3RNN/Lib/site-packages/sklearn/datasets/tests/test_svmlight_format.py
2024-05-26 19:49:15 +02:00

617 lines
20 KiB
Python

import gzip
import os
import shutil
from bz2 import BZ2File
from importlib import resources
from io import BytesIO
from tempfile import NamedTemporaryFile
import numpy as np
import pytest
import scipy.sparse as sp
import sklearn
from sklearn.datasets import dump_svmlight_file, load_svmlight_file, load_svmlight_files
from sklearn.utils._testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
create_memmap_backed_data,
fails_if_pypy,
)
from sklearn.utils.fixes import CSR_CONTAINERS
TEST_DATA_MODULE = "sklearn.datasets.tests.data"
datafile = "svmlight_classification.txt"
multifile = "svmlight_multilabel.txt"
invalidfile = "svmlight_invalid.txt"
invalidfile2 = "svmlight_invalid_order.txt"
pytestmark = fails_if_pypy
def _svmlight_local_test_file_path(filename):
return resources.files(TEST_DATA_MODULE) / filename
def _load_svmlight_local_test_file(filename, **kwargs):
"""
Helper to load resource `filename` with `importlib.resources`
"""
data_path = _svmlight_local_test_file_path(filename)
with data_path.open("rb") as f:
return load_svmlight_file(f, **kwargs)
def test_load_svmlight_file():
X, y = _load_svmlight_local_test_file(datafile)
# test X's shape
assert X.indptr.shape[0] == 7
assert X.shape[0] == 6
assert X.shape[1] == 21
assert y.shape[0] == 6
# test X's non-zero values
for i, j, val in (
(0, 2, 2.5),
(0, 10, -5.2),
(0, 15, 1.5),
(1, 5, 1.0),
(1, 12, -3),
(2, 20, 27),
):
assert X[i, j] == val
# tests X's zero values
assert X[0, 3] == 0
assert X[0, 5] == 0
assert X[1, 8] == 0
assert X[1, 16] == 0
assert X[2, 18] == 0
# test can change X's values
X[0, 2] *= 2
assert X[0, 2] == 5
# test y
assert_array_equal(y, [1, 2, 3, 4, 1, 2])
def test_load_svmlight_file_fd():
# test loading from file descriptor
# GH20081: testing equality between path-based and
# fd-based load_svmlight_file
data_path = resources.files(TEST_DATA_MODULE) / datafile
data_path = str(data_path)
X1, y1 = load_svmlight_file(data_path)
fd = os.open(data_path, os.O_RDONLY)
try:
X2, y2 = load_svmlight_file(fd)
assert_array_almost_equal(X1.data, X2.data)
assert_array_almost_equal(y1, y2)
finally:
os.close(fd)
def test_load_svmlight_pathlib():
# test loading from file descriptor
data_path = _svmlight_local_test_file_path(datafile)
X1, y1 = load_svmlight_file(str(data_path))
X2, y2 = load_svmlight_file(data_path)
assert_allclose(X1.data, X2.data)
assert_allclose(y1, y2)
def test_load_svmlight_file_multilabel():
X, y = _load_svmlight_local_test_file(multifile, multilabel=True)
assert y == [(0, 1), (2,), (), (1, 2)]
def test_load_svmlight_files():
data_path = _svmlight_local_test_file_path(datafile)
X_train, y_train, X_test, y_test = load_svmlight_files(
[str(data_path)] * 2, dtype=np.float32
)
assert_array_equal(X_train.toarray(), X_test.toarray())
assert_array_almost_equal(y_train, y_test)
assert X_train.dtype == np.float32
assert X_test.dtype == np.float32
X1, y1, X2, y2, X3, y3 = load_svmlight_files([str(data_path)] * 3, dtype=np.float64)
assert X1.dtype == X2.dtype
assert X2.dtype == X3.dtype
assert X3.dtype == np.float64
def test_load_svmlight_file_n_features():
X, y = _load_svmlight_local_test_file(datafile, n_features=22)
# test X'shape
assert X.indptr.shape[0] == 7
assert X.shape[0] == 6
assert X.shape[1] == 22
# test X's non-zero values
for i, j, val in ((0, 2, 2.5), (0, 10, -5.2), (1, 5, 1.0), (1, 12, -3)):
assert X[i, j] == val
# 21 features in file
with pytest.raises(ValueError):
_load_svmlight_local_test_file(datafile, n_features=20)
def test_load_compressed():
X, y = _load_svmlight_local_test_file(datafile)
with NamedTemporaryFile(prefix="sklearn-test", suffix=".gz") as tmp:
tmp.close() # necessary under windows
with _svmlight_local_test_file_path(datafile).open("rb") as f:
with gzip.open(tmp.name, "wb") as fh_out:
shutil.copyfileobj(f, fh_out)
Xgz, ygz = load_svmlight_file(tmp.name)
# because we "close" it manually and write to it,
# we need to remove it manually.
os.remove(tmp.name)
assert_array_almost_equal(X.toarray(), Xgz.toarray())
assert_array_almost_equal(y, ygz)
with NamedTemporaryFile(prefix="sklearn-test", suffix=".bz2") as tmp:
tmp.close() # necessary under windows
with _svmlight_local_test_file_path(datafile).open("rb") as f:
with BZ2File(tmp.name, "wb") as fh_out:
shutil.copyfileobj(f, fh_out)
Xbz, ybz = load_svmlight_file(tmp.name)
# because we "close" it manually and write to it,
# we need to remove it manually.
os.remove(tmp.name)
assert_array_almost_equal(X.toarray(), Xbz.toarray())
assert_array_almost_equal(y, ybz)
def test_load_invalid_file():
with pytest.raises(ValueError):
_load_svmlight_local_test_file(invalidfile)
def test_load_invalid_order_file():
with pytest.raises(ValueError):
_load_svmlight_local_test_file(invalidfile2)
def test_load_zero_based():
f = BytesIO(b"-1 4:1.\n1 0:1\n")
with pytest.raises(ValueError):
load_svmlight_file(f, zero_based=False)
def test_load_zero_based_auto():
data1 = b"-1 1:1 2:2 3:3\n"
data2 = b"-1 0:0 1:1\n"
f1 = BytesIO(data1)
X, y = load_svmlight_file(f1, zero_based="auto")
assert X.shape == (1, 3)
f1 = BytesIO(data1)
f2 = BytesIO(data2)
X1, y1, X2, y2 = load_svmlight_files([f1, f2], zero_based="auto")
assert X1.shape == (1, 4)
assert X2.shape == (1, 4)
def test_load_with_qid():
# load svmfile with qid attribute
data = b"""
3 qid:1 1:0.53 2:0.12
2 qid:1 1:0.13 2:0.1
7 qid:2 1:0.87 2:0.12"""
X, y = load_svmlight_file(BytesIO(data), query_id=False)
assert_array_equal(y, [3, 2, 7])
assert_array_equal(X.toarray(), [[0.53, 0.12], [0.13, 0.1], [0.87, 0.12]])
res1 = load_svmlight_files([BytesIO(data)], query_id=True)
res2 = load_svmlight_file(BytesIO(data), query_id=True)
for X, y, qid in (res1, res2):
assert_array_equal(y, [3, 2, 7])
assert_array_equal(qid, [1, 1, 2])
assert_array_equal(X.toarray(), [[0.53, 0.12], [0.13, 0.1], [0.87, 0.12]])
@pytest.mark.skip(
"testing the overflow of 32 bit sparse indexing requires a large amount of memory"
)
def test_load_large_qid():
"""
load large libsvm / svmlight file with qid attribute. Tests 64-bit query ID
"""
data = b"\n".join(
(
"3 qid:{0} 1:0.53 2:0.12\n2 qid:{0} 1:0.13 2:0.1".format(i).encode()
for i in range(1, 40 * 1000 * 1000)
)
)
X, y, qid = load_svmlight_file(BytesIO(data), query_id=True)
assert_array_equal(y[-4:], [3, 2, 3, 2])
assert_array_equal(np.unique(qid), np.arange(1, 40 * 1000 * 1000))
def test_load_invalid_file2():
with pytest.raises(ValueError):
data_path = _svmlight_local_test_file_path(datafile)
invalid_path = _svmlight_local_test_file_path(invalidfile)
load_svmlight_files([str(data_path), str(invalid_path), str(data_path)])
def test_not_a_filename():
# in python 3 integers are valid file opening arguments (taken as unix
# file descriptors)
with pytest.raises(TypeError):
load_svmlight_file(0.42)
def test_invalid_filename():
with pytest.raises(OSError):
load_svmlight_file("trou pic nic douille")
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_dump(csr_container):
X_sparse, y_dense = _load_svmlight_local_test_file(datafile)
X_dense = X_sparse.toarray()
y_sparse = csr_container(np.atleast_2d(y_dense))
# slicing a csr_matrix can unsort its .indices, so test that we sort
# those correctly
X_sliced = X_sparse[np.arange(X_sparse.shape[0])]
y_sliced = y_sparse[np.arange(y_sparse.shape[0])]
for X in (X_sparse, X_dense, X_sliced):
for y in (y_sparse, y_dense, y_sliced):
for zero_based in (True, False):
for dtype in [np.float32, np.float64, np.int32, np.int64]:
f = BytesIO()
# we need to pass a comment to get the version info in;
# LibSVM doesn't grok comments so they're not put in by
# default anymore.
if sp.issparse(y) and y.shape[0] == 1:
# make sure y's shape is: (n_samples, n_labels)
# when it is sparse
y = y.T
# Note: with dtype=np.int32 we are performing unsafe casts,
# where X.astype(dtype) overflows. The result is
# then platform dependent and X_dense.astype(dtype) may be
# different from X_sparse.astype(dtype).asarray().
X_input = X.astype(dtype)
dump_svmlight_file(
X_input, y, f, comment="test", zero_based=zero_based
)
f.seek(0)
comment = f.readline()
comment = str(comment, "utf-8")
assert "scikit-learn %s" % sklearn.__version__ in comment
comment = f.readline()
comment = str(comment, "utf-8")
assert ["one", "zero"][zero_based] + "-based" in comment
X2, y2 = load_svmlight_file(f, dtype=dtype, zero_based=zero_based)
assert X2.dtype == dtype
assert_array_equal(X2.sorted_indices().indices, X2.indices)
X2_dense = X2.toarray()
if sp.issparse(X_input):
X_input_dense = X_input.toarray()
else:
X_input_dense = X_input
if dtype == np.float32:
# allow a rounding error at the last decimal place
assert_array_almost_equal(X_input_dense, X2_dense, 4)
assert_array_almost_equal(
y_dense.astype(dtype, copy=False), y2, 4
)
else:
# allow a rounding error at the last decimal place
assert_array_almost_equal(X_input_dense, X2_dense, 15)
assert_array_almost_equal(
y_dense.astype(dtype, copy=False), y2, 15
)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_dump_multilabel(csr_container):
X = [[1, 0, 3, 0, 5], [0, 0, 0, 0, 0], [0, 5, 0, 1, 0]]
y_dense = [[0, 1, 0], [1, 0, 1], [1, 1, 0]]
y_sparse = csr_container(y_dense)
for y in [y_dense, y_sparse]:
f = BytesIO()
dump_svmlight_file(X, y, f, multilabel=True)
f.seek(0)
# make sure it dumps multilabel correctly
assert f.readline() == b"1 0:1 2:3 4:5\n"
assert f.readline() == b"0,2 \n"
assert f.readline() == b"0,1 1:5 3:1\n"
def test_dump_concise():
one = 1
two = 2.1
three = 3.01
exact = 1.000000000000001
# loses the last decimal place
almost = 1.0000000000000001
X = [
[one, two, three, exact, almost],
[1e9, 2e18, 3e27, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
]
y = [one, two, three, exact, almost]
f = BytesIO()
dump_svmlight_file(X, y, f)
f.seek(0)
# make sure it's using the most concise format possible
assert f.readline() == b"1 0:1 1:2.1 2:3.01 3:1.000000000000001 4:1\n"
assert f.readline() == b"2.1 0:1000000000 1:2e+18 2:3e+27\n"
assert f.readline() == b"3.01 \n"
assert f.readline() == b"1.000000000000001 \n"
assert f.readline() == b"1 \n"
f.seek(0)
# make sure it's correct too :)
X2, y2 = load_svmlight_file(f)
assert_array_almost_equal(X, X2.toarray())
assert_array_almost_equal(y, y2)
def test_dump_comment():
X, y = _load_svmlight_local_test_file(datafile)
X = X.toarray()
f = BytesIO()
ascii_comment = "This is a comment\nspanning multiple lines."
