294 lines
13 KiB
Python
294 lines
13 KiB
Python
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Histogram summaries and TensorFlow operations to create them, V2 versions.
|
|
|
|
A histogram summary stores a list of buckets. Each bucket is encoded as a triple
|
|
`[left_edge, right_edge, count]`. Thus, a full histogram is encoded as a tensor
|
|
of dimension `[k, 3]`, where the first `k - 1` buckets are closed-open and the
|
|
last bucket is closed-closed.
|
|
|
|
In general, the shape of the output histogram is always constant (`[k, 3]`).
|
|
In the case of empty data, the output will be an all-zero histogram of shape
|
|
`[k, 3]`, where all edges and counts are zeros. If there is data but all points
|
|
have the same value, then all buckets' left and right edges are the same and only
|
|
the last bucket has nonzero count.
|
|
"""
|
|
|
|
import numpy as np
|
|
|
|
from tensorboard.compat import tf2 as tf
|
|
from tensorboard.compat.proto import summary_pb2
|
|
from tensorboard.plugins.histogram import metadata
|
|
from tensorboard.util import lazy_tensor_creator
|
|
from tensorboard.util import tensor_util
|
|
|
|
|
|
DEFAULT_BUCKET_COUNT = 30
|
|
|
|
|
|
def histogram_pb(tag, data, buckets=None, description=None):
|
|
"""Create a histogram summary protobuf.
|
|
|
|
Arguments:
|
|
tag: String tag for the summary.
|
|
data: A `np.array` or array-like form of any shape. Must have type
|
|
castable to `float`.
|
|
buckets: Optional positive `int`. The output shape will always be
|
|
[buckets, 3]. If there is no data, then an all-zero array of shape
|
|
[buckets, 3] will be returned. If there is data but all points have
|
|
the same value, then all buckets' left and right endpoints are the
|
|
same and only the last bucket has nonzero count. Defaults to 30 if
|
|
not specified.
|
|
description: Optional long-form description for this summary, as a
|
|
`str`. Markdown is supported. Defaults to empty.
|
|
|
|
Returns:
|
|
A `summary_pb2.Summary` protobuf object.
|
|
"""
|
|
bucket_count = DEFAULT_BUCKET_COUNT if buckets is None else buckets
|
|
data = np.array(data).flatten().astype(float)
|
|
if bucket_count == 0 or data.size == 0:
|
|
histogram_buckets = np.zeros((bucket_count, 3))
|
|
else:
|
|
min_ = np.min(data)
|
|
max_ = np.max(data)
|
|
range_ = max_ - min_
|
|
if range_ == 0:
|
|
left_edges = right_edges = np.array([min_] * bucket_count)
|
|
bucket_counts = np.array([0] * (bucket_count - 1) + [data.size])
|
|
histogram_buckets = np.array(
|
|
[left_edges, right_edges, bucket_counts]
|
|
).transpose()
|
|
else:
|
|
bucket_width = range_ / bucket_count
|
|
offsets = data - min_
|
|
bucket_indices = np.floor(offsets / bucket_width).astype(int)
|
|
clamped_indices = np.minimum(bucket_indices, bucket_count - 1)
|
|
one_hots = np.array([clamped_indices]).transpose() == np.arange(
|
|
0, bucket_count
|
|
) # broadcast
|
|
assert one_hots.shape == (data.size, bucket_count), (
|
|
one_hots.shape,
|
|
(data.size, bucket_count),
|
|
)
|
|
bucket_counts = np.sum(one_hots, axis=0)
|
|
edges = np.linspace(min_, max_, bucket_count + 1)
|
|
left_edges = edges[:-1]
|
|
right_edges = edges[1:]
|
|
histogram_buckets = np.array(
|
|
[left_edges, right_edges, bucket_counts]
|
|
).transpose()
|
|
tensor = tensor_util.make_tensor_proto(histogram_buckets, dtype=np.float64)
|
|
|
|
summary_metadata = metadata.create_summary_metadata(
|
|
display_name=None, description=description
|
|
)
|
|
summary = summary_pb2.Summary()
|
|
summary.value.add(tag=tag, metadata=summary_metadata, tensor=tensor)
|
|
return summary
|
|
|
|
|
|
# This is the TPU compatible V3 histogram implementation as of 2021-12-01.
|
|
def histogram(name, data, step=None, buckets=None, description=None):
|
|
"""Write a histogram summary.
|
|
|
|
See also `tf.summary.scalar`, `tf.summary.SummaryWriter`.
|
|
|
|
Writes a histogram to the current default summary writer, for later analysis
|
|
in TensorBoard's 'Histograms' and 'Distributions' dashboards (data written
|
|
using this API will appear in both places). Like `tf.summary.scalar` points,
|
|
each histogram is associated with a `step` and a `name`. All the histograms
|
|
with the same `name` constitute a time series of histograms.
|
|
|
|
The histogram is calculated over all the elements of the given `Tensor`
|
|
without regard to its shape or rank.
|
|
|
|
This example writes 2 histograms:
|
|
|
|
```python
|
|
w = tf.summary.create_file_writer('test/logs')
|
|
with w.as_default():
|
|
tf.summary.histogram("activations", tf.random.uniform([100, 50]), step=0)
|
|
tf.summary.histogram("initial_weights", tf.random.normal([1000]), step=0)
|
|
```
|
|
|
|
A common use case is to examine the changing activation patterns (or lack
|
|
thereof) at specific layers in a neural network, over time.
|
|
|
|
```python
|
|
w = tf.summary.create_file_writer('test/logs')
|
|
with w.as_default():
|
|
for step in range(100):
|
|
# Generate fake "activations".
|
|
activations = [
|
|
tf.random.normal([1000], mean=step, stddev=1),
|
|
tf.random.normal([1000], mean=step, stddev=10),
|
|
tf.random.normal([1000], mean=step, stddev=100),
|
|
]
|
|
|
|
tf.summary.histogram("layer1/activate", activations[0], step=step)
|
|
tf.summary.histogram("layer2/activate", activations[1], step=step)
|
|
tf.summary.histogram("layer3/activate", activations[2], step=step)
|
|
```
|
|
|
|
Arguments:
|
|
name: A name for this summary. The summary tag used for TensorBoard will
|
|
be this name prefixed by any active name scopes.
|
|
data: A `Tensor` of any shape. The histogram is computed over its elements,
|
|
which must be castable to `float64`.
|
|
step: Explicit `int64`-castable monotonic step value for this summary. If
|
|
omitted, this defaults to `tf.summary.experimental.get_step()`, which must
|
|
not be None.
|
|
buckets: Optional positive `int`. The output will have this
|
|
many buckets, except in two edge cases. If there is no data, then
|
|
there are no buckets. If there is data but all points have the
|
|
same value, then all buckets' left and right endpoints are the same
|
|
and only the last bucket has nonzero count. Defaults to 30 if not
|
|
specified.
|
|
description: Optional long-form description for this summary, as a
|
|
constant `str`. Markdown is supported. Defaults to empty.
|
|
|
|
Returns:
|
|
True on success, or false if no summary was emitted because no default
|
|
summary writer was available.
|
|
|
|
Raises:
|
|
ValueError: if a default writer exists, but no step was provided and
|
|
`tf.summary.experimental.get_step()` is None.
|
|
"""
|
|
# Avoid building unused gradient graphs for conds below. This works around
|
|
# an error building second-order gradient graphs when XlaDynamicUpdateSlice
|
|
# is used, and will generally speed up graph building slightly.
|
|
data = tf.stop_gradient(data)
|
|
summary_metadata = metadata.create_summary_metadata(
|
|
display_name=None, description=description
|
|
)
|
|
# TODO(https://github.com/tensorflow/tensorboard/issues/2109): remove fallback
|
|
summary_scope = (
|
|
getattr(tf.summary.experimental, "summary_scope", None)
|
|
or tf.summary.summary_scope
|
|
)
|
|
|
|
# TODO(ytjing): add special case handling.
|
|
with summary_scope(
|
|
name, "histogram_summary", values=[data, buckets, step]
|
|
) as (tag, _):
|
|
# Defer histogram bucketing logic by passing it as a callable to
|
|
# write(), wrapped in a LazyTensorCreator for backwards
|
|
# compatibility, so that we only do this work when summaries are
|
|
# actually written.
|
|
@lazy_tensor_creator.LazyTensorCreator
|
|
def lazy_tensor():
|
|
return _buckets(data, buckets)
|
|
|
|
return tf.summary.write(
|
|
tag=tag,
|
|
tensor=lazy_tensor,
|
|
step=step,
|
|
metadata=summary_metadata,
|
|
)
|
|
|
|
|
|
def _buckets(data, bucket_count=None):
|
|
"""Create a TensorFlow op to group data into histogram buckets.
