3RNN/Lib/site-packages/sklearn/tests/metadata_routing_common.py
2024-05-26 19:49:15 +02:00

521 lines
17 KiB
Python

from functools import partial
import numpy as np
from numpy.testing import assert_array_equal
from sklearn.base import (
BaseEstimator,
ClassifierMixin,
MetaEstimatorMixin,
RegressorMixin,
TransformerMixin,
clone,
)
from sklearn.metrics._scorer import _Scorer, mean_squared_error
from sklearn.model_selection import BaseCrossValidator
from sklearn.model_selection._split import GroupsConsumerMixin
from sklearn.utils._metadata_requests import (
SIMPLE_METHODS,
)
from sklearn.utils.metadata_routing import (
MetadataRouter,
MethodMapping,
process_routing,
)
from sklearn.utils.multiclass import _check_partial_fit_first_call
def record_metadata(obj, method, record_default=True, **kwargs):
"""Utility function to store passed metadata to a method.
If record_default is False, kwargs whose values are "default" are skipped.
This is so that checks on keyword arguments whose default was not changed
are skipped.
"""
if not hasattr(obj, "_records"):
obj._records = {}
if not record_default:
kwargs = {
key: val
for key, val in kwargs.items()
if not isinstance(val, str) or (val != "default")
}
obj._records[method] = kwargs
def check_recorded_metadata(obj, method, split_params=tuple(), **kwargs):
"""Check whether the expected metadata is passed to the object's method.
Parameters
----------
obj : estimator object
sub-estimator to check routed params for
method : str
sub-estimator's method where metadata is routed to
split_params : tuple, default=empty
specifies any parameters which are to be checked as being a subset
of the original values
**kwargs : dict
passed metadata
"""
records = getattr(obj, "_records", dict()).get(method, dict())
assert set(kwargs.keys()) == set(
records.keys()
), f"Expected {kwargs.keys()} vs {records.keys()}"
for key, value in kwargs.items():
recorded_value = records[key]
# The following condition is used to check for any specified parameters
# being a subset of the original values
if key in split_params and recorded_value is not None:
assert np.isin(recorded_value, value).all()
else:
if isinstance(recorded_value, np.ndarray):
assert_array_equal(recorded_value, value)
else:
assert recorded_value is value, f"Expected {recorded_value} vs {value}"
record_metadata_not_default = partial(record_metadata, record_default=False)
def assert_request_is_empty(metadata_request, exclude=None):
"""Check if a metadata request dict is empty.
One can exclude a method or a list of methods from the check using the
``exclude`` parameter. If metadata_request is a MetadataRouter, then
``exclude`` can be of the form ``{"object" : [method, ...]}``.
"""
if isinstance(metadata_request, MetadataRouter):
for name, route_mapping in metadata_request:
if exclude is not None and name in exclude:
_exclude = exclude[name]
else:
_exclude = None
assert_request_is_empty(route_mapping.router, exclude=_exclude)
return
exclude = [] if exclude is None else exclude
for method in SIMPLE_METHODS:
if method in exclude:
continue
mmr = getattr(metadata_request, method)
props = [
prop
for prop, alias in mmr.requests.items()
if isinstance(alias, str) or alias is not None
]
assert not props
def assert_request_equal(request, dictionary):
for method, requests in dictionary.items():
mmr = getattr(request, method)
assert mmr.requests == requests
empty_methods = [method for method in SIMPLE_METHODS if method not in dictionary]
for method in empty_methods:
assert not len(getattr(request, method).requests)
class _Registry(list):
# This list is used to get a reference to the sub-estimators, which are not
# necessarily stored on the metaestimator. We need to override __deepcopy__
# because the sub-estimators are probably cloned, which would result in a
# new copy of the list, but we need copy and deep copy both to return the
# same instance.
def __deepcopy__(self, memo):
return self
def __copy__(self):
return self
class ConsumingRegressor(RegressorMixin, BaseEstimator):
"""A regressor consuming metadata.
Parameters
----------
registry : list, default=None
If a list, the estimator will append itself to the list in order to have
a reference to the estimator later on. Since that reference is not
required in all tests, registration can be skipped by leaving this value
as None.
"""
def __init__(self, registry=None):
self.registry = registry
def partial_fit(self, X, y, sample_weight="default", metadata="default"):
if self.registry is not None:
self.registry.append(self)
record_metadata_not_default(
self, "partial_fit", sample_weight=sample_weight, metadata=metadata
)
return self
def fit(self, X, y, sample_weight="default", metadata="default"):
if self.registry is not None:
self.registry.append(self)
record_metadata_not_default(
self, "fit", sample_weight=sample_weight, metadata=metadata
)
return self
def predict(self, X, y=None, sample_weight="default", metadata="default"):
record_metadata_not_default(
self, "predict", sample_weight=sample_weight, metadata=metadata
)
return np.zeros(shape=(len(X),))
def score(self, X, y, sample_weight="default", metadata="default"):
record_metadata_not_default(
self, "score", sample_weight=sample_weight, metadata=metadata
)
return 1
class NonConsumingClassifier(ClassifierMixin, BaseEstimator):
"""A classifier which accepts no metadata on any method."""
def __init__(self, alpha=0.0):
self.alpha = alpha
def fit(self, X, y):
self.classes_ = np.unique(y)
return self
def partial_fit(self, X, y, classes=None):
return self
def decision_function(self, X):
return self.predict(X)
def predict(self, X):
y_pred = np.empty(shape=(len(X),))
y_pred[: len(X) // 2] = 0
y_pred[len(X) // 2 :] = 1
return y_pred
class NonConsumingRegressor(RegressorMixin, BaseEstimator):
"""A classifier which accepts no metadata on any method."""
def fit(self, X, y):
return self
def partial_fit(self, X, y):
return self
def predict(self, X):
return np.ones(len(X)) # pragma: no cover
class ConsumingClassifier(ClassifierMixin, BaseEstimator):
"""A classifier consuming metadata.
Parameters
----------
registry : list, default=None
If a list, the estimator will append itself to the list in order to have
a reference to the estimator later on. Since that reference is not
required in all tests, registration can be skipped by leaving this value
as None.
alpha : float, default=0
This parameter is only used to test the ``*SearchCV`` objects, and
doesn't do anything.
"""
def __init__(self, registry=None, alpha=0.0):
self.alpha = alpha
self.registry = registry
def partial_fit(
self, X, y, classes=None, sample_weight="default", metadata="default"
):
if self.registry is not None:
self.registry.append(self)
record_metadata_not_default(
self, "partial_fit", sample_weight=sample_weight, metadata=metadata
)
_check_partial_fit_first_call(self, classes)
return self
def fit(self, X, y, sample_weight="default", metadata="default"):
if self.registry is not None:
self.registry.append(self)
record_metadata_not_default(
self, "fit", sample_weight=sample_weight, metadata=metadata
)
self.classes_ = np.unique(y)
return self
def predict(self, X, sample_weight="default", metadata="default"):
record_metadata_not_default(
self, "predict", sample_weight=sample_weight, metadata=metadata
)
y_score = np.empty(shape=(len(X),), dtype="int8")
y_score[len(X) // 2 :] = 0
y_score[: len(X) // 2] = 1
return y_score
def predict_proba(self, X, sample_weight="default", metadata="default"):
record_metadata_not_default(
self, "predict_proba", sample_weight=sample_weight, metadata=metadata
)
y_proba = np.empty(shape=(len(X), 2))
y_proba[: len(X) // 2, :] = np.asarray([1.0, 0.0])
y_proba[len(X) // 2 :, :] = np.asarray([0.0, 1.0])
return y_proba
def predict_log_proba(self, X, sample_weight="default", metadata="default"):
pass # pragma: no cover
# uncomment when needed
# record_metadata_not_default(
# self, "predict_log_proba", sample_weight=sample_weight, metadata=metadata
# )
# return np.zeros(shape=(len(X), 2))
def decision_function(self, X, sample_weight="default", metadata="default"):
record_metadata_not_default(
self, "predict_proba", sample_weight=sample_weight, metadata=metadata
)
y_score = np.empty(shape=(len(X),))
y_score[len(X) // 2 :] = 0
y_score[: len(X) // 2] = 1
return y_score
# uncomment when needed
# def score(self, X, y, sample_weight="default", metadata="default"):
# record_metadata_not_default(
# self, "score", sample_weight=sample_weight, metadata=metadata
# )
# return 1
class ConsumingTransformer(TransformerMixin, BaseEstimator):
"""A transformer which accepts metadata on fit and transform.
Parameters
----------
registry : list, default=None
If a list, the estimator will append itself to the list in order to have
a reference to the estimator later on. Since that reference is not
required in all tests, registration can be skipped by leaving this value
as None.
"""
def __init__(self, registry=None):
self.registry = registry
def fit(self, X, y=None, sample_weight=None, metadata=None):
if self.registry is not None:
self.registry.append(self)
record_metadata_not_default(
self, "fit", sample_weight=sample_weight, metadata=metadata
)
return self
def transform(self, X, sample_weight=None, metadata=None):
record_metadata(
self, "transform", sample_weight=sample_weight, metadata=metadata
)
return X
def fit_transform(self, X, y, sample_weight=None, metadata=None):
# implementing ``fit_transform`` is necessary since
# ``TransformerMixin.fit_transform`` doesn't route any metadata to
# ``transform``, while here we want ``transform`` to receive
# ``sample_weight`` and ``metadata``.
record_metadata(
self, "fit_transform", sample_weight=sample_weight, metadata=metadata
)
return self.fit(X, y, sample_weight=sample_weight, metadata=metadata).transform(
X, sample_weight=sample_weight, metadata=metadata
)
def inverse_transform(self, X, sample_weight=None, metadata=None):
record_metadata(
self, "inverse_transform", sample_weight=sample_weight, metadata=metadata
)
return X
class ConsumingNoFitTransformTransformer(BaseEstimator):
"""A metadata consuming transformer that doesn't inherit from
TransformerMixin, and thus doesn't implement `fit_transform`. Note that
TransformerMixin's `fit_transform` doesn't route metadata to `transform`."""
def __init__(self, registry=None):
self.registry = registry
def fit(self, X, y=None, sample_weight=None, metadata=None):
if self.registry is not None:
self.registry.append(self)
record_metadata(self, "fit", sample_weight=sample_weight, metadata=metadata)
return self
def transform(self, X, sample_weight=None, metadata=None):
record_metadata(
self, "transform", sample_weight=sample_weight, metadata=metadata
)
return X
class ConsumingScorer(_Scorer):
def __init__(self, registry=None):
super().__init__(
score_func=mean_squared_error, sign=1, kwargs={}, response_method="predict"
)
self.registry = registry
def _score(self, method_caller, clf, X, y, **kwargs):
if self.registry is not None:
self.registry.append(self)
record_metadata_not_default(self, "score", **kwargs)
sample_weight = kwargs.get("sample_weight", None)
return super()._score(method_caller, clf, X, y, sample_weight=sample_weight)
class ConsumingSplitter(GroupsConsumerMixin, BaseCrossValidator):
def __init__(self, registry=None):
self.registry = registry
def split(self, X, y=None, groups="default", metadata="default"):
if self.registry is not None:
self.registry.append(self)
record_metadata_not_default(self, "split", groups=groups, metadata=metadata)
split_index = len(X) // 2
train_indices = list(range(0, split_index))
test_indices = list(range(split_index, len(X)))
yield test_indices, train_indices
yield train_indices, test_indices
def get_n_splits(self, X=None, y=None, groups=None, metadata=None):
return 2
def _iter_test_indices(self, X=None, y=None, groups=None):
split_index = len(X) // 2
train_indices = list(range(0, split_index))
test_indices = list(range(split_index, len(X)))
yield test_indices
yield train_indices
class MetaRegressor(MetaEstimatorMixin, RegressorMixin, BaseEstimator):
"""A meta-regressor which is only a router."""
def __init__(self, estimator):
self.estimator = estimator
def fit(self, X, y, **fit_params):
params = process_routing(self, "fit", **fit_params)
self.estimator_ = clone(self.estimator).fit(X, y, **params.estimator.fit)
def get_metadata_routing(self):
router = MetadataRouter(owner=self.__class__.__name__).add(
estimator=self.estimator,
method_mapping=MethodMapping().add(caller="fit", callee="fit"),
)
return router
class WeightedMetaRegressor(MetaEstimatorMixin, RegressorMixin, BaseEstimator):
"""A meta-regressor which is also a consumer."""
def __init__(self, estimator, registry=None):
self.estimator = estimator
self.registry = registry
def fit(self, X, y, sample_weight=None, **fit_params):
if self.registry is not None:
self.registry.append(self)
record_metadata(self, "fit", sample_weight=sample_weight)
params = process_routing(self, "fit", sample_weight=sample_weight, **fit_params)
self.estimator_ = clone(self.estimator).fit(X, y, **params.estimator.fit)
return self
def predict(self, X, **predict_params):
params = process_routing(self, "predict", **predict_params)
return self.estimator_.predict(X, **params.estimator.predict)
def get_metadata_routing(self):
router = (
MetadataRouter(owner=self.__class__.__name__)
.add_self_request(self)
.add(
estimator=self.estimator,
method_mapping=MethodMapping()
.add(caller="fit", callee="fit")
.add(caller="predict", callee="predict"),
)
)
return router
class WeightedMetaClassifier(MetaEstimatorMixin, ClassifierMixin, BaseEstimator):
"""A meta-estimator which also consumes sample_weight itself in ``fit``."""
def __init__(self, estimator, registry=None):
self.estimator = estimator
self.registry = registry
def fit(self, X, y, sample_weight=None, **kwargs):
if self.registry is not None:
self.registry.append(self)
record_metadata(self, "fit", sample_weight=sample_weight)
params = process_routing(self, "fit", sample_weight=sample_weight, **kwargs)
self.estimator_ = clone(self.estimator).fit(X, y, **params.estimator.fit)
return self
def get_metadata_routing(self):
router = (
MetadataRouter(owner=self.__class__.__name__)
.add_self_request(self)
.add(
estimator=self.estimator,
method_mapping=MethodMapping().add(caller="fit", callee="fit"),
)
)
return router
class MetaTransformer(MetaEstimatorMixin, TransformerMixin, BaseEstimator):
"""A simple meta-transformer."""
def __init__(self, transformer):
self.transformer = transformer
def fit(self, X, y=None, **fit_params):
params = process_routing(self, "fit", **fit_params)
self.transformer_ = clone(self.transformer).fit(X, y, **params.transformer.fit)
return self
def transform(self, X, y=None, **transform_params):
params = process_routing(self, "transform", **transform_params)
return self.transformer_.transform(X, **params.transformer.transform)
def get_metadata_routing(self):
return MetadataRouter(owner=self.__class__.__name__).add(
transformer=self.transformer,
method_mapping=MethodMapping()
.add(caller="fit", callee="fit")
.add(caller="transform", callee="transform"),
)