dump_svmlight_file(X, y, f, comment=ascii_comment, zero_based=False)
f.seek(0)
X2, y2 = load_svmlight_file(f, zero_based=False)
assert_array_almost_equal(X, X2.toarray())
assert_array_almost_equal(y, y2)
# XXX we have to update this to support Python 3.x
utf8_comment = b"It is true that\n\xc2\xbd\xc2\xb2 = \xc2\xbc"
f = BytesIO()
with pytest.raises(UnicodeDecodeError):
dump_svmlight_file(X, y, f, comment=utf8_comment)
unicode_comment = utf8_comment.decode("utf-8")
f = BytesIO()
dump_svmlight_file(X, y, f, comment=unicode_comment, zero_based=False)
f.seek(0)
X2, y2 = load_svmlight_file(f, zero_based=False)
assert_array_almost_equal(X, X2.toarray())
assert_array_almost_equal(y, y2)
f = BytesIO()
with pytest.raises(ValueError):
dump_svmlight_file(X, y, f, comment="I've got a \0.")
def test_dump_invalid():
X, y = _load_svmlight_local_test_file(datafile)
f = BytesIO()
y2d = [y]
with pytest.raises(ValueError):
dump_svmlight_file(X, y2d, f)
f = BytesIO()
with pytest.raises(ValueError):
dump_svmlight_file(X, y[:-1], f)
def test_dump_query_id():
# test dumping a file with query_id
X, y = _load_svmlight_local_test_file(datafile)
X = X.toarray()
query_id = np.arange(X.shape[0]) // 2
f = BytesIO()
dump_svmlight_file(X, y, f, query_id=query_id, zero_based=True)
f.seek(0)
X1, y1, query_id1 = load_svmlight_file(f, query_id=True, zero_based=True)
assert_array_almost_equal(X, X1.toarray())
assert_array_almost_equal(y, y1)
assert_array_almost_equal(query_id, query_id1)
def test_load_with_long_qid():
# load svmfile with longint qid attribute
data = b"""
1 qid:0 0:1 1:2 2:3
0 qid:72048431380967004 0:1440446648 1:72048431380967004 2:236784985
0 qid:-9223372036854775807 0:1440446648 1:72048431380967004 2:236784985
3 qid:9223372036854775807 0:1440446648 1:72048431380967004 2:236784985"""
X, y, qid = load_svmlight_file(BytesIO(data), query_id=True)
true_X = [
[1, 2, 3],
[1440446648, 72048431380967004, 236784985],
[1440446648, 72048431380967004, 236784985],
[1440446648, 72048431380967004, 236784985],
]
true_y = [1, 0, 0, 3]
trueQID = [0, 72048431380967004, -9223372036854775807, 9223372036854775807]
assert_array_equal(y, true_y)
assert_array_equal(X.toarray(), true_X)
assert_array_equal(qid, trueQID)
f = BytesIO()
dump_svmlight_file(X, y, f, query_id=qid, zero_based=True)
f.seek(0)
X, y, qid = load_svmlight_file(f, query_id=True, zero_based=True)
assert_array_equal(y, true_y)
assert_array_equal(X.toarray(), true_X)
assert_array_equal(qid, trueQID)
f.seek(0)
X, y = load_svmlight_file(f, query_id=False, zero_based=True)
assert_array_equal(y, true_y)
assert_array_equal(X.toarray(), true_X)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_load_zeros(csr_container):
f = BytesIO()
true_X = csr_container(np.zeros(shape=(3, 4)))
true_y = np.array([0, 1, 0])
dump_svmlight_file(true_X, true_y, f)
for zero_based in ["auto", True, False]:
f.seek(0)
X, y = load_svmlight_file(f, n_features=4, zero_based=zero_based)
assert_array_almost_equal(y, true_y)
assert_array_almost_equal(X.toarray(), true_X.toarray())
@pytest.mark.parametrize("sparsity", [0, 0.1, 0.5, 0.99, 1])
@pytest.mark.parametrize("n_samples", [13, 101])
@pytest.mark.parametrize("n_features", [2, 7, 41])
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_load_with_offsets(sparsity, n_samples, n_features, csr_container):
rng = np.random.RandomState(0)
X = rng.uniform(low=0.0, high=1.0, size=(n_samples, n_features))
