66 lines
1.8 KiB
Python
66 lines
1.8 KiB
Python
from collections import defaultdict
|
|
|
|
import numpy as np
|
|
from numpy.testing import assert_array_almost_equal
|
|
|
|
from sklearn.utils.graph import single_source_shortest_path_length
|
|
|
|
|
|
def floyd_warshall_slow(graph, directed=False):
|
|
N = graph.shape[0]
|
|
|
|
# set nonzero entries to infinity
|
|
graph[np.where(graph == 0)] = np.inf
|
|
|
|
# set diagonal to zero
|
|
graph.flat[:: N + 1] = 0
|
|
|
|
if not directed:
|
|
graph = np.minimum(graph, graph.T)
|
|
|
|
for k in range(N):
|
|
for i in range(N):
|
|
for j in range(N):
|
|
graph[i, j] = min(graph[i, j], graph[i, k] + graph[k, j])
|
|
|
|
graph[np.where(np.isinf(graph))] = 0
|
|
|
|
return graph
|
|
|
|
|
|
def generate_graph(N=20):
|
|
# sparse grid of distances
|
|
rng = np.random.RandomState(0)
|
|
dist_matrix = rng.random_sample((N, N))
|
|
|
|
# make symmetric: distances are not direction-dependent
|
|
dist_matrix = dist_matrix + dist_matrix.T
|
|
|
|
# make graph sparse
|
|
i = (rng.randint(N, size=N * N // 2), rng.randint(N, size=N * N // 2))
|
|
dist_matrix[i] = 0
|
|
|
|
# set diagonal to zero
|
|
dist_matrix.flat[:: N + 1] = 0
|
|
|
|
return dist_matrix
|
|
|
|
|
|
def test_shortest_path():
|
|
dist_matrix = generate_graph(20)
|
|
# We compare path length and not costs (-> set distances to 0 or 1)
|
|
dist_matrix[dist_matrix != 0] = 1
|
|
|
|
for directed in (True, False):
|
|
if not directed:
|
|
dist_matrix = np.minimum(dist_matrix, dist_matrix.T)
|
|
|
|
graph_py = floyd_warshall_slow(dist_matrix.copy(), directed)
|
|
for i in range(dist_matrix.shape[0]):
|
|
# Non-reachable nodes have distance 0 in graph_py
|
|
dist_dict = defaultdict(int)
|
|
dist_dict.update(single_source_shortest_path_length(dist_matrix, i))
|
|
|
|
for j in range(graph_py[i].shape[0]):
|
|
assert_array_almost_equal(dist_dict[j], graph_py[i, j])
|