3RNN/Lib/site-packages/tensorflow/python/ops/op_selector.py
2024-05-26 19:49:15 +02:00

427 lines
14 KiB
Python

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tools for selecting ops in a graph."""
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor as tensor_lib
from tensorflow.python.util import object_identity
def is_differentiable(op):
try:
return ops._gradient_registry.lookup(op.op_def.name) is not None # pylint: disable=protected-access
except LookupError:
return False
def is_iterable(obj):
"""Return true if the object is iterable."""
if isinstance(obj, tensor_lib.Tensor):
return False
try:
_ = iter(obj)
except Exception: # pylint: disable=broad-except
return False
return True
def concatenate_unique(la, lb):
"""Add all the elements of `lb` to `la` if they are not there already.
The elements added to `la` maintain ordering with respect to `lb`.
Args:
la: List of Python objects.
lb: List of Python objects.
Returns:
`la`: The list `la` with missing elements from `lb`.
"""
la_set = set(la)
for l in lb:
if l not in la_set:
la.append(l)
la_set.add(l)
return la
def get_tensors(graph):
"""get all the tensors which are input or output of an op in the graph.
Args:
graph: a `tf.Graph`.
Returns:
A list of `tf.Tensor`.
Raises:
TypeError: if graph is not a `tf.Graph`.
"""
if not isinstance(graph, ops.Graph):
raise TypeError("Expected a graph, got: {}".format(type(graph)))
ts = []
for op in graph.get_operations():
ts += op.outputs
return ts
def get_unique_graph(tops, check_types=None, none_if_empty=False):
"""Return the unique graph used by the all the elements in tops.
Args:
tops: iterable of elements to check (usually a list of tf.Operation and/or
tf.Tensor). Or a tf.Graph.
check_types: check that the element in tops are of given type(s). If None,
the types (tf.Operation, tf.Tensor) are used.
none_if_empty: don't raise an error if tops is an empty list, just return
None.
Returns:
The unique graph used by all the tops.
Raises:
TypeError: if tops is not a iterable of tf.Operation.
ValueError: if the graph is not unique.
"""
if isinstance(tops, ops.Graph):
return tops
if not is_iterable(tops):
raise TypeError("{} is not iterable".format(type(tops)))
if check_types is None:
check_types = (ops.Operation, tensor_lib.Tensor)
elif not is_iterable(check_types):
check_types = (check_types,)
g = None
for op in tops:
if not isinstance(op, check_types):
raise TypeError("Expected a type in ({}), got: {}".format(", ".join([str(
t) for t in check_types]), type(op)))
if g is None:
g = op.graph
elif g._graph_key != op.graph._graph_key: # pylint: disable=protected-access
raise ValueError("Operation {} does not belong to given graph".format(op))
if g is None and not none_if_empty:
raise ValueError("Can't find the unique graph of an empty list")
return g
def check_graphs(*args):
"""Check that all the element in args belong to the same graph.
Args:
*args: a list of object with a obj.graph property.
Raises:
ValueError: if all the elements do not belong to the same graph.
"""
graph = None
for i, sgv in enumerate(args):
if graph is None and sgv.graph is not None:
graph = sgv.graph
elif sgv.graph is not None and sgv.graph is not graph:
raise ValueError(f"args[{i}] does not belong to the same graph as "
"other arguments.")
def make_list_of_t(ts, check_graph=True, allow_graph=True, ignore_ops=False):
"""Convert ts to a list of `tf.Tensor`.
Args:
ts: can be an iterable of `tf.Tensor`, a `tf.Graph` or a single tensor.
check_graph: if `True` check if all the tensors belong to the same graph.
allow_graph: if `False` a `tf.Graph` cannot be converted.
ignore_ops: if `True`, silently ignore `tf.Operation`.
Returns:
A newly created list of `tf.Tensor`.
Raises:
TypeError: if `ts` cannot be converted to a list of `tf.Tensor` or,
if `check_graph` is `True`, if all the ops do not belong to the same graph.
"""
if isinstance(ts, ops.Graph):
if allow_graph:
return get_tensors(ts)
else:
raise TypeError("allow_graph is False: cannot convert a tf.Graph.")
else:
if not is_iterable(ts):
ts = [ts]
if not ts:
return []
if check_graph:
check_types = None if ignore_ops else tensor_lib.Tensor
get_unique_graph(ts, check_types=check_types)
return [t for t in ts if isinstance(t, tensor_lib.Tensor)]
def get_generating_ops(ts):
"""Return all the generating ops of the tensors in `ts`.
Args:
ts: a list of `tf.Tensor`
Returns:
A list of all the generating `tf.Operation` of the tensors in `ts`.
Raises:
TypeError: if `ts` cannot be converted to a list of `tf.Tensor`.
"""
ts = make_list_of_t(ts, allow_graph=False)
return [t.op for t in ts]
def get_consuming_ops(ts):
"""Return all the consuming ops of the tensors in ts.
Args:
ts: a list of `tf.Tensor`
Returns:
A list of all the consuming `tf.Operation` of the tensors in `ts`.
Raises:
TypeError: if ts cannot be converted to a list of `tf.Tensor`.
"""
ts = make_list_of_t(ts, allow_graph=False)
tops = []
for t in ts:
for op in t.consumers():
if op not in tops:
tops.append(op)
return tops
def make_list_of_op(tops, check_graph=True, allow_graph=True, ignore_ts=False):
"""Convert ops to a list of `tf.Operation`.
Args:
tops: can be an iterable of `tf.Operation`, a `tf.Graph` or a single
operation.
check_graph: if `True` check if all the operations belong to the same graph.
allow_graph: if `False` a `tf.Graph` cannot be converted.
ignore_ts: if True, silently ignore `tf.Tensor`.