|
|
|
|
Arguments:
|
|
data: A `Tensor` of any shape. Must be castable to `float64`.
|
|
bucket_count: Optional non-negative `int` or scalar `int32` `Tensor`,
|
|
defaults to 30.
|
|
Returns:
|
|
A `Tensor` of shape `[k, 3]` and type `float64`. The `i`th row is
|
|
a triple `[left_edge, right_edge, count]` for a single bucket.
|
|
The value of `k` is either `bucket_count` or `0` (when input data
|
|
is empty).
|
|
"""
|
|
if bucket_count is None:
|
|
bucket_count = DEFAULT_BUCKET_COUNT
|
|
with tf.name_scope("buckets"):
|
|
tf.debugging.assert_scalar(bucket_count)
|
|
tf.debugging.assert_type(bucket_count, tf.int32)
|
|
# Treat a negative bucket count as zero.
|
|
bucket_count = tf.math.maximum(0, bucket_count)
|
|
data = tf.reshape(data, shape=[-1]) # flatten
|
|
data = tf.cast(data, tf.float64)
|
|
data_size = tf.size(input=data)
|
|
is_empty = tf.logical_or(
|
|
tf.equal(data_size, 0), tf.less_equal(bucket_count, 0)
|
|
)
|
|
|
|
def when_empty():
|
|
"""When input data is empty or bucket_count is zero.
|
|
|
|
1. If bucket_count is specified as zero, an empty tensor of shape
|
|
(0, 3) will be returned.
|
|
2. If the input data is empty, a tensor of shape (bucket_count, 3)
|
|
of all zero values will be returned.
|
|
"""
|
|
return tf.zeros((bucket_count, 3), dtype=tf.float64)
|
|
|
|
def when_nonempty():
|
|
min_ = tf.reduce_min(input_tensor=data)
|
|
max_ = tf.reduce_max(input_tensor=data)
|
|
range_ = max_ - min_
|
|
has_single_value = tf.equal(range_, 0)
|
|
|
|
def when_multiple_values():
|
|
"""When input data contains multiple values."""
|
|
bucket_width = range_ / tf.cast(bucket_count, tf.float64)
|
|
offsets = data - min_
|
|
bucket_indices = tf.cast(
|
|
tf.floor(offsets / bucket_width), dtype=tf.int32
|
|
)
|
|
clamped_indices = tf.minimum(bucket_indices, bucket_count - 1)
|
|
# Use float64 instead of float32 to avoid accumulating floating point error
|
|
# later in tf.reduce_sum when summing more than 2^24 individual `1.0` values.
|
|
# See https://github.com/tensorflow/tensorflow/issues/51419 for details.
|
|
one_hots = tf.one_hot(
|
|
clamped_indices, depth=bucket_count, dtype=tf.float64
|
|
)
|
|
bucket_counts = tf.cast(
|
|
tf.reduce_sum(input_tensor=one_hots, axis=0),
|
|
dtype=tf.float64,
|
|
)
|
|
edges = tf.linspace(min_, max_, bucket_count + 1)
|
|
# Ensure edges[-1] == max_, which TF's linspace implementation does not
|
|
# do, leaving it subject to the whim of floating point rounding error.
|
|
edges = tf.concat([edges[:-1], [max_]], 0)
|
|
left_edges = edges[:-1]
|
|
right_edges = edges[1:]
|
|
return tf.transpose(
|
|
a=tf.stack([left_edges, right_edges, bucket_counts])
|
|
)
|
|
|
|
def when_single_value():
|
|
"""When input data contains a single unique value."""
|
|
# Left and right edges are the same for single value input.
|
|
edges = tf.fill([bucket_count], max_)
|
|
# Bucket counts are 0 except the last bucket (if bucket_count > 0),
|
|
# which is `data_size`. Ensure that the resulting counts vector has
|
|
# length `bucket_count` always, including the bucket_count==0 case.
|
|
zeroes = tf.fill([bucket_count], 0)
|
|
bucket_counts = tf.cast(
|
|
tf.concat([zeroes[:-1], [data_size]], 0)[:bucket_count],
|
|
dtype=tf.float64,
|
|
)
|
|
return tf.transpose(a=tf.stack([edges, edges, bucket_counts]))
|
|
|
|
return tf.cond(
|
|
has_single_value, when_single_value, when_multiple_values
|
|
)
|
|
|
|
return tf.cond(is_empty, when_empty, when_nonempty)
|