if sparsity:
X[X < sparsity] = 0.0
X = csr_container(X)
y = rng.randint(low=0, high=2, size=n_samples)
f = BytesIO()
dump_svmlight_file(X, y, f)
f.seek(0)
size = len(f.getvalue())
# put some marks that are likely to happen anywhere in a row
mark_0 = 0
mark_1 = size // 3
length_0 = mark_1 - mark_0
mark_2 = 4 * size // 5
length_1 = mark_2 - mark_1
# load the original sparse matrix into 3 independent CSR matrices
X_0, y_0 = load_svmlight_file(
f, n_features=n_features, offset=mark_0, length=length_0
)
X_1, y_1 = load_svmlight_file(
f, n_features=n_features, offset=mark_1, length=length_1
)
X_2, y_2 = load_svmlight_file(f, n_features=n_features, offset=mark_2)
y_concat = np.concatenate([y_0, y_1, y_2])
X_concat = sp.vstack([X_0, X_1, X_2])
assert_array_almost_equal(y, y_concat)
assert_array_almost_equal(X.toarray(), X_concat.toarray())
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_load_offset_exhaustive_splits(csr_container):
rng = np.random.RandomState(0)
X = np.array(
[
[0, 0, 0, 0, 0, 0],
[1, 2, 3, 4, 0, 6],
[1, 2, 3, 4, 0, 6],
[0, 0, 0, 0, 0, 0],
[1, 0, 3, 0, 0, 0],
[0, 0, 0, 0, 0, 1],
[1, 0, 0, 0, 0, 0],
]
)
X = csr_container(X)
n_samples, n_features = X.shape
y = rng.randint(low=0, high=2, size=n_samples)
query_id = np.arange(n_samples) // 2
f = BytesIO()
dump_svmlight_file(X, y, f, query_id=query_id)
f.seek(0)
size = len(f.getvalue())
# load the same data in 2 parts with all the possible byte offsets to
# locate the split so has to test for particular boundary cases
for mark in range(size):
f.seek(0)
X_0, y_0, q_0 = load_svmlight_file(
f, n_features=n_features, query_id=True, offset=0, length=mark
)
X_1, y_1, q_1 = load_svmlight_file(
f, n_features=n_features, query_id=True, offset=mark, length=-1
)
q_concat = np.concatenate([q_0, q_1])
y_concat = np.concatenate([y_0, y_1])
X_concat = sp.vstack([X_0, X_1])
assert_array_almost_equal(y, y_concat)
assert_array_equal(query_id, q_concat)
assert_array_almost_equal(X.toarray(), X_concat.toarray())
def test_load_with_offsets_error():
with pytest.raises(ValueError, match="n_features is required"):
_load_svmlight_local_test_file(datafile, offset=3, length=3)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_multilabel_y_explicit_zeros(tmp_path, csr_container):
"""
Ensure that if y contains explicit zeros (i.e. elements of y.data equal to
0) then those explicit zeros are not encoded.
"""
save_path = str(tmp_path / "svm_explicit_zero")
rng = np.random.RandomState(42)
X = rng.randn(3, 5).astype(np.float64)
indptr = np.array([0, 2, 3, 6])
indices = np.array([0, 2, 2, 0, 1, 2])
# The first and last element are explicit zeros.
data = np.array([0, 1, 1, 1, 1, 0])
y = csr_container((data, indices, indptr), shape=(3, 3))
# y as a dense array would look like
# [[0, 0, 1],
# [0, 0, 1],
# [1, 1, 0]]
dump_svmlight_file(X, y, save_path, multilabel=True)
_, y_load = load_svmlight_file(save_path, multilabel=True)
y_true = [(2.0,), (2.0,), (0.0, 1.0)]
assert y_load == y_true
def test_dump_read_only(tmp_path):
"""Ensure that there is no ValueError when dumping a read-only `X`.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/28026
"""
rng = np.random.RandomState(42)
X = rng.randn(5, 2)
y = rng.randn(5)
# Convert to memmap-backed which are read-only
X, y = create_memmap_backed_data([X, y])
save_path = str(tmp_path / "svm_read_only")
dump_svmlight_file(X, y, save_path)