3RNN/Lib/site-packages/sklearn/linear_model/tests/test_passive_aggressive.py
2024-05-26 19:49:15 +02:00

279 lines
9.1 KiB
Python

import numpy as np
import pytest
from sklearn.base import ClassifierMixin
from sklearn.datasets import load_iris
from sklearn.linear_model import PassiveAggressiveClassifier, PassiveAggressiveRegressor
from sklearn.utils import check_random_state
from sklearn.utils._testing import (
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
)
from sklearn.utils.fixes import CSR_CONTAINERS
iris = load_iris()
random_state = check_random_state(12)
indices = np.arange(iris.data.shape[0])
random_state.shuffle(indices)
X = iris.data[indices]
y = iris.target[indices]
class MyPassiveAggressive(ClassifierMixin):
def __init__(
self,
C=1.0,
epsilon=0.01,
loss="hinge",
fit_intercept=True,
n_iter=1,
random_state=None,
):
self.C = C
self.epsilon = epsilon
self.loss = loss
self.fit_intercept = fit_intercept
self.n_iter = n_iter
def fit(self, X, y):
n_samples, n_features = X.shape
self.w = np.zeros(n_features, dtype=np.float64)
self.b = 0.0
for t in range(self.n_iter):
for i in range(n_samples):
p = self.project(X[i])
if self.loss in ("hinge", "squared_hinge"):
loss = max(1 - y[i] * p, 0)
else:
loss = max(np.abs(p - y[i]) - self.epsilon, 0)
sqnorm = np.dot(X[i], X[i])
if self.loss in ("hinge", "epsilon_insensitive"):
step = min(self.C, loss / sqnorm)
elif self.loss in ("squared_hinge", "squared_epsilon_insensitive"):
step = loss / (sqnorm + 1.0 / (2 * self.C))
if self.loss in ("hinge", "squared_hinge"):
step *= y[i]
else:
step *= np.sign(y[i] - p)
self.w += step * X[i]
if self.fit_intercept:
self.b += step
def project(self, X):
return np.dot(X, self.w) + self.b
@pytest.mark.parametrize("average", [False, True])
@pytest.mark.parametrize("fit_intercept", [True, False])
@pytest.mark.parametrize("csr_container", [None, *CSR_CONTAINERS])
def test_classifier_accuracy(csr_container, fit_intercept, average):
data = csr_container(X) if csr_container is not None else X
clf = PassiveAggressiveClassifier(
C=1.0,
max_iter=30,
fit_intercept=fit_intercept,
random_state=1,
average=average,
tol=None,
)
clf.fit(data, y)
score = clf.score(data, y)
assert score > 0.79
if average:
assert hasattr(clf, "_average_coef")
assert hasattr(clf, "_average_intercept")
assert hasattr(clf, "_standard_intercept")
assert hasattr(clf, "_standard_coef")
@pytest.mark.parametrize("average", [False, True])
@pytest.mark.parametrize("csr_container", [None, *CSR_CONTAINERS])
def test_classifier_partial_fit(csr_container, average):
classes = np.unique(y)
data = csr_container(X) if csr_container is not None else X
clf = PassiveAggressiveClassifier(random_state=0, average=average, max_iter=5)
for t in range(30):
clf.partial_fit(data, y, classes)
score = clf.score(data, y)
assert score > 0.79
if average:
assert hasattr(clf, "_average_coef")
assert hasattr(clf, "_average_intercept")
assert hasattr(clf, "_standard_intercept")
assert hasattr(clf, "_standard_coef")
def test_classifier_refit():
# Classifier can be retrained on different labels and features.
clf = PassiveAggressiveClassifier(max_iter=5).fit(X, y)
assert_array_equal(clf.classes_, np.unique(y))
clf.fit(X[:, :-1], iris.target_names[y])
assert_array_equal(clf.classes_, iris.target_names)
@pytest.mark.parametrize("csr_container", [None, *CSR_CONTAINERS])
@pytest.mark.parametrize("loss", ("hinge", "squared_hinge"))
def test_classifier_correctness(loss, csr_container):
y_bin = y.copy()
y_bin[y != 1] = -1
clf1 = MyPassiveAggressive(loss=loss, n_iter=2)
clf1.fit(X, y_bin)
data = csr_container(X) if csr_container is not None else X
clf2 = PassiveAggressiveClassifier(loss=loss, max_iter=2, shuffle=False, tol=None)
clf2.fit(data, y_bin)
assert_array_almost_equal(clf1.w, clf2.coef_.ravel(), decimal=2)
@pytest.mark.parametrize(
"response_method", ["predict_proba", "predict_log_proba", "transform"]
)
def test_classifier_undefined_methods(response_method):
clf = PassiveAggressiveClassifier(max_iter=100)
with pytest.raises(AttributeError):
getattr(clf, response_method)
def test_class_weights():
# Test class weights.
X2 = np.array([[-1.0, -1.0], [-1.0, 0], [-0.8, -1.0], [1.0, 1.0], [1.0, 0.0]])
y2 = [1, 1, 1, -1, -1]
clf = PassiveAggressiveClassifier(
C=0.1, max_iter=100, class_weight=None, random_state=100
)
clf.fit(X2, y2)
assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1]))
# we give a small weights to class 1
clf = PassiveAggressiveClassifier(
C=0.1, max_iter=100, class_weight={1: 0.001}, random_state=100
)
clf.fit(X2, y2)
# now the hyperplane should rotate clock-wise and
# the prediction on this point should shift
assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1]))
def test_partial_fit_weight_class_balanced():
# partial_fit with class_weight='balanced' not supported
clf = PassiveAggressiveClassifier(class_weight="balanced", max_iter=100)
with pytest.raises(ValueError):
clf.partial_fit(X, y, classes=np.unique(y))
def test_equal_class_weight():
X2 = [[1, 0], [1, 0], [0, 1], [0, 1]]
y2 = [0, 0, 1, 1]
clf = PassiveAggressiveClassifier(C=0.1, tol=None, class_weight=None)
clf.fit(X2, y2)
# Already balanced, so "balanced" weights should have no effect
clf_balanced = PassiveAggressiveClassifier(C=0.1, tol=None, class_weight="balanced")
clf_balanced.fit(X2, y2)
clf_weighted = PassiveAggressiveClassifier(
C=0.1, tol=None, class_weight={0: 0.5, 1: 0.5}
)
clf_weighted.fit(X2, y2)
# should be similar up to some epsilon due to learning rate schedule
assert_almost_equal(clf.coef_, clf_weighted.coef_, decimal=2)
assert_almost_equal(clf.coef_, clf_balanced.coef_, decimal=2)
def test_wrong_class_weight_label():
# ValueError due to wrong class_weight label.
X2 = np.array([[-1.0, -1.0], [-1.0, 0], [-0.8, -1.0], [1.0, 1.0], [1.0, 0.0]])
y2 = [1, 1, 1, -1, -1]
clf = PassiveAggressiveClassifier(class_weight={0: 0.5}, max_iter=100)
with pytest.raises(ValueError):
clf.fit(X2, y2)
@pytest.mark.parametrize("average", [False, True])
@pytest.mark.parametrize("fit_intercept", [True, False])
@pytest.mark.parametrize("csr_container", [None, *CSR_CONTAINERS])
def test_regressor_mse(csr_container, fit_intercept, average):
y_bin = y.copy()
y_bin[y != 1] = -1
data = csr_container(X) if csr_container is not None else X
reg = PassiveAggressiveRegressor(
C=1.0,
fit_intercept=fit_intercept,
random_state=0,
average=average,
max_iter=5,
)
reg.fit(data, y_bin)
pred = reg.predict(data)
assert np.mean((pred - y_bin) ** 2) < 1.7
if average:
assert hasattr(reg, "_average_coef")
assert hasattr(reg, "_average_intercept")
assert hasattr(reg, "_standard_intercept")
assert hasattr(reg, "_standard_coef")
@pytest.mark.parametrize("average", [False, True])
@pytest.mark.parametrize("csr_container", [None, *CSR_CONTAINERS])
def test_regressor_partial_fit(csr_container, average):
y_bin = y.copy()
y_bin[y != 1] = -1
data = csr_container(X) if csr_container is not None else X
reg = PassiveAggressiveRegressor(random_state=0, average=average, max_iter=100)
for t in range(50):
reg.partial_fit(data, y_bin)
pred = reg.predict(data)
assert np.mean((pred - y_bin) ** 2) < 1.7
if average:
assert hasattr(reg, "_average_coef")
assert hasattr(reg, "_average_intercept")
assert hasattr(reg, "_standard_intercept")
assert hasattr(reg, "_standard_coef")
@pytest.mark.parametrize("csr_container", [None, *CSR_CONTAINERS])
@pytest.mark.parametrize("loss", ("epsilon_insensitive", "squared_epsilon_insensitive"))
def test_regressor_correctness(loss, csr_container):
y_bin = y.copy()
y_bin[y != 1] = -1
reg1 = MyPassiveAggressive(loss=loss, n_iter=2)
reg1.fit(X, y_bin)
data = csr_container(X) if csr_container is not None else X
reg2 = PassiveAggressiveRegressor(tol=None, loss=loss, max_iter=2, shuffle=False)
reg2.fit(data, y_bin)
assert_array_almost_equal(reg1.w, reg2.coef_.ravel(), decimal=2)
def test_regressor_undefined_methods():
reg = PassiveAggressiveRegressor(max_iter=100)
with pytest.raises(AttributeError):
reg.transform(X)
# TODO(1.7): remove
@pytest.mark.parametrize(
"Estimator", [PassiveAggressiveClassifier, PassiveAggressiveRegressor]
)
def test_passive_aggressive_deprecated_average(Estimator):
est = Estimator(average=0)
with pytest.warns(FutureWarning, match="average=0"):
est.fit(X, y)