3RNN/Lib/site-packages/sklearn/compose/_target.py
2024-05-26 19:49:15 +02:00

353 lines
12 KiB
Python

# Authors: Andreas Mueller <andreas.mueller@columbia.edu>
# Guillaume Lemaitre <guillaume.lemaitre@inria.fr>
# License: BSD 3 clause
import warnings
import numpy as np
from ..base import BaseEstimator, RegressorMixin, _fit_context, clone
from ..exceptions import NotFittedError
from ..preprocessing import FunctionTransformer
from ..utils import _safe_indexing, check_array
from ..utils._param_validation import HasMethods
from ..utils._tags import _safe_tags
from ..utils.metadata_routing import (
_raise_for_unsupported_routing,
_RoutingNotSupportedMixin,
)
from ..utils.validation import check_is_fitted
__all__ = ["TransformedTargetRegressor"]
class TransformedTargetRegressor(
_RoutingNotSupportedMixin, RegressorMixin, BaseEstimator
):
"""Meta-estimator to regress on a transformed target.
Useful for applying a non-linear transformation to the target `y` in
regression problems. This transformation can be given as a Transformer
such as the :class:`~sklearn.preprocessing.QuantileTransformer` or as a
function and its inverse such as `np.log` and `np.exp`.
The computation during :meth:`fit` is::
regressor.fit(X, func(y))
or::
regressor.fit(X, transformer.transform(y))
The computation during :meth:`predict` is::
inverse_func(regressor.predict(X))
or::
transformer.inverse_transform(regressor.predict(X))
Read more in the :ref:`User Guide <transformed_target_regressor>`.
.. versionadded:: 0.20
Parameters
----------
regressor : object, default=None
Regressor object such as derived from
:class:`~sklearn.base.RegressorMixin`. This regressor will
automatically be cloned each time prior to fitting. If `regressor is
None`, :class:`~sklearn.linear_model.LinearRegression` is created and used.
transformer : object, default=None
Estimator object such as derived from
:class:`~sklearn.base.TransformerMixin`. Cannot be set at the same time
as `func` and `inverse_func`. If `transformer is None` as well as
`func` and `inverse_func`, the transformer will be an identity
transformer. Note that the transformer will be cloned during fitting.
Also, the transformer is restricting `y` to be a numpy array.
func : function, default=None
Function to apply to `y` before passing to :meth:`fit`. Cannot be set
at the same time as `transformer`. If `func is None`, the function used will be
the identity function. If `func` is set, `inverse_func` also needs to be
provided. The function needs to return a 2-dimensional array.
inverse_func : function, default=None
Function to apply to the prediction of the regressor. Cannot be set at
the same time as `transformer`. The inverse function is used to return
predictions to the same space of the original training labels. If
`inverse_func` is set, `func` also needs to be provided. The inverse
function needs to return a 2-dimensional array.
check_inverse : bool, default=True
Whether to check that `transform` followed by `inverse_transform`
or `func` followed by `inverse_func` leads to the original targets.
Attributes
----------
regressor_ : object
Fitted regressor.
transformer_ : object
Transformer used in :meth:`fit` and :meth:`predict`.
n_features_in_ : int
Number of features seen during :term:`fit`. Only defined if the
underlying regressor exposes such an attribute when fit.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
sklearn.preprocessing.FunctionTransformer : Construct a transformer from an
arbitrary callable.
Notes
-----
Internally, the target `y` is always converted into a 2-dimensional array
to be used by scikit-learn transformers. At the time of prediction, the
output will be reshaped to a have the same number of dimensions as `y`.
Examples
--------
>>> import numpy as np
>>> from sklearn.linear_model import LinearRegression
>>> from sklearn.compose import TransformedTargetRegressor
>>> tt = TransformedTargetRegressor(regressor=LinearRegression(),
... func=np.log, inverse_func=np.exp)
>>> X = np.arange(4).reshape(-1, 1)
>>> y = np.exp(2 * X).ravel()
>>> tt.fit(X, y)
TransformedTargetRegressor(...)
>>> tt.score(X, y)
1.0
>>> tt.regressor_.coef_
array([2.])
For a more detailed example use case refer to
:ref:`sphx_glr_auto_examples_compose_plot_transformed_target.py`.
"""
_parameter_constraints: dict = {
"regressor": [HasMethods(["fit", "predict"]), None],
"transformer": [HasMethods("transform"), None],
"func": [callable, None],
"inverse_func": [callable, None],
"check_inverse": ["boolean"],
}
def __init__(
self,
regressor=None,
*,
transformer=None,
func=None,
inverse_func=None,
check_inverse=True,
):
self.regressor = regressor
self.transformer = transformer
self.func = func
self.inverse_func = inverse_func
self.check_inverse = check_inverse
def _fit_transformer(self, y):
"""Check transformer and fit transformer.
Create the default transformer, fit it and make additional inverse
check on a subset (optional).
"""
if self.transformer is not None and (
self.func is not None or self.inverse_func is not None
):
raise ValueError(
"'transformer' and functions 'func'/'inverse_func' cannot both be set."
)
elif self.transformer is not None:
self.transformer_ = clone(self.transformer)
else:
if (self.func is not None and self.inverse_func is None) or (
self.func is None and self.inverse_func is not None
):
lacking_param, existing_param = (
("func", "inverse_func")
if self.func is None
else ("inverse_func", "func")
)
raise ValueError(
f"When '{existing_param}' is provided, '{lacking_param}' must also"
f" be provided. If {lacking_param} is supposed to be the default,"
" you need to explicitly pass it the identity function."
)
self.transformer_ = FunctionTransformer(
func=self.func,
inverse_func=self.inverse_func,
validate=True,
check_inverse=self.check_inverse,
)
# XXX: sample_weight is not currently passed to the
# transformer. However, if transformer starts using sample_weight, the
# code should be modified accordingly. At the time to consider the
# sample_prop feature, it is also a good use case to be considered.
self.transformer_.fit(y)
if self.check_inverse:
idx_selected = slice(None, None, max(1, y.shape[0] // 10))
y_sel = _safe_indexing(y, idx_selected)
y_sel_t = self.transformer_.transform(y_sel)
if not np.allclose(y_sel, self.transformer_.inverse_transform(y_sel_t)):
warnings.warn(
(
"The provided functions or transformer are"
" not strictly inverse of each other. If"
" you are sure you want to proceed regardless"
", set 'check_inverse=False'"
),
UserWarning,
)
@_fit_context(
# TransformedTargetRegressor.regressor/transformer are not validated yet.
prefer_skip_nested_validation=False
)
def fit(self, X, y, **fit_params):
"""Fit the model according to the given training data.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training vector, where `n_samples` is the number of samples and
`n_features` is the number of features.
y : array-like of shape (n_samples,)
Target values.
**fit_params : dict
Parameters passed to the `fit` method of the underlying
regressor.
Returns
-------
self : object
Fitted estimator.
"""
_raise_for_unsupported_routing(self, "fit", **fit_params)
if y is None:
raise ValueError(
f"This {self.__class__.__name__} estimator "
"requires y to be passed, but the target y is None."
)
y = check_array(
y,
input_name="y",
accept_sparse=False,
force_all_finite=True,
ensure_2d=False,
dtype="numeric",
allow_nd=True,
)
# store the number of dimension of the target to predict an array of
# similar shape at predict
self._training_dim = y.ndim
# transformers are designed to modify X which is 2d dimensional, we
# need to modify y accordingly.
if y.ndim == 1:
y_2d = y.reshape(-1, 1)
else:
y_2d = y
self._fit_transformer(y_2d)
# transform y and convert back to 1d array if needed
y_trans = self.transformer_.transform(y_2d)
# FIXME: a FunctionTransformer can return a 1D array even when validate
# is set to True. Therefore, we need to check the number of dimension
# first.
if y_trans.ndim == 2 and y_trans.shape[1] == 1:
y_trans = y_trans.squeeze(axis=1)
if self.regressor is None:
from ..linear_model import LinearRegression
self.regressor_ = LinearRegression()
else:
self.regressor_ = clone(self.regressor)
self.regressor_.fit(X, y_trans, **fit_params)
if hasattr(self.regressor_, "feature_names_in_"):
self.feature_names_in_ = self.regressor_.feature_names_in_
return self
def predict(self, X, **predict_params):
"""Predict using the base regressor, applying inverse.
The regressor is used to predict and the `inverse_func` or
`inverse_transform` is applied before returning the prediction.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Samples.
**predict_params : dict of str -> object
Parameters passed to the `predict` method of the underlying
regressor.
Returns
-------
y_hat : ndarray of shape (n_samples,)
Predicted values.
"""
check_is_fitted(self)
pred = self.regressor_.predict(X, **predict_params)
if pred.ndim == 1:
pred_trans = self.transformer_.inverse_transform(pred.reshape(-1, 1))
else:
pred_trans = self.transformer_.inverse_transform(pred)
if (
self._training_dim == 1
and pred_trans.ndim == 2
and pred_trans.shape[1] == 1
):
pred_trans = pred_trans.squeeze(axis=1)
return pred_trans
def _more_tags(self):
regressor = self.regressor
if regressor is None:
from ..linear_model import LinearRegression
regressor = LinearRegression()
return {
"poor_score": True,
"multioutput": _safe_tags(regressor, key="multioutput"),
}
@property
def n_features_in_(self):
"""Number of features seen during :term:`fit`."""
# For consistency with other estimators we raise a AttributeError so
# that hasattr() returns False the estimator isn't fitted.
try:
check_is_fitted(self)
except NotFittedError as nfe:
raise AttributeError(
"{} object has no n_features_in_ attribute.".format(
self.__class__.__name__
)
) from nfe
return self.regressor_.n_features_in_