3RNN/Lib/site-packages/sklearn/feature_extraction/_dict_vectorizer.py
2024-05-26 19:49:15 +02:00

453 lines
15 KiB
Python

# Authors: Lars Buitinck
# Dan Blanchard <dblanchard@ets.org>
# License: BSD 3 clause
from array import array
from collections.abc import Iterable, Mapping
from numbers import Number
from operator import itemgetter
import numpy as np
import scipy.sparse as sp
from ..base import BaseEstimator, TransformerMixin, _fit_context
from ..utils import check_array
from ..utils.validation import check_is_fitted
class DictVectorizer(TransformerMixin, BaseEstimator):
"""Transforms lists of feature-value mappings to vectors.
This transformer turns lists of mappings (dict-like objects) of feature
names to feature values into Numpy arrays or scipy.sparse matrices for use
with scikit-learn estimators.
When feature values are strings, this transformer will do a binary one-hot
(aka one-of-K) coding: one boolean-valued feature is constructed for each
of the possible string values that the feature can take on. For instance,
a feature "f" that can take on the values "ham" and "spam" will become two
features in the output, one signifying "f=ham", the other "f=spam".
If a feature value is a sequence or set of strings, this transformer
will iterate over the values and will count the occurrences of each string
value.
However, note that this transformer will only do a binary one-hot encoding
when feature values are of type string. If categorical features are
represented as numeric values such as int or iterables of strings, the
DictVectorizer can be followed by
:class:`~sklearn.preprocessing.OneHotEncoder` to complete
binary one-hot encoding.
Features that do not occur in a sample (mapping) will have a zero value
in the resulting array/matrix.
For an efficiency comparison of the different feature extractors, see
:ref:`sphx_glr_auto_examples_text_plot_hashing_vs_dict_vectorizer.py`.
Read more in the :ref:`User Guide <dict_feature_extraction>`.
Parameters
----------
dtype : dtype, default=np.float64
The type of feature values. Passed to Numpy array/scipy.sparse matrix
constructors as the dtype argument.
separator : str, default="="
Separator string used when constructing new features for one-hot
coding.
sparse : bool, default=True
Whether transform should produce scipy.sparse matrices.
sort : bool, default=True
Whether ``feature_names_`` and ``vocabulary_`` should be
sorted when fitting.
Attributes
----------
vocabulary_ : dict
A dictionary mapping feature names to feature indices.
feature_names_ : list
A list of length n_features containing the feature names (e.g., "f=ham"
and "f=spam").
See Also
--------
FeatureHasher : Performs vectorization using only a hash function.
sklearn.preprocessing.OrdinalEncoder : Handles nominal/categorical
features encoded as columns of arbitrary data types.
Examples
--------
>>> from sklearn.feature_extraction import DictVectorizer
>>> v = DictVectorizer(sparse=False)
>>> D = [{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}]
>>> X = v.fit_transform(D)
>>> X
array([[2., 0., 1.],
[0., 1., 3.]])
>>> v.inverse_transform(X) == [{'bar': 2.0, 'foo': 1.0},
... {'baz': 1.0, 'foo': 3.0}]
True
>>> v.transform({'foo': 4, 'unseen_feature': 3})
array([[0., 0., 4.]])
"""
_parameter_constraints: dict = {
"dtype": "no_validation", # validation delegated to numpy,
"separator": [str],
"sparse": ["boolean"],
"sort": ["boolean"],
}
def __init__(self, *, dtype=np.float64, separator="=", sparse=True, sort=True):
self.dtype = dtype
self.separator = separator
self.sparse = sparse
self.sort = sort
def _add_iterable_element(
self,
f,
v,
feature_names,
vocab,
*,
fitting=True,
transforming=False,
indices=None,
values=None,
):
"""Add feature names for iterable of strings"""
for vv in v:
if isinstance(vv, str):
feature_name = "%s%s%s" % (f, self.separator, vv)
vv = 1
else:
raise TypeError(
f"Unsupported type {type(vv)} in iterable "
"value. Only iterables of string are "
"supported."
