape[0]
int n_features = centers_old.shape[1]
floating sq_dist, min_sq_dist
int i, j, k, label
# Instead of computing the full pairwise squared distances matrix,
# ||X - C||² = ||X||² - 2 X.C^T + ||C||², we only need to store
# the - 2 X.C^T + ||C||² term since the argmin for a given sample only
# depends on the centers.
# pairwise_distances = ||C||²
for i in range(n_samples):
for j in range(n_clusters):
pairwise_distances[i * n_clusters + j] = centers_squared_norms[j]
# pairwise_distances += -2 * X.dot(C.T)
_gemm(RowMajor, NoTrans, Trans, n_samples, n_clusters, n_features,
-2.0, &X[0, 0], n_features, &centers_old[0, 0], n_features,
1.0, pairwise_distances, n_clusters)
for i in range(n_samples):
min_sq_dist = pairwise_distances[i * n_clusters]
label = 0
for j in range(1, n_clusters):
sq_dist = pairwise_distances[i * n_clusters + j]
if sq_dist < min_sq_dist:
min_sq_dist = sq_dist
label = j
labels[i] = label
if update_centers:
weight_in_clusters[label] += sample_weight[i]
for k in range(n_features):
centers_new[label * n_features + k] += X[i, k] * sample_weight[i]
def lloyd_iter_chunked_sparse(
X, # IN
const floating[::1] sample_weight, # IN
const floating[:, ::1] centers_old, # IN
floating[:, ::1] centers_new, # OUT
floating[::1] weight_in_clusters, # OUT
int[::1] labels, # OUT
floating[::1] center_shift, # OUT
int n_threads,
bint update_centers=True):
"""Single iteration of K-means lloyd algorithm with sparse input.
Update labels and centers (inplace), for one iteration, distributed
over data chunks.
Parameters
----------
X : sparse matrix of shape (n_samples, n_features), dtype=floating
The observations to cluster. Must be in CSR format.
sample_weight : ndarray of shape (n_samples,), dtype=floating
The weights for each observation in X.
centers_old : ndarray of shape (n_clusters, n_features), dtype=floating
Centers before previous iteration, placeholder for the centers after
previous iteration.
centers_new : ndarray of shape (n_clusters, n_features), dtype=floating
Centers after previous iteration, placeholder for the new centers
computed during this iteration. `centers_new` can be `None` if
`update_centers` is False.
weight_in_clusters : ndarray of shape (n_clusters,), dtype=floating
Placeholder for the sums of the weights of every observation assigned
to each center. `weight_in_clusters` can be `None` if `update_centers`
is False.
labels : ndarray of shape (n_samples,), dtype=int
labels assignment.
center_shift : ndarray of shape (n_clusters,), dtype=floating
Distance between old and new centers.
n_threads : int
The number of threads to be used by openmp.
update_centers : bool
- If True, the labels and the new centers will be computed, i.e. runs
the E-step and the M-step of the algorithm.
- If False, only the labels will be computed, i.e runs the E-step of
the algorithm. This is useful especially when calling predict on a
fitted model.
"""
cdef:
int n_samples = X.shape[0]
int n_features = X.shape[1]
int n_clusters = centers_old.shape[0]
if n_samples == 0:
# An empty array was passed, do nothing and return early (before
# attempting to compute n_chunks). This can typically happen when
# calling the prediction function of a bisecting k-means model with a
# large fraction of outiers.
return
cdef:
# Choose same as for dense. Does not have the same impact since with
# sparse data the pairwise distances matrix is not precomputed.
# However, splitting in chunks is necessary to get parallelism.
int n_samples_chunk = CHUNK_SIZE if n_samples > CHUNK_SIZE else n_samples
int n_chunks = n_samples // n_samples_chunk
int n_samples_rem = n_samples % n_samples_chunk
int chunk_idx
int start = 0, end = 0
int j, k
floating[::1] X_data = X.data
int[::1] X_indices = X.indices
int[::1] X_indptr = X.indptr
floating[::1] centers_squared_norms = row_norms(centers_old, squared=True)
floating *centers_new_chunk
floating *weight_in_clusters_chunk
omp_lock_t lock
# count remainder chunk in total number of chunks
n_chunks += n_samples != n_chunks * n_samples_chunk
# number of threads should not be bigger than number of chunks
n_threads = min(n_threads, n_chunks)
if update_centers:
memset(&centers_new[0, 0], 0, n_clusters * n_features * sizeof(floating))
memset(&weight_in_clusters[0], 0, n_clusters * sizeof(floating))
omp_init_lock(&lock)
with nogil, parallel(num_threads=n_threads):
# thread local buffers
centers_new_chunk = <floating*> calloc(n_clusters * n_features, sizeof(floating))
weight_in_clusters_chunk = <floating*> calloc(n_clusters, sizeof(floating))
for chunk_idx in prange(n_chunks, schedule='static'):
start = chunk_idx * n_samples_chunk
if chunk_idx == n_chunks - 1 and n_samples_rem > 0:
end = start + n_samples_rem
else:
end = start + n_samples_chunk
_update_chunk_sparse(
X_data[X_indptr[start]: X_indptr[end]],
X_indices[X_indptr[start]: X_indptr[end]],
X_indptr[start: end+1],
sample_weight[start: end],
centers_old,
centers_squared_norms,
labels[start: end],
centers_new_chunk,
weight_in_clusters_chunk,
update_centers)
# reduction from local buffers.
if update_centers:
# The lock is necessary to avoid race conditions when aggregating
# info from different thread-local buffers.
omp_set_lock(&lock)
for j in range(n_clusters):
weight_in_clusters[j] += weight_in_clusters_chunk[j]
for k in range(n_features):
centers_new[j, k] += centers_new_chunk[j * n_features + k]
omp_unset_lock(&lock)
free(centers_new_chunk)
free(weight_in_clusters_chunk)
if update_centers:
omp_destroy_lock(&lock)
_relocate_empty_clusters_sparse(
X_data, X_indices, X_indptr, sample_weight,
centers_old, centers_new, weight_in_clusters, labels)
_average_centers(centers_new, weight_in_clusters)
_center_shift(centers_old, centers_new, center_shift)
cdef void _update_chunk_sparse(
const floating[::1] X_data, # IN
const int[::1] X_indices, # IN
const int[::1] X_indptr, # IN
const floating[::1] sample_weight, # IN
const floating[:, ::1] centers_old, # IN
const floating[::1] centers_squared_norms, # IN
int[::1] labels, # OUT
floating *centers_new, # OUT
floating *weight_in_clusters, # OUT
bint update_centers) noexcept nogil:
"""K-means combined EM step for one sparse data chunk.
Compute the partial contribution of a single data chunk to the labels and
centers.
"""
cdef:
int n_samples = labels.shape[0]
int n_clusters = centers_old.shape[0]
int n_features = centers_old.shape[1]
floating sq_dist, min_sq_dist
int i, j, k, label
floating max_floating = FLT_MAX if floating is float else DBL_MAX
int s = X_indptr[0]
# XXX Precompute the pairwise distances matrix is not worth for sparse
# currently. Should be tested when BLAS (sparse x dense) matrix
# multiplication is available.
for i in range(n_samples):
min_sq_dist = max_floating
label = 0
for j in range(n_clusters):
sq_dist = 0.0
for k in range(X_indptr[i] - s, X_indptr[i + 1] - s):
sq_dist += centers_old[j, X_indices[k]] * X_data[k]
# Instead of computing the full squared distance with each cluster,
# ||X - C||² = ||X||² - 2 X.C^T + ||C||², we only need to compute
# the - 2 X.C^T + ||C||² term since the argmin for a given sample
# only depends on the centers C.
sq_dist = centers_squared_norms[j] -2 * sq_dist
if sq_dist < min_sq_dist:
min_sq_dist = sq_dist
label = j
labels[i] = label
if update_centers:
weight_in_clusters[label] += sample_weight[i]
for k in range(X_indptr[i] - s, X_indptr[i + 1] - s):
centers_new[label * n_features + X_indices[k]] += X_data[k] * sample_weight[i]