3RNN/Lib/site-packages/sklearn/ensemble/_hist_gradient_boosting/grower.py
2024-05-26 19:49:15 +02:00

807 lines
31 KiB
Python

"""
This module contains the TreeGrower class.
TreeGrower builds a regression tree fitting a Newton-Raphson step, based on
the gradients and hessians of the training data.
"""
# Author: Nicolas Hug
import numbers
from heapq import heappop, heappush
from timeit import default_timer as time
import numpy as np
from sklearn.utils._openmp_helpers import _openmp_effective_n_threads
from ...utils.arrayfuncs import sum_parallel
from ._bitset import set_raw_bitset_from_binned_bitset
from .common import (
PREDICTOR_RECORD_DTYPE,
X_BITSET_INNER_DTYPE,
MonotonicConstraint,
)
from .histogram import HistogramBuilder
from .predictor import TreePredictor
from .splitting import Splitter
class TreeNode:
"""Tree Node class used in TreeGrower.
This isn't used for prediction purposes, only for training (see
TreePredictor).
Parameters
----------
depth : int
The depth of the node, i.e. its distance from the root.
sample_indices : ndarray of shape (n_samples_at_node,), dtype=np.uint32
The indices of the samples at the node.
partition_start : int
start position of the node's sample_indices in splitter.partition.
partition_stop : int
stop position of the node's sample_indices in splitter.partition.
sum_gradients : float
The sum of the gradients of the samples at the node.
sum_hessians : float
The sum of the hessians of the samples at the node.
Attributes
----------
depth : int
The depth of the node, i.e. its distance from the root.
sample_indices : ndarray of shape (n_samples_at_node,), dtype=np.uint32
The indices of the samples at the node.
sum_gradients : float
The sum of the gradients of the samples at the node.
sum_hessians : float
The sum of the hessians of the samples at the node.
split_info : SplitInfo or None
The result of the split evaluation.
is_leaf : bool
True if node is a leaf
left_child : TreeNode or None
The left child of the node. None for leaves.
right_child : TreeNode or None
The right child of the node. None for leaves.
value : float or None
The value of the leaf, as computed in finalize_leaf(). None for
non-leaf nodes.
partition_start : int
start position of the node's sample_indices in splitter.partition.
partition_stop : int
stop position of the node's sample_indices in splitter.partition.
allowed_features : None or ndarray, dtype=int
Indices of features allowed to split for children.
interaction_cst_indices : None or list of ints
Indices of the interaction sets that have to be applied on splits of
child nodes. The fewer sets the stronger the constraint as fewer sets
contain fewer features.
children_lower_bound : float
children_upper_bound : float
"""
def __init__(
self,
*,
depth,
sample_indices,
partition_start,
partition_stop,
sum_gradients,
sum_hessians,
value=None,
):
self.depth = depth
self.sample_indices = sample_indices
self.n_samples = sample_indices.shape[0]
self.sum_gradients = sum_gradients
self.sum_hessians = sum_hessians
self.value = value
self.is_leaf = False
self.allowed_features = None
self.interaction_cst_indices = None
self.set_children_bounds(float("-inf"), float("+inf"))
self.split_info = None
self.left_child = None
self.right_child = None
self.histograms = None
# start and stop indices of the node in the splitter.partition
# array. Concretely,
# self.sample_indices = view(self.splitter.partition[start:stop])
# Please see the comments about splitter.partition and
# splitter.split_indices for more info about this design.
# These 2 attributes are only used in _update_raw_prediction, because we
# need to iterate over the leaves and I don't know how to efficiently
# store the sample_indices views because they're all of different sizes.
self.partition_start = partition_start
self.partition_stop = partition_stop
def set_children_bounds(self, lower, upper):
"""Set children values bounds to respect monotonic constraints."""
# These are bounds for the node's *children* values, not the node's
# value. The bounds are used in the splitter when considering potential
# left and right child.
self.children_lower_bound = lower
self.children_upper_bound = upper
def __lt__(self, other_node):
"""Comparison for priority queue.
Nodes with high gain are higher priority than nodes with low gain.
heapq.heappush only need the '<' operator.
heapq.heappop take the smallest item first (smaller is higher
priority).
Parameters
----------
other_node : TreeNode
The node to compare with.
"""
return self.split_info.gain > other_node.split_info.gain
class TreeGrower:
"""Tree grower class used to build a tree.
The tree is fitted to predict the values of a Newton-Raphson step. The
splits are considered in a best-first fashion, and the quality of a
split is defined in splitting._split_gain.
Parameters
----------
X_binned : ndarray of shape (n_samples, n_features), dtype=np.uint8
The binned input samples. Must be Fortran-aligned.
gradients : ndarray of shape (n_samples,)
The gradients of each training sample. Those are the gradients of the
loss w.r.t the predictions, evaluated at iteration ``i - 1``.
hessians : ndarray of shape (n_samples,)
The hessians of each training sample. Those are the hessians of the
loss w.r.t the predictions, evaluated at iteration ``i - 1``.
max_leaf_nodes : int, default=None
The maximum number of leaves for each tree. If None, there is no
maximum limit.
max_depth : int, default=None
The maximum depth of each tree. The depth of a tree is the number of
edges to go from the root to the deepest leaf.
Depth isn't constrained by default.
min_samples_leaf : int, default=20
The minimum number of samples per leaf.
min_gain_to_split : float, default=0.
The minimum gain needed to split a node. Splits with lower gain will
be ignored.
min_hessian_to_split : float, default=1e-3
The minimum sum of hessians needed in each node. Splits that result in
at least one child having a sum of hessians less than
``min_hessian_to_split`` are discarded.
n_bins : int, default=256
The total number of bins, including the bin for missing values. Used
to define the shape of the histograms.
n_bins_non_missing : ndarray, dtype=np.uint32, default=None
For each feature, gives the number of bins actually used for
non-missing values. For features with a lot of unique values, this
is equal to ``n_bins - 1``. If it's an int, all features are
considered to have the same number of bins. If None, all features
are considered to have ``n_bins - 1`` bins.
has_missing_values : bool or ndarray, dtype=bool, default=False
Whether each feature contains missing values (in the training data).
If it's a bool, the same value is used for all features.
is_categorical : ndarray of bool of shape (n_features,), default=None
Indicates categorical features.
monotonic_cst : array-like of int of shape (n_features,), dtype=int, default=None
Indicates the monotonic constraint to enforce on each feature.
- 1: monotonic increase
- 0: no constraint
- -1: monotonic decrease
Read more in the :ref:`User Guide <monotonic_cst_gbdt>`.
interaction_cst : list of sets of integers, default=None
List of interaction constraints.
l2_regularization : float, default=0.
The L2 regularization parameter penalizing leaves with small hessians.
Use ``0`` for no regularization (default).
feature_fraction_per_split : float, default=1
Proportion of randomly chosen features in each and every node split.
This is a form of regularization, smaller values make the trees weaker
learners and might prevent overfitting.
rng : Generator
Numpy random Generator used for feature subsampling.
shrinkage : float, default=1.
The shrinkage parameter to apply to the leaves values, also known as
learning rate.
n_threads : int, default=None
Number of OpenMP threads to use. `_openmp_effective_n_threads` is called
to determine the effective number of threads use, which takes cgroups CPU
quotes into account. See the docstring of `_openmp_effective_n_threads`
for details.
Attributes
----------
histogram_builder : HistogramBuilder
splitter : Splitter
root : TreeNode
finalized_leaves : list of TreeNode
splittable_nodes : list of TreeNode
missing_values_bin_idx : int
Equals n_bins - 1
n_categorical_splits : int
n_features : int
n_nodes : int
total_find_split_time : float
Time spent finding the best splits
total_compute_hist_time : float
Time spent computing histograms
total_apply_split_time : float
Time spent splitting nodes
with_monotonic_cst : bool
Whether there are monotonic constraints that apply. False iff monotonic_cst is
None.
"""
def __init__(
self,
X_binned,
gradients,
hessians,
max_leaf_nodes=None,
max_depth=None,
min_samples_leaf=20,
min_gain_to_split=0.0,
min_hessian_to_split=1e-3,
n_bins=256,
n_bins_non_missing=None,
has_missing_values=False,
is_categorical=None,
monotonic_cst=None,
interaction_cst=None,
l2_regularization=0.0,
feature_fraction_per_split=1.0,
rng=np.random.default_rng(),
shrinkage=1.0,
n_threads=None,
):
self._validate_parameters(
X_binned,
min_gain_to_split,
min_hessian_to_split,
)
n_threads = _openmp_effective_n_threads(n_threads)
if n_bins_non_missing is None:
n_bins_non_missing = n_bins - 1
if isinstance(n_bins_non_missing, numbers.Integral):
n_bins_non_missing = np.array(
[n_bins_non_missing] * X_binned.shape[1], dtype=np.uint32
)
else:
n_bins_non_missing = np.asarray(n_bins_non_missing, dtype=np.uint32)
if isinstance(has_missing_values, bool):
has_missing_values = [has_missing_values] * X_binned.shape[1]
has_missing_values = np.asarray(has_missing_values, dtype=np.uint8)
# `monotonic_cst` validation is done in _validate_monotonic_cst
# at the estimator level and therefore the following should not be
# needed when using the public API.
if monotonic_cst is None:
monotonic_cst = np.full(
shape=X_binned.shape[1],
fill_value=MonotonicConstraint.NO_CST,
dtype=np.int8,
)
else:
monotonic_cst = np.asarray(monotonic_cst, dtype=np.int8)
self.with_monotonic_cst = np.any(monotonic_cst != MonotonicConstraint.NO_CST)
if is_categorical is None:
is_categorical = np.zeros(shape=X_binned.shape[1], dtype=np.uint8)
else:
is_categorical = np.asarray(is_categorical, dtype=np.uint8)
if np.any(
np.logical_and(
is_categorical == 1, monotonic_cst != MonotonicConstraint.NO_CST
)
):
raise ValueError("Categorical features cannot have monotonic constraints.")
hessians_are_constant = hessians.shape[0] == 1
self.histogram_builder = HistogramBuilder(
X_binned, n_bins, gradients, hessians, hessians_are_constant, n_threads
)
missing_values_bin_idx = n_bins - 1
self.splitter = Splitter(
X_binned=X_binned,
n_bins_non_missing=n_bins_non_missing,
missing_values_bin_idx=missing_values_bin_idx,
has_missing_values=has_missing_values,
is_categorical=is_categorical,
monotonic_cst=monotonic_cst,
l2_regularization=l2_regularization,
min_hessian_to_split=min_hessian_to_split,
min_samples_leaf=min_samples_leaf,
min_gain_to_split=min_gain_to_split,
hessians_are_constant=hessians_are_constant,
feature_fraction_per_split=feature_fraction_per_split,
rng=rng,
n_threads=n_threads,
)
self.X_binned = X_binned
self.max_leaf_nodes = max_leaf_nodes
self.max_depth = max_depth
self.min_samples_leaf = min_samples_leaf
self.min_gain_to_split = min_gain_to_split
self.n_bins_non_missing = n_bins_non_missing
self.missing_values_bin_idx = missing_values_bin_idx
self.has_missing_values = has_missing_values
self.is_categorical = is_categorical
self.monotonic_cst = monotonic_cst
self.interaction_cst = interaction_cst
self.l2_regularization = l2_regularization
self.shrinkage = shrinkage
self.n_features = X_binned.shape[1]
self.n_threads = n_threads
self.splittable_nodes = []
self.finalized_leaves = []
self.total_find_split_time = 0.0 # time spent finding the best splits
self.total_compute_hist_time = 0.0 # time spent computing histograms
self.total_apply_split_time = 0.0 # time spent splitting nodes
self.n_categorical_splits = 0
self._initialize_root(gradients, hessians)
self.n_nodes = 1
def _validate_parameters(
self,
X_binned,
min_gain_to_split,
min_hessian_to_split,
):
"""Validate parameters passed to __init__.
Also validate parameters passed to splitter.
"""
if X_binned.dtype != np.uint8:
raise NotImplementedError("X_binned must be of type uint8.")
if not X_binned.flags.f_contiguous:
raise ValueError(
"X_binned should be passed as Fortran contiguous "
"array for maximum efficiency."
)
if min_gain_to_split < 0:
raise ValueError(
"min_gain_to_split={} must be positive.".format(min_gain_to_split)
)
if min_hessian_to_split < 0:
raise ValueError(
"min_hessian_to_split={} must be positive.".format(min_hessian_to_split)
)
def grow(self):
"""Grow the tree, from root to leaves."""
while self.splittable_nodes:
self.split_next()
self._apply_shrinkage()
def _apply_shrinkage(self):
"""Multiply leaves values by shrinkage parameter.
This must be done at the very end of the growing process. If this were
done during the growing process e.g. in finalize_leaf(), then a leaf
would be shrunk but its sibling would potentially not be (if it's a
non-leaf), which would lead to a wrong computation of the 'middle'
value needed to enforce the monotonic constraints.
"""
for leaf in self.finalized_leaves:
leaf.value *= self.shrinkage
def _initialize_root(self, gradients, hessians):
"""Initialize root node and finalize it if needed."""
n_samples = self.X_binned.shape[0]
depth = 0
sum_gradients = sum_parallel(gradients, self.n_threads)
if self.histogram_builder.hessians_are_constant:
sum_hessians = hessians[0] * n_samples
else:
sum_hessians = sum_parallel(hessians, self.n_threads)
self.root = TreeNode(
depth=depth,
sample_indices=self.splitter.partition,
partition_start=0,
partition_stop=n_samples,
sum_gradients=sum_gradients,
sum_hessians=sum_hessians,
value=0,
)
if self.root.n_samples < 2 * self.min_samples_leaf:
# Do not even bother computing any splitting statistics.
self._finalize_leaf(self.root)
return
if sum_hessians < self.splitter.min_hessian_to_split:
self._finalize_leaf(self.root)
return
if self.interaction_cst is not None:
self.root.interaction_cst_indices = range(len(self.interaction_cst))
allowed_features = set().union(*self.interaction_cst)
self.root.allowed_features = np.fromiter(
allowed_features, dtype=np.uint32, count=len(allowed_features)
)
tic = time()
self.root.histograms = self.histogram_builder.compute_histograms_brute(
self.root.sample_indices, self.root.allowed_features
)
self.total_compute_hist_time += time() - tic
tic = time()
self._compute_best_split_and_push(self.root)
self.total_find_split_time += time() - tic
def _compute_best_split_and_push(self, node):
"""Compute the best possible split (SplitInfo) of a given node.
Also push it in the heap of splittable nodes if gain isn't zero.
The gain of a node is 0 if either all the leaves are pure
(best gain = 0), or if no split would satisfy the constraints,
(min_hessians_to_split, min_gain_to_split, min_samples_leaf)
"""
node.split_info = self.splitter.find_node_split(
n_samples=node.n_samples,
histograms=node.histograms,
sum_gradients=node.sum_gradients,
sum_hessians=node.sum_hessians,
value=node.value,
lower_bound=node.children_lower_bound,
upper_bound=node.children_upper_bound,
allowed_features=node.allowed_features,
)
if node.split_info.gain <= 0: # no valid split
self._finalize_leaf(node)
else:
heappush(self.splittable_nodes, node)
def split_next(self):
"""Split the node with highest potential gain.
Returns
-------
left : TreeNode
The resulting left child.
right : TreeNode
The resulting right child.
"""
# Consider the node with the highest loss reduction (a.k.a. gain)
node = heappop(self.splittable_nodes)
tic = time()
(
sample_indices_left,
sample_indices_right,
right_child_pos,
) = self.splitter.split_indices(node.split_info, node.sample_indices)
self.total_apply_split_time += time() - tic
depth = node.depth + 1
n_leaf_nodes = len(self.finalized_leaves) + len(self.splittable_nodes)
n_leaf_nodes += 2
left_child_node = TreeNode(
depth=depth,
sample_indices=sample_indices_left,
partition_start=node.partition_start,
partition_stop=node.partition_start + right_child_pos,
sum_gradients=node.split_info.sum_gradient_left,
sum_hessians=node.split_info.sum_hessian_left,
value=node.split_info.value_left,
)
right_child_node = TreeNode(
depth=depth,
sample_indices=sample_indices_right,
partition_start=left_child_node.partition_stop,
partition_stop=node.partition_stop,
sum_gradients=node.split_info.sum_gradient_right,
sum_hessians=node.split_info.sum_hessian_right,
value=node.split_info.value_right,
)
node.right_child = right_child_node
node.left_child = left_child_node
# set interaction constraints (the indices of the constraints sets)
if self.interaction_cst is not None:
# Calculate allowed_features and interaction_cst_indices only once. Child
# nodes inherit them before they get split.
(
left_child_node.allowed_features,
left_child_node.interaction_cst_indices,
) = self._compute_interactions(node)
right_child_node.interaction_cst_indices = (
left_child_node.interaction_cst_indices
)
right_child_node.allowed_features = left_child_node.allowed_features
if not self.has_missing_values[node.split_info.feature_idx]:
# If no missing values are encountered at fit time, then samples
# with missing values during predict() will go to whichever child
# has the most samples.
node.split_info.missing_go_to_left = (
left_child_node.n_samples > right_child_node.n_samples
)
self.n_nodes += 2
self.n_categorical_splits += node.split_info.is_categorical
if self.max_leaf_nodes is not None and n_leaf_nodes == self.max_leaf_nodes:
self._finalize_leaf(left_child_node)
self._finalize_leaf(right_child_node)
self._finalize_splittable_nodes()
return left_child_node, right_child_node
if self.max_depth is not None and depth == self.max_depth:
self._finalize_leaf(left_child_node)
self._finalize_leaf(right_child_node)
return left_child_node, right_child_node
if left_child_node.n_samples < self.min_samples_leaf * 2:
self._finalize_leaf(left_child_node)
if right_child_node.n_samples < self.min_samples_leaf * 2:
self._finalize_leaf(right_child_node)
if self.with_monotonic_cst:
# Set value bounds for respecting monotonic constraints
# See test_nodes_values() for details
if (
self.monotonic_cst[node.split_info.feature_idx]
== MonotonicConstraint.NO_CST
):
lower_left = lower_right = node.children_lower_bound
upper_left = upper_right = node.children_upper_bound
else:
mid = (left_child_node.value + right_child_node.value) / 2
if (
self.monotonic_cst[node.split_info.feature_idx]
== MonotonicConstraint.POS
):
lower_left, upper_left = node.children_lower_bound, mid
lower_right, upper_right = mid, node.children_upper_bound
else: # NEG
lower_left, upper_left = mid, node.children_upper_bound
lower_right, upper_right = node.children_lower_bound, mid
left_child_node.set_children_bounds(lower_left, upper_left)
right_child_node.set_children_bounds(lower_right, upper_right)
# Compute histograms of children, and compute their best possible split
# (if needed)
should_split_left = not left_child_node.is_leaf
should_split_right = not right_child_node.is_leaf
if should_split_left or should_split_right:
# We will compute the histograms of both nodes even if one of them
# is a leaf, since computing the second histogram is very cheap
# (using histogram subtraction).
n_samples_left = left_child_node.sample_indices.shape[0]
n_samples_right = right_child_node.sample_indices.shape[0]
if n_samples_left < n_samples_right:
smallest_child = left_child_node
largest_child = right_child_node
else:
smallest_child = right_child_node
largest_child = left_child_node
# We use the brute O(n_samples) method on the child that has the
# smallest number of samples, and the subtraction trick O(n_bins)
# on the other one.
# Note that both left and right child have the same allowed_features.
tic = time()
smallest_child.histograms = self.histogram_builder.compute_histograms_brute(
smallest_child.sample_indices, smallest_child.allowed_features
)
largest_child.histograms = (
self.histogram_builder.compute_histograms_subtraction(
node.histograms,
smallest_child.histograms,
smallest_child.allowed_features,
)
)
# node.histograms is reused in largest_child.histograms. To break cyclic
# memory references and help garbage collection, we set it to None.
node.histograms = None
self.total_compute_hist_time += time() - tic
tic = time()
if should_split_left:
self._compute_best_split_and_push(left_child_node)
if should_split_right:
self._compute_best_split_and_push(right_child_node)
self.total_find_split_time += time() - tic
# Release memory used by histograms as they are no longer needed
# for leaf nodes since they won't be split.
for child in (left_child_node, right_child_node):
if child.is_leaf:
del child.histograms
# Release memory used by histograms as they are no longer needed for
# internal nodes once children histograms have been computed.
del node.histograms
return left_child_node, right_child_node
def _compute_interactions(self, node):
r"""Compute features allowed by interactions to be inherited by child nodes.
Example: Assume constraints [{0, 1}, {1, 2}].
1 <- Both constraint groups could be applied from now on
/ \
1 2 <- Left split still fulfills both constraint groups.
/ \ / \ Right split at feature 2 has only group {1, 2} from now on.
LightGBM uses the same logic for overlapping groups. See
https://github.com/microsoft/LightGBM/issues/4481 for details.
Parameters:
----------
node : TreeNode
A node that might have children. Based on its feature_idx, the interaction
constraints for possible child nodes are computed.
Returns
-------
allowed_features : ndarray, dtype=uint32
Indices of features allowed to split for children.
interaction_cst_indices : list of ints
Indices of the interaction sets that have to be applied on splits of
child nodes. The fewer sets the stronger the constraint as fewer sets
contain fewer features.