)
if fitting and feature_name not in vocab:
vocab[feature_name] = len(feature_names)
feature_names.append(feature_name)
if transforming and feature_name in vocab:
indices.append(vocab[feature_name])
values.append(self.dtype(vv))
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, X, y=None):
"""Learn a list of feature name -> indices mappings.
Parameters
----------
X : Mapping or iterable over Mappings
Dict(s) or Mapping(s) from feature names (arbitrary Python
objects) to feature values (strings or convertible to dtype).
.. versionchanged:: 0.24
Accepts multiple string values for one categorical feature.
y : (ignored)
Ignored parameter.
Returns
-------
self : object
DictVectorizer class instance.
"""
feature_names = []
vocab = {}
for x in X:
for f, v in x.items():
if isinstance(v, str):
feature_name = "%s%s%s" % (f, self.separator, v)
elif isinstance(v, Number) or (v is None):
feature_name = f
elif isinstance(v, Mapping):
raise TypeError(
f"Unsupported value type {type(v)} "
f"for {f}: {v}.\n"
"Mapping objects are not supported."
)
elif isinstance(v, Iterable):
feature_name = None
self._add_iterable_element(f, v, feature_names, vocab)
if feature_name is not None:
if feature_name not in vocab:
vocab[feature_name] = len(feature_names)
feature_names.append(feature_name)
if self.sort:
feature_names.sort()
vocab = {f: i for i, f in enumerate(feature_names)}
self.feature_names_ = feature_names
self.vocabulary_ = vocab
return self
def _transform(self, X, fitting):
# Sanity check: Python's array has no way of explicitly requesting the
# signed 32-bit integers that scipy.sparse needs, so we use the next
# best thing: typecode "i" (int). However, if that gives larger or
# smaller integers than 32-bit ones, np.frombuffer screws up.
assert array("i").itemsize == 4, (
"sizeof(int) != 4 on your platform; please report this at"
" https://github.com/scikit-learn/scikit-learn/issues and"
" include the output from platform.platform() in your bug report"
)
dtype = self.dtype
if fitting:
feature_names = []
vocab = {}
else:
feature_names = self.feature_names_
vocab = self.vocabulary_
transforming = True
# Process everything as sparse regardless of setting
X = [X] if isinstance(X, Mapping) else X
indices = array("i")
indptr = [0]
# XXX we could change values to an array.array as well, but it
# would require (heuristic) conversion of dtype to typecode...
values = []
# collect all the possible feature names and build sparse matrix at
# same time
for x in X:
for f, v in x.items():
if isinstance(v, str):
feature_name = "%s%s%s" % (f, self.separator, v)
v = 1
elif isinstance(v, Number) or (v is None):
feature_name = f
elif not isinstance(v, Mapping) and isinstance(v, Iterable):
feature_name = None
self._add_iterable_element(
f,
v,
feature_names,
vocab,
fitting=fitting,
transforming=transforming,
indices=indices,
values=values,
)
else:
raise TypeError(
f"Unsupported value Type {type(v)} "
f"for {f}: {v}.\n"
f"{type(v)} objects are not supported."
)
if feature_name is not None:
if fitting and feature_name not in vocab:
vocab[feature_name] = len(feature_names)
feature_names.append(feature_name)
if feature_name in vocab:
indices.append(vocab[feature_name])
values.append(self.dtype(v))
indptr.append(len(indices))
if len(indptr) == 1:
raise ValueError("Sample sequence X is empty.")
indices = np.frombuffer(indices, dtype=np.intc)
shape = (len(indptr) - 1, len(vocab))
result_matrix = sp.csr_matrix(
(values, indices, indptr), shape=shape, dtype=dtype
)
# Sort everything if asked
if fitting and self.sort:
feature_names.sort()
map_index = np.empty(len(feature_names), dtype=np.int32)
for new_val, f in enumerate(feature_names):
map_index[new_val] = vocab[f]
vocab[f] = new_val
result_matrix = result_matrix[:, map_index]
if self.sparse:
result_matrix.sort_indices()
else:
result_matrix = result_matrix.toarray()
if fitting:
self.feature_names_ = feature_names
self.vocabulary_ = vocab
return result_matrix
@_fit_context(prefer_skip_nested_validation=True)
def fit_transform(self, X, y=None):
"""Learn a list of feature name -> indices mappings and transform X.
Like fit(X) followed by transform(X), but does not require
materializing X in memory.
Parameters
----------
X : Mapping or iterable over Mappings
Dict(s) or Mapping(s) from feature names (arbitrary Python
objects) to feature values (strings or convertible to dtype).
.. versionchanged:: 0.24
Accepts multiple string values for one categorical feature.
y : (ignored)
Ignored parameter.
Returns
-------
Xa : {array, sparse matrix}
Feature vectors; always 2-d.
"""
return self._transform(X, fitting=True)
def inverse_transform(self, X, dict_type=dict):
"""Transform array or sparse matrix X back to feature mappings.
X must have been produced by this DictVectorizer's transform or
fit_transform method; it may only have passed through transformers
that preserve the number of features and their order.
In the case of one-hot/one-of-K coding, the constructed feature
names and values are returned rather than the original ones.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Sample matrix.
dict_type : type, default=dict
Constructor for feature mappings. Must conform to the
collections.Mapping API.
Returns
-------
D : list of dict_type objects of shape (n_samples,)
Feature mappings for the samples in X.
"""
check_is_fitted(self, "feature_names_")
# COO matrix is not subscriptable
X = check_array(X, accept_sparse=["csr", "csc"])
n_samples = X.shape[0]
names = self.feature_names_
dicts = [dict_type() for _ in range(n_samples)]
if sp.issparse(X):
for i, j in zip(*X.nonzero()):
dicts[i][names[j]] = X[i, j]
else:
for i, d in enumerate(dicts):
for j, v in enumerate(X[i, :]):
if v != 0:
d[names[j]] = X[i, j]
return dicts
def transform(self, X):
"""Transform feature->value dicts to array or sparse matrix.
Named features not encountered during fit or fit_transform will be
silently ignored.
Parameters
----------
X : Mapping or iterable over Mappings of shape (n_samples,)
Dict(s) or Mapping(s) from feature names (arbitrary Python
objects) to feature values (strings or convertible to dtype).
Returns
-------
Xa : {array, sparse matrix}
Feature vectors; always 2-d.
"""
check_is_fitted(self, ["feature_names_", "vocabulary_"])
return self._transform(X, fitting=False)
def get_feature_names_out(self, input_features=None):
"""Get output feature names for transformation.
Parameters
----------
input_features : array-like of str or None, default=None
Not used, present here for API consistency by convention.
Returns
-------
feature_names_out : ndarray of str objects
Transformed feature names.
"""
check_is_fitted(self, "feature_names_")
if any(not isinstance(name, str) for name in self.feature_names_):
feature_names = [str(name) for name in self.feature_names_]
else:
feature_names = self.feature_names_
return np.asarray(feature_names, dtype=object)
def restrict(self, support, indices=False):
"""Restrict the features to those in support using feature selection.
This function modifies the estimator in-place.
Parameters
----------
support : array-like
Boolean mask or list of indices (as returned by the get_support
member of feature selectors).
indices : bool, default=False
Whether support is a list of indices.
Returns
-------
self : object
DictVectorizer class instance.
Examples
--------
>>> from sklearn.feature_extraction import DictVectorizer
>>> from sklearn.feature_selection import SelectKBest, chi2
>>> v = DictVectorizer()
>>> D = [{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}]
>>> X = v.fit_transform(D)
>>> support = SelectKBest(chi2, k=2).fit(X, [0, 1])
>>> v.get_feature_names_out()
array(['bar', 'baz', 'foo'], ...)
>>> v.restrict(support.get_support())
DictVectorizer()
>>> v.get_feature_names_out()
array(['bar', 'foo'], ...)
"""
check_is_fitted(self, "feature_names_")
if not indices:
support = np.where(support)[0]
names = self.feature_names_
new_vocab = {}
for i in support:
new_vocab[names[i]] = len(new_vocab)
self.vocabulary_ = new_vocab
self.feature_names_ = [
f for f, i in sorted(new_vocab.items(), key=itemgetter(1))
]
return self
def _more_tags(self):
return {"X_types": ["dict"]}