Returns:
A newly created list of `tf.Operation`.
Raises:
TypeError: if tops cannot be converted to a list of `tf.Operation` or,
if `check_graph` is `True`, if all the ops do not belong to the
same graph.
"""
if isinstance(tops, ops.Graph):
if allow_graph:
return tops.get_operations()
else:
raise TypeError("allow_graph is False: cannot convert a tf.Graph.")
else:
if not is_iterable(tops):
tops = [tops]
if not tops:
return []
if check_graph:
check_types = None if ignore_ts else ops.Operation
get_unique_graph(tops, check_types=check_types)
return [op for op in tops if isinstance(op, ops.Operation)]
def _get_inputs(op, only_differentiable):
op_inputs = op.inputs
if only_differentiable:
return op_inputs if is_differentiable(op) else []
else:
return op_inputs
def get_backward_walk_ops(seed_ops,
inclusive=True,
within_ops=None,
within_ops_fn=None,
stop_at_ts=(),
control_inputs=False,
only_differentiable=False):
"""Do a backward graph walk and return all the visited ops.
Args:
seed_ops: an iterable of operations from which the backward graph
walk starts. If a list of tensors is given instead, the seed_ops are set
to be the generators of those tensors.
inclusive: if True the given seed_ops are also part of the resulting set.
within_ops: an iterable of `tf.Operation` within which the search is
restricted. If `within_ops` is `None`, the search is performed within
the whole graph.
within_ops_fn: if provided, a function on ops that should return True iff
the op is within the graph traversal. This can be used along within_ops,
in which case an op is within if it is also in within_ops.
stop_at_ts: an iterable of tensors at which the graph walk stops.
control_inputs: if True, control inputs will be used while moving backward.
only_differentiable: if True, only traverse ops which are differentiable.
This includes natively differentiable ops, or ops with custom gradients.
Returns:
A Python set of all the `tf.Operation` behind `seed_ops`.
Raises:
TypeError: if `seed_ops` or `within_ops` cannot be converted to a list of
`tf.Operation`.
"""
control_inputs = control_inputs and (not only_differentiable)
if not is_iterable(seed_ops):
seed_ops = [seed_ops]
try:
first_seed_op = next(iter(seed_ops))
except StopIteration:
# Empty iterable.
return []
if isinstance(first_seed_op, tensor_lib.Tensor):
ts = make_list_of_t(seed_ops, allow_graph=False)
seed_ops = get_generating_ops(ts)
else:
seed_ops = make_list_of_op(seed_ops, allow_graph=False)
stop_at_ts = object_identity.ObjectIdentitySet(make_list_of_t(stop_at_ts))
seed_ops = object_identity.ObjectIdentitySet(make_list_of_op(seed_ops))
if within_ops:
within_ops = make_list_of_op(within_ops, allow_graph=False)
within_ops = object_identity.ObjectIdentitySet(within_ops)
seed_ops &= within_ops
def is_within(op):
return (within_ops is None or op in within_ops) and (
within_ops_fn is None or within_ops_fn(op))
result = list(seed_ops)
wave = set(seed_ops)
while wave:
new_wave = set()
for op in wave:
for new_t in _get_inputs(op, only_differentiable=only_differentiable):
if new_t in stop_at_ts:
continue
if new_t.op not in result and is_within(new_t.op):
new_wave.add(new_t.op)
if control_inputs:
for new_op in op.control_inputs:
if new_op not in result and is_within(new_op):
new_wave.add(new_op)
concatenate_unique(result, new_wave)
wave = new_wave
if not inclusive:
result = [op for op in result if op not in seed_ops]
return result
class UnliftableError(Exception):
"""Raised if a Tensor cannot be lifted from the graph."""
# Prevent autograph from rewriting this error.
ag_pass_through = True
def _as_operation(op_or_tensor):
if isinstance(op_or_tensor, tensor_lib.Tensor):
return op_or_tensor.op
return op_or_tensor
def graph_inputs(op):
return [x.op for x in op.inputs] + list(op.control_inputs)
def show_path(from_op, tensors, sources):
"""Find one path from `from_op` to any of `tensors`, ignoring `sources`.
Args:
from_op: A `tf.Operation`.
tensors: A `tf.Operation`, a `tf.Tensor`, or a list thereof.
sources: A list of `tf.Tensor`.
Returns:
A python string containing the path, or "??" if none is found.
"""
if isinstance(from_op, tensor_lib.Tensor):
from_op = from_op.op
if not isinstance(tensors, list):
tensors = [tensors]
final_ops = [_as_operation(tensor) for tensor in tensors]
visited_ops = set(x.op for x in sources)
ops_to_visit = list(final_ops)
some_op_output = {}
while ops_to_visit:
op = ops_to_visit.pop()
if op in visited_ops:
continue
visited_ops.add(op)
if op == from_op:
path_op = op
path = [path_op]
while path_op not in final_ops:
path_op = some_op_output[path_op]
path.append(path_op)
return " <- ".join("%s (%s)" % (x.name, x.type) for x in reversed(path))
else:
for inp in graph_inputs(op):
if inp not in visited_ops and inp not in sources:
some_op_output[inp] = op
ops_to_visit.append(inp)
return "??"
# TODO(jmenick) - there is considerable duplication of functionality between
# this function and get_backward_walk_ops(). Need to deduplicate.
def map_subgraph(init_tensor, sources, disallowed_placeholders, visited_ops,
op_outputs, add_sources):
"""Walk a Graph and capture the subgraph between init_tensor and sources.
Note: This function mutates visited_ops and op_outputs.
Args:
init_tensor: A Tensor or Operation where the subgraph terminates.
sources: A set of Tensors where subgraph extraction should stop.
disallowed_placeholders: An optional set of ops which may not appear in the
lifted graph. Defaults to all placