3RNN/Lib/site-packages/sklearn/tree/_export.py
2024-05-26 19:49:15 +02:00

1160 lines
39 KiB
Python

"""
This module defines export functions for decision trees.
"""
# Authors: Gilles Louppe <g.louppe@gmail.com>
# Peter Prettenhofer <peter.prettenhofer@gmail.com>
# Brian Holt <bdholt1@gmail.com>
# Noel Dawe <noel@dawe.me>
# Satrajit Gosh <satrajit.ghosh@gmail.com>
# Trevor Stephens <trev.stephens@gmail.com>
# Li Li <aiki.nogard@gmail.com>
# Giuseppe Vettigli <vettigli@gmail.com>
# License: BSD 3 clause
from collections.abc import Iterable
from io import StringIO
from numbers import Integral
import numpy as np
from ..base import is_classifier
from ..utils._param_validation import HasMethods, Interval, StrOptions, validate_params
from ..utils.validation import check_array, check_is_fitted
from . import DecisionTreeClassifier, DecisionTreeRegressor, _criterion, _tree
from ._reingold_tilford import Tree, buchheim
def _color_brew(n):
"""Generate n colors with equally spaced hues.
Parameters
----------
n : int
The number of colors required.
Returns
-------
color_list : list, length n
List of n tuples of form (R, G, B) being the components of each color.
"""
color_list = []
# Initialize saturation & value; calculate chroma & value shift
s, v = 0.75, 0.9
c = s * v
m = v - c
for h in np.arange(25, 385, 360.0 / n).astype(int):
# Calculate some intermediate values
h_bar = h / 60.0
x = c * (1 - abs((h_bar % 2) - 1))
# Initialize RGB with same hue & chroma as our color
rgb = [
(c, x, 0),
(x, c, 0),
(0, c, x),
(0, x, c),
(x, 0, c),
(c, 0, x),
(c, x, 0),
]
r, g, b = rgb[int(h_bar)]
# Shift the initial RGB values to match value and store
rgb = [(int(255 * (r + m))), (int(255 * (g + m))), (int(255 * (b + m)))]
color_list.append(rgb)
return color_list
class Sentinel:
def __repr__(self):
return '"tree.dot"'
SENTINEL = Sentinel()
@validate_params(
{
"decision_tree": [DecisionTreeClassifier, DecisionTreeRegressor],
"max_depth": [Interval(Integral, 0, None, closed="left"), None],
"feature_names": ["array-like", None],
"class_names": ["array-like", "boolean", None],
"label": [StrOptions({"all", "root", "none"})],
"filled": ["boolean"],
"impurity": ["boolean"],
"node_ids": ["boolean"],
"proportion": ["boolean"],
"rounded": ["boolean"],
"precision": [Interval(Integral, 0, None, closed="left"), None],
"ax": "no_validation", # delegate validation to matplotlib
"fontsize": [Interval(Integral, 0, None, closed="left"), None],
},
prefer_skip_nested_validation=True,
)
def plot_tree(
decision_tree,
*,
max_depth=None,
feature_names=None,
class_names=None,
label="all",
filled=False,
impurity=True,
node_ids=False,
proportion=False,
rounded=False,
precision=3,
ax=None,
fontsize=None,
):
"""Plot a decision tree.
The sample counts that are shown are weighted with any sample_weights that
might be present.
The visualization is fit automatically to the size of the axis.
Use the ``figsize`` or ``dpi`` arguments of ``plt.figure`` to control
the size of the rendering.
Read more in the :ref:`User Guide <tree>`.
.. versionadded:: 0.21
Parameters
----------
decision_tree : decision tree regressor or classifier
The decision tree to be plotted.
max_depth : int, default=None
The maximum depth of the representation. If None, the tree is fully
generated.
feature_names : array-like of str, default=None
Names of each of the features.
If None, generic names will be used ("x[0]", "x[1]", ...).
class_names : array-like of str or True, default=None
Names of each of the target classes in ascending numerical order.
Only relevant for classification and not supported for multi-output.
If ``True``, shows a symbolic representation of the class name.
label : {'all', 'root', 'none'}, default='all'
Whether to show informative labels for impurity, etc.