"""
# Note:
# - Case of no interactions is already captured before function call.
# - This is for nodes that are already split and have a
# node.split_info.feature_idx.
allowed_features = set()
interaction_cst_indices = []
for i in node.interaction_cst_indices:
if node.split_info.feature_idx in self.interaction_cst[i]:
interaction_cst_indices.append(i)
allowed_features.update(self.interaction_cst[i])
return (
np.fromiter(allowed_features, dtype=np.uint32, count=len(allowed_features)),
interaction_cst_indices,
)
def _finalize_leaf(self, node):
"""Make node a leaf of the tree being grown."""
node.is_leaf = True
self.finalized_leaves.append(node)
def _finalize_splittable_nodes(self):
"""Transform all splittable nodes into leaves.
Used when some constraint is met e.g. maximum number of leaves or
maximum depth."""
while len(self.splittable_nodes) > 0:
node = self.splittable_nodes.pop()
self._finalize_leaf(node)
def make_predictor(self, binning_thresholds):
"""Make a TreePredictor object out of the current tree.
Parameters
----------
binning_thresholds : array-like of floats
Corresponds to the bin_thresholds_ attribute of the BinMapper.
For each feature, this stores:
- the bin frontiers for continuous features
- the unique raw category values for categorical features
Returns
-------
A TreePredictor object.
"""
predictor_nodes = np.zeros(self.n_nodes, dtype=PREDICTOR_RECORD_DTYPE)
binned_left_cat_bitsets = np.zeros(
(self.n_categorical_splits, 8), dtype=X_BITSET_INNER_DTYPE
)
raw_left_cat_bitsets = np.zeros(
(self.n_categorical_splits, 8), dtype=X_BITSET_INNER_DTYPE
)
_fill_predictor_arrays(
predictor_nodes,
binned_left_cat_bitsets,
raw_left_cat_bitsets,
self.root,
binning_thresholds,
self.n_bins_non_missing,
)
return TreePredictor(
predictor_nodes, binned_left_cat_bitsets, raw_left_cat_bitsets
)
def _fill_predictor_arrays(
predictor_nodes,
binned_left_cat_bitsets,
raw_left_cat_bitsets,
grower_node,
binning_thresholds,
n_bins_non_missing,
next_free_node_idx=0,
next_free_bitset_idx=0,
):
"""Helper used in make_predictor to set the TreePredictor fields."""
node = predictor_nodes[next_free_node_idx]
node["count"] = grower_node.n_samples
node["depth"] = grower_node.depth
if grower_node.split_info is not None:
node["gain"] = grower_node.split_info.gain
else:
node["gain"] = -1
node["value"] = grower_node.value
if grower_node.is_leaf:
# Leaf node
node["is_leaf"] = True
return next_free_node_idx + 1, next_free_bitset_idx
split_info = grower_node.split_info
feature_idx, bin_idx = split_info.feature_idx, split_info.bin_idx
node["feature_idx"] = feature_idx
node["bin_threshold"] = bin_idx
node["missing_go_to_left"] = split_info.missing_go_to_left
node["is_categorical"] = split_info.is_categorical
if split_info.bin_idx == n_bins_non_missing[feature_idx] - 1:
# Split is on the last non-missing bin: it's a "split on nans".
# All nans go to the right, the rest go to the left.
# Note: for categorical splits, bin_idx is 0 and we rely on the bitset
node["num_threshold"] = np.inf
elif split_info.is_categorical:
categories = binning_thresholds[feature_idx]
node["bitset_idx"] = next_free_bitset_idx
binned_left_cat_bitsets[next_free_bitset_idx] = split_info.left_cat_bitset
set_raw_bitset_from_binned_bitset(
raw_left_cat_bitsets[next_free_bitset_idx],
split_info.left_cat_bitset,
categories,
)
next_free_bitset_idx += 1
else:
node["num_threshold"] = binning_thresholds[feature_idx][bin_idx]
next_free_node_idx += 1
node["left"] = next_free_node_idx
next_free_node_idx, next_free_bitset_idx = _fill_predictor_arrays(
predictor_nodes,
binned_left_cat_bitsets,
raw_left_cat_bitsets,
grower_node.left_child,
binning_thresholds=binning_thresholds,
n_bins_non_missing=n_bins_non_missing,
next_free_node_idx=next_free_node_idx,
next_free_bitset_idx=next_free_bitset_idx,
)
node["right"] = next_free_node_idx
return _fill_predictor_arrays(
predictor_nodes,
binned_left_cat_bitsets,
raw_left_cat_bitsets,
grower_node.right_child,
binning_thresholds=binning_thresholds,
n_bins_non_missing=n_bins_non_missing,
next_free_node_idx=next_free_node_idx,
next_free_bitset_idx=next_free_bitset_idx,
)