Options include 'all' to show at every node, 'root' to show only at
the top root node, or 'none' to not show at any node.
filled : bool, default=False
When set to ``True``, paint nodes to indicate majority class for
classification, extremity of values for regression, or purity of node
for multi-output.
impurity : bool, default=True
When set to ``True``, show the impurity at each node.
node_ids : bool, default=False
When set to ``True``, show the ID number on each node.
proportion : bool, default=False
When set to ``True``, change the display of 'values' and/or 'samples'
to be proportions and percentages respectively.
rounded : bool, default=False
When set to ``True``, draw node boxes with rounded corners and use
Helvetica fonts instead of Times-Roman.
precision : int, default=3
Number of digits of precision for floating point in the values of
impurity, threshold and value attributes of each node.
ax : matplotlib axis, default=None
Axes to plot to. If None, use current axis. Any previous content
is cleared.
fontsize : int, default=None
Size of text font. If None, determined automatically to fit figure.
Returns
-------
annotations : list of artists
List containing the artists for the annotation boxes making up the
tree.
Examples
--------
>>> from sklearn.datasets import load_iris
>>> from sklearn import tree
>>> clf = tree.DecisionTreeClassifier(random_state=0)
>>> iris = load_iris()
>>> clf = clf.fit(iris.data, iris.target)
>>> tree.plot_tree(clf)
[...]
"""
check_is_fitted(decision_tree)
exporter = _MPLTreeExporter(
max_depth=max_depth,
feature_names=feature_names,
class_names=class_names,
label=label,
filled=filled,
impurity=impurity,
node_ids=node_ids,
proportion=proportion,
rounded=rounded,
precision=precision,
fontsize=fontsize,
)
return exporter.export(decision_tree, ax=ax)
class _BaseTreeExporter:
def __init__(
self,
max_depth=None,
feature_names=None,
class_names=None,
label="all",
filled=False,
impurity=True,
node_ids=False,
proportion=False,
rounded=False,
precision=3,
fontsize=None,
):
self.max_depth = max_depth
self.feature_names = feature_names
self.class_names = class_names
self.label = label
self.filled = filled
self.impurity = impurity
self.node_ids = node_ids
self.proportion = proportion
self.rounded = rounded
self.precision = precision
self.fontsize = fontsize
def get_color(self, value):
# Find the appropriate color & intensity for a node
if self.colors["bounds"] is None:
# Classification tree
color = list(self.colors["rgb"][np.argmax(value)])
sorted_values = sorted(value, reverse=True)
if len(sorted_values) == 1:
alpha = 0.0
else:
alpha = (sorted_values[0] - sorted_values[1]) / (1 - sorted_values[1])
else:
# Regression tree or multi-output
color = list(self.colors["rgb"][0])
alpha = (value - self.colors["bounds"][0]) / (
self.colors["bounds"][1] - self.colors["bounds"][0]
)
# compute the color as alpha against white
color = [int(round(alpha * c + (1 - alpha) * 255, 0)) for c in color]
# Return html color code in #RRGGBB format
return "#%2x%2x%2x" % tuple(color)
def get_fill_color(self, tree, node_id):
# Fetch appropriate color for node
if "rgb" not in self.colors:
# Initialize colors and bounds if required
self.colors["rgb"] = _color_brew(tree.n_classes[0])
if tree.n_outputs != 1:
# Find max and min impurities for multi-output
self.colors["bounds"] = (np.min(-tree.impurity), np.max(-tree.impurity))
elif tree.n_classes[0] == 1 and len(np.unique(tree.value)) != 1:
# Find max and min values in leaf nodes for regression
self.colors["bounds"] = (np.min(tree.value), np.max(tree.value))
if tree.n_outputs == 1:
node_val = tree.value[node_id][0, :]
if (
tree.n_classes[0] == 1
and isinstance(node_val, Iterable)
and self.colors["bounds"] is not None
):
# Unpack the float only for the regression tree case.
# Classification tree requires an Iterable in `get_color`.
node_val = node_val.item()
else:
# If multi-output color node by impurity
node_val = -tree.impurity[node_id]
return self.get_color(node_val)
def node_to_str(self, tree, node_id, criterion):
# Generate the node content string
if tree.n_outputs == 1:
value = tree.value[node_id][0, :]
else:
value = tree.value[node_id]
# Should labels be shown?
labels = (self.label == "root" and node_id == 0) or self.label == "all"
characters = self.characters
node_string = characters[-1]
# Write node ID
if self.node_ids:
if labels:
node_string += "node "
node_string += characters[0] + str(node_id) + characters[4]
# Write decision criteria
if tree.children_left[node_id] != _tree.TREE_LEAF:
# Always write node decision criteria, except for leaves
if self.feature_names is not None:
feature = self.feature_names[tree.feature[node_id]]
else:
feature = "x%s%s%s" % (
characters[1],
tree.feature[node_id],
characters[2],
)
node_string += "%s %s %s%s" % (
feature,
characters[3],
round(tree.threshold[node_id], self.precision),
characters[4],
)
# Write impurity
if self.impurity:
if isinstance(criterion, _criterion.FriedmanMSE):
criterion = "friedman_mse"
elif isinstance(criterion, _criterion.MSE) or criterion == "squared_error":
criterion = "squared_error"
elif not isinstance(criterion, str):
criterion = "impurity"
if labels:
node_string += "%s = " % criterion
node_string += (
str(round(tree.impurity[node_id], self.precision)) + characters[4]
)
# Write node sample count
if labels:
node_string += "samples = "
if self.proportion:
percent = (
100.0 * tree.n_node_samples[node_id] / float(tree.n_node_samples[0])
)
node_string += str(round(percent, 1)) + "%" + characters[4]
else:
node_string += str(tree.n_node_samples[node_id]) + characters[4]
# Write node class distribution / regression value
if not self.proportion and tree.n_classes[0] != 1:
# For classification this will show the proportion of samples
value = value * tree.weighted_n_node_samples[node_id]
if labels:
node_string += "value = "
if tree.n_classes[0] == 1:
# Regression
value_text = np.around(value, self.precision)
elif self.proportion:
# Classification
value_text = np.around(value, self.precision)
elif np.all(np.equal(np.mod(value, 1), 0)):
# Classification without floating-point weights
value_text = value.astype(int)
else:
# Classification with floating-point weights
value_text = np.around(value, self.precision)
# Strip whitespace
value_text = str(value_text.astype("S32")).replace("b'", "'")
value_text = value_text.replace("' '", ", ").replace("'", "")
if tree.n_classes[0] == 1 and tree.n_outputs == 1:
value_text = value_text.replace("[", "").replace("]", "")
value_text = value_text.replace("\n ", characters[4])
node_string += value_text + characters[4]
# Write node majority class
if (
self.class_names is not None
and tree.n_classes[0] != 1
and tree.n_outputs == 1
):
# Only done for single-output classification trees
if labels:
node_string += "class = "
if self.class_names is not True:
class_name = self.class_names[np.argmax(value)]
else:
class_name = "y%s%s%s" % (
characters[1],
np.argmax(value),
characters[2],
)
node_string += class_name
# Clean up any trailing newlines
if node_string.endswith(characters[4]):
node_string = node_string[: -len(characters[4])]
return node_string + characters[5]
class _DOTTreeExporter(_BaseTreeExporter):
def __init__(
self,
out_file=SENTINEL,
max_depth=None,
feature_names=None,
class_names=None,
label="all",
filled=False,
leaves_parallel=False,
impurity=True,
node_ids=False,
proportion=False,
rotate=False,
rounded=False,
special_characters=False,
precision=3,
fontname="helvetica",
):
super().__init__(
max_depth=max_depth,
feature_names=feature_names,
class_names=class_names,
label=label,
filled=filled,
impurity=impurity,
node_ids=node_ids,
proportion=proportion,
rounded=rounded,
precision=precision,
)
self.leaves_parallel = leaves_parallel
self.out_file = out_file
self.special_characters = special_characters
self.fontname = fontname
self.rotate = rotate
# PostScript compatibility for special characters
if special_characters:
self.characters = ["&#35;", "<SUB>", "</SUB>", "&le;", "<br/>", ">", "<"]
else:
self.characters = ["#", "[", "]", "<=", "\\n", '"', '"']
# The depth of each node for plotting with 'leaf' option
self.ranks = {"leaves": []}
# The colors to render each node with
self.colors = {"bounds": None}
def export(self, decision_tree):
# Check length of feature_names before getting into the tree node
# Raise error if length of feature_names does not match
# n_features_in_ in the decision_tree
if self.feature_names is not None:
if len(self.feature_names) != decision_tree.n_features_in_:
raise ValueError(
"Length of feature_names, %d does not match number of features, %d"
% (len(self.feature_names), decision_tree.n_features_in_)
)
# each part writes to out_file
self.head()
# Now recurse the tree and add node & edge attributes
if isinstance(decision_tree, _tree.Tree):
self.recurse(decision_tree, 0, criterion="impurity")
else:
self.recurse(decision_tree.tree_, 0, criterion=decision_tree.criterion)
self.tail()
def tail(self):
# If required, draw leaf nodes at same depth as each other
if self.leaves_parallel:
for rank in sorted(self.ranks):
self.out_file.write(
"{rank=same ; " + "; ".join(r for r in self.ranks[rank]) + "} ;\n"
)
self.out_file.write("}")
def head(self):
self.out_file.write("digraph Tree {\n")
# Specify node aesthetics
self.out_file.write("node [shape=box")
rounded_filled = []
if self.filled:
rounded_filled.append("filled")
if self.rounded:
rounded_filled.append("rounded")
if len(rounded_filled) > 0:
self.out_file.write(
', style="%s", color="black"' % ", ".join(rounded_filled)
)
self.out_file.write(', fontname="%s"' % self.fontname)
self.out_file.write("] ;\n")
# Specify graph & edge aesthetics
if self.leaves_parallel:
self.out_file.write("graph [ranksep=equally, splines=polyline] ;\n")
self.out_file.write('edge [fontname="%s"] ;\n' % self.fontname)
if self.rotate:
self.out_file.write("rankdir=LR ;\n")
def recurse(self, tree, node_id, criterion, parent=None, depth=0):
if node_id == _tree.TREE_LEAF:
raise ValueError("Invalid node_id %s" % _tree.TREE_LEAF)
left_child = tree.children_left[node_id]
right_child = tree.children_right[node_id]
# Add node with description
if self.max_depth is None or depth <= self.max_depth:
# Collect ranks for 'leaf' option in plot_options
if left_child == _tree.TREE_LEAF:
self.ranks["leaves"].append(str(node_id))
elif str(depth) not in self.ranks:
self.ranks[str(depth)] = [str(node_id)]
else:
self.ranks[str(depth)].append(str(node_id))
self.out_file.write(
"%d [label=%s" % (node_id, self.node_to_str(tree, node_id, criterion))
)
if self.filled:
self.out_file.write(
', fillcolor="%s"' % self.get_fill_color(tree, node_id)
)
self.out_file.write("] ;\n")
if parent is not None:
# Add edge to parent
self.out_file.write("%d -> %d" % (parent, node_id))
if parent == 0:
# Draw True/False labels if parent is root node
angles = np.array([45, -45]) * ((self.rotate - 0.5) * -2)
self.out_file.write(" [labeldistance=2.5, labelangle=")
if node_id == 1:
self.out_file.write('%d, headlabel="True"]' % angles[0])
else:
self.out_file.write('%d, headlabel="False"]' % angles[1])
self.out_file.write(" ;\n")
if left_child != _tree.TREE_LEAF:
self.recurse(
tree,
left_child,
criterion=criterion,
parent=node_id,
depth=depth + 1,
)
self.recurse(
tree,
right_child,
criterion=criterion,
parent=node_id,
depth=depth + 1,
)
else:
self.ranks["leaves"].append(str(node_id))
self.out_file.write('%d [label="(...)"' % node_id)
if self.filled:
# color cropped nodes grey
self.out_file.write(', fillcolor="#C0C0C0"')
self.out_file.write("] ;\n" % node_id)
if parent is not None:
# Add edge to parent
self.out_file.write("%d -> %d ;\n" % (parent, node_id))
class _MPLTreeExporter(_BaseTreeExporter):
def __init__(
self,
max_depth=None,
feature_names=None,
class_names=None,
label="all",
filled=False,
impurity=True,
node_ids=False,
proportion=False,
rounded=False,
precision=3,
fontsize=None,
):
super().__init__(
max_depth=max_depth,
feature_names=feature_names,
class_names=class_names,
label=label,
filled=filled,
impurity=impurity,
node_ids=node_ids,
proportion=proportion,
rounded=rounded,
precision=precision,
)
self.fontsize = fontsize
# The depth of each node for plotting with 'leaf' option
self.ranks = {"leaves": []}
# The colors to render each node with
self.colors = {"bounds": None}
self.characters = ["#", "[", "]", "<=", "\n", "", ""]
self.bbox_args = dict()
if self.rounded:
self.bbox_args["boxstyle"] = "round"
self.arrow_args = dict(arrowstyle="<-")
def _make_tree(self, node_id, et, criterion, depth=0):
# traverses _tree.Tree recursively, builds intermediate
# "_reingold_tilford.Tree" object
name = self.node_to_str(et, node_id, criterion=criterion)
if et.children_left[node_id] != _tree.TREE_LEAF and (
self.max_depth is None or depth <= self.max_depth
):
children = [
self._make_tree(
et.children_left[node_id], et, criterion, depth=depth + 1
),
self._make_tree(
et.children_right[node_id], et, criterion, depth=depth + 1
),
]
else:
return Tree(name, node_id)
return Tree(name, node_id, *children)
def export(self, decision_tree, ax=None):
import matplotlib.pyplot as plt
from matplotlib.text import Annotation
if ax is None:
ax = plt.gca()
ax.clear()
ax.set_axis_off()
my_tree = self._make_tree(0, decision_tree.tree_, decision_tree.criterion)
draw_tree = buchheim(my_tree)
# important to make sure we're still
# inside the axis after drawing the box
# this makes sense because the width of a box
# is about the same as the distance between boxes
max_x, max_y = draw_tree.max_extents() + 1
ax_width = ax.get_window_extent().width
ax_height = ax.get_window_extent().height
scale_x = ax_width / max_x
scale_y = ax_height / max_y
self.recurse(draw_tree, decision_tree.tree_, ax, max_x, max_y)
anns = [ann for ann in ax.get_children() if isinstance(ann, Annotation)]
# update sizes of all bboxes
renderer = ax.figure.canvas.get_renderer()
for ann in anns:
ann.update_bbox_position_size(renderer)
if self.fontsize is None:
# get figure to data transform
# adjust fontsize to avoid overlap
# get max box width and height
extents = [
bbox_patch.get_window_extent()
for ann in anns
if (bbox_patch := ann.get_bbox_patch()) is not None
]
max_width = max([extent.width for extent in extents])
max_height = max([extent.height for extent in extents])
# width should be around scale_x in axis coordinates
size = anns[0].get_fontsize() * min(
scale_x / max_width, scale_y / max_height
)
for ann in anns:
ann.set_fontsize(size)
return anns
def recurse(self, node, tree, ax, max_x, max_y, depth=0):
import matplotlib.pyplot as plt
# kwargs for annotations without a bounding box
common_kwargs = dict(
zorder=100 - 10 * depth,
xycoords="axes fraction",
)
if self.fontsize is not None:
common_kwargs["fontsize"] = self.fontsize
# kwargs for annotations with a bounding box
kwargs = dict(
ha="center",
va="center",
bbox=self.bbox_args.copy(),
arrowprops=self.arrow_args.copy(),
**common_kwargs,
)
kwargs["arrowprops"]["edgecolor"] = plt.rcParams["text.color"]
# offset things by .5 to center them in plot
xy = ((node.x + 0.5) / max_x, (max_y - node.y - 0.5) / max_y)
if self.max_depth is None or depth <= self.max_depth:
if self.filled:
kwargs["bbox"]["fc"] = self.get_fill_color(tree, node.tree.node_id)
else:
kwargs["bbox"]["fc"] = ax.get_facecolor()
if node.parent is None:
# root
ax.annotate(node.tree.label, xy, **kwargs)
else:
xy_parent = (
(node.parent.x + 0.5) / max_x,
(max_y - node.parent.y - 0.5) / max_y,
)
ax.annotate(node.tree.label, xy_parent, xy, **kwargs)
# Draw True/False labels if parent is root node
if node.parent.parent is None:
# Adjust the position for the text to be slightly above the arrow
text_pos = (
(xy_parent[0] + xy[0]) / 2,
(xy_parent[1] + xy[1]) / 2,
)
# Annotate the arrow with the edge label to indicate the child
# where the sample-split condition is satisfied
if node.parent.left() == node:
label_text, label_ha = ("True ", "right")
else:
label_text, label_ha = (" False", "left")
ax.annotate(label_text, text_pos, ha=label_ha, **common_kwargs)
for child in node.children:
self.recurse(child, tree, ax, max_x, max_y, depth=depth + 1)
else:
xy_parent = (
(node.parent.x + 0.5) / max_x,
(max_y - node.parent.y - 0.5) / max_y,
)
kwargs["bbox"]["fc"] = "grey"
ax.annotate("\n (...) \n", xy_parent, xy, **kwargs)
@validate_params(
{
"decision_tree": "no_validation",
"out_file": [str, None, HasMethods("write")],
"max_depth": [Interval(Integral, 0, None, closed="left"), None],
"feature_names": ["array-like", None],
"class_names": ["array-like", "boolean", None],
"label": [StrOptions({"all", "root", "none"})],
"filled": ["boolean"],
"leaves_parallel": ["boolean"],
"impurity": ["boolean"],
"node_ids": ["boolean"],
"proportion": ["boolean"],
"rotate": ["boolean"],
"rounded": ["boolean"],
"special_characters": ["boolean"],
"precision": [Interval(Integral, 0, None, closed="left"), None],
"fontname": [str],
},
prefer_skip_nested_validation=True,
)
def export_graphviz(
decision_tree,
out_file=None,
*,
max_depth=None,
feature_names=None,
class_names=None,
label="all",
filled=False,
leaves_parallel=False,
impurity=True,
node_ids=False,
proportion=False,
rotate=False,
rounded=False,
special_characters=False,
precision=3,
fontname="helvetica",
):
"""Export a decision tree in DOT format.
This function generates a GraphViz representation of the decision tree,
which is then written into `out_file`. Once exported, graphical renderings
can be generated using, for example::
$ dot -Tps tree.dot -o tree.ps (PostScript format)
$ dot -Tpng tree.dot -o tree.png (PNG format)
The sample counts that are shown are weighted with any sample_weights that
might be present.
Read more in the :ref:`User Guide <tree>`.
Parameters
----------
decision_tree : object
The decision tree estimator to be exported to GraphViz.
out_file : object or str, default=None
Handle or name of the output file. If ``None``, the result is
returned as a string.
.. versionchanged:: 0.20
Default of out_file changed from "tree.dot" to None.
max_depth : int, default=None
The maximum depth of the representation. If None, the tree is fully
generated.
feature_names : array-like of shape (n_features,), default=None
An array containing the feature names.
If None, generic names will be used ("x[0]", "x[1]", ...).
class_names : array-like of shape (n_classes,) or bool, default=None
Names of each of the target classes in ascending numerical order.
Only relevant for classification and not supported for multi-output.
If ``True``, shows a symbolic representation of the class name.
label : {'all', 'root', 'none'}, default='all'
Whether to show informative labels for impurity, etc.
Options include 'all' to show at every node, 'root' to show only at
the top root node, or 'none' to not show at any node.
filled : bool, default=False
When set to ``True``, paint nodes to indicate majority class for
classification, extremity of values for regression, or purity of node
for multi-output.
leaves_parallel : bool, default=False
When set to ``True``, draw all leaf nodes at the bottom of the tree.
impurity : bool, default=True
When set to ``True``, show the impurity at each node.
node_ids : bool, default=False
When set to ``True``, show the ID number on each node.
proportion : bool, default=False
When set to ``True``, change the display of 'values' and/or 'samples'
to be proportions and percentages respectively.
rotate : bool, default=False
When set to ``True``, orient tree left to right rather than top-down.
rounded : bool, default=False
When set to ``True``, draw node boxes with rounded corners.
special_characters : bool, default=False
When set to ``False``, ignore special characters for PostScript
compatibility.
precision : int, default=3
Number of digits of precision for floating point in the values of
impurity, threshold and value attributes of each node.
fontname : str, default='helvetica'
Name of font used to render text.
Returns
-------
dot_data : str
String representation of the input tree in GraphViz dot format.
Only returned if ``out_file`` is None.
.. versionadded:: 0.18
Examples
--------
>>> from sklearn.datasets import load_iris
>>> from sklearn import tree
>>> clf = tree.DecisionTreeClassifier()
>>> iris = load_iris()
>>> clf = clf.fit(iris.data, iris.target)
>>> tree.export_graphviz(clf)
'digraph Tree {...
"""
if feature_names is not None:
feature_names = check_array(
feature_names, ensure_2d=False, dtype=None, ensure_min_samples=0
)
if class_names is not None and not isinstance(class_names, bool):
class_names = check_array(
class_names, ensure_2d=False, dtype=None, ensure_min_samples=0
)
check_is_fitted(decision_tree)
own_file = False
return_string = False
try:
if isinstance(out_file, str):
out_file = open(out_file, "w", encoding="utf-8")
own_file = True
if out_file is None:
return_string = True
out_file = StringIO()
exporter = _DOTTreeExporter(
out_file=out_file,
max_depth=max_depth,
feature_names=feature_names,
class_names=class_names,
label=label,
filled=filled,
leaves_parallel=leaves_parallel,
impurity=impurity,
node_ids=node_ids,
proportion=proportion,
rotate=rotate,
rounded=rounded,
special_characters=special_characters,
precision=precision,
fontname=fontname,
)
exporter.export(decision_tree)
if return_string:
return exporter.out_file.getvalue()
finally:
if own_file:
out_file.close()
def _compute_depth(tree, node):
"""
Returns the depth of the subtree rooted in node.
"""
def compute_depth_(
current_node, current_depth, children_left, children_right, depths
):
depths += [current_depth]
left = children_left[current_node]
right = children_right[current_node]
if left != -1 and right != -1:
compute_depth_(
left, current_depth + 1, children_left, children_right, depths
)
compute_depth_(
right, current_depth + 1, children_left, children_right, depths
)
depths = []
compute_depth_(node, 1, tree.children_left, tree.children_right, depths)
return max(depths)
@validate_params(
{
"decision_tree": [DecisionTreeClassifier, DecisionTreeRegressor],
"feature_names": ["array-like", None],
"class_names": ["array-like", None],
"max_depth": [Interval(Integral, 0, None, closed="left"), None],
"spacing": [Interval(Integral, 1, None, closed="left"), None],
"decimals": [Interval(Integral, 0, None, closed="left"), None],
"show_weights": ["boolean"],
},
prefer_skip_nested_validation=True,
)
def export_text(
decision_tree,
*,
feature_names=None,
class_names=None,
max_depth=10,
spacing=3,
decimals=2,
show_weights=False,
):
"""Build a text report showing the rules of a decision tree.
Note that backwards compatibility may not be supported.
Parameters
----------
decision_tree : object
The decision tree estimator to be exported.
It can be an instance of
DecisionTreeClassifier or DecisionTreeRegressor.
feature_names : array-like of shape (n_features,), default=None
An array containing the feature names.
If None generic names will be used ("feature_0", "feature_1", ...).
class_names : array-like of shape (n_classes,), default=None
Names of each of the target classes in ascending numerical order.
Only relevant for classification and not supported for multi-output.
- if `None`, the class names are delegated to `decision_tree.classes_`;
- otherwise, `class_names` will be used as class names instead of
`decision_tree.classes_`. The length of `class_names` must match
the length of `decision_tree.classes_`.
.. versionadded:: 1.3
max_depth : int, default=10
Only the first max_depth levels of the tree are exported.
Truncated branches will be marked with "...".
spacing : int, default=3
Number of spaces between edges. The higher it is, the wider the result.
decimals : int, default=2
Number of decimal digits to display.
show_weights : bool, default=False
If true the classification weights will be exported on each leaf.
The classification weights are the number of samples each class.
Returns
-------
report : str
Text summary of all the rules in the decision tree.
Examples
--------
>>> from sklearn.datasets import load_iris
>>> from sklearn.tree import DecisionTreeClassifier
>>> from sklearn.tree import export_text
>>> iris = load_iris()
>>> X = iris['data']
>>> y = iris['target']
>>> decision_tree = DecisionTreeClassifier(random_state=0, max_depth=2)
>>> decision_tree = decision_tree.fit(X, y)
>>> r = export_text(decision_tree, feature_names=iris['feature_names'])
>>> print(r)
|--- petal width (cm) <= 0.80
| |--- class: 0
|--- petal width (cm) > 0.80
| |--- petal width (cm) <= 1.75
| | |--- class: 1
| |--- petal width (cm) > 1.75
| | |--- class: 2
"""
if feature_names is not None:
feature_names = check_array(
feature_names, ensure_2d=False, dtype=None, ensure_min_samples=0
)
if class_names is not None:
class_names = check_array(
class_names, ensure_2d=False, dtype=None, ensure_min_samples=0
)
check_is_fitted(decision_tree)
tree_ = decision_tree.tree_
if is_classifier(decision_tree):
if class_names is None:
class_names = decision_tree.classes_
elif len(class_names) != len(decision_tree.classes_):
raise ValueError(
"When `class_names` is an array, it should contain as"
" many items as `decision_tree.classes_`. Got"
f" {len(class_names)} while the tree was fitted with"
f" {len(decision_tree.classes_)} classes."
)
right_child_fmt = "{} {} <= {}\n"
left_child_fmt = "{} {} > {}\n"
truncation_fmt = "{} {}\n"
if feature_names is not None and len(feature_names) != tree_.n_features:
raise ValueError(
"feature_names must contain %d elements, got %d"
% (tree_.n_features, len(feature_names))
)
if isinstance(decision_tree, DecisionTreeClassifier):
value_fmt = "{}{} weights: {}\n"
if not show_weights:
value_fmt = "{}{}{}\n"
else:
value_fmt = "{}{} value: {}\n"
if feature_names is not None:
feature_names_ = [
feature_names[i] if i != _tree.TREE_UNDEFINED else None
for i in tree_.feature
]
else:
feature_names_ = ["feature_{}".format(i) for i in tree_.feature]
export_text.report = ""
def _add_leaf(value, weighted_n_node_samples, class_name, indent):
val = ""
if isinstance(decision_tree, DecisionTreeClassifier):
if show_weights:
val = [
"{1:.{0}f}, ".format(decimals, v * weighted_n_node_samples)
for v in value
]
val = "[" + "".join(val)[:-2] + "]"
weighted_n_node_samples
val += " class: " + str(class_name)
else:
val = ["{1:.{0}f}, ".format(decimals, v) for v in value]
val = "[" + "".join(val)[:-2] + "]"
export_text.report += value_fmt.format(indent, "", val)
def print_tree_recurse(node, depth):
indent = ("|" + (" " * spacing)) * depth
indent = indent[:-spacing] + "-" * spacing
value = None
if tree_.n_outputs == 1:
value = tree_.value[node][0]
else:
value = tree_.value[node].T[0]
class_name = np.argmax(value)
if tree_.n_classes[0] != 1 and tree_.n_outputs == 1:
class_name = class_names[class_name]
weighted_n_node_samples = tree_.weighted_n_node_samples[node]
if depth <= max_depth + 1:
info_fmt = ""
info_fmt_left = info_fmt
info_fmt_right = info_fmt
if tree_.feature[node] != _tree.TREE_UNDEFINED:
name = feature_names_[node]
threshold = tree_.threshold[node]
threshold = "{1:.{0}f}".format(decimals, threshold)
export_text.report += right_child_fmt.format(indent, name, threshold)
export_text.report += info_fmt_left
print_tree_recurse(tree_.children_left[node], depth + 1)
export_text.report += left_child_fmt.format(indent, name, threshold)
export_text.report += info_fmt_right
print_tree_recurse(tree_.children_right[node], depth + 1)
else: # leaf
_add_leaf(value, weighted_n_node_samples, class_name, indent)
else:
subtree_depth = _compute_depth(tree_, node)
if subtree_depth == 1:
_add_leaf(value, weighted_n_node_samples, class_name, indent)
else:
trunc_report = "truncated branch of depth %d" % subtree_depth
export_text.report += truncation_fmt.format(indent, trunc_report)
print_tree_recurse(0, 1)
return export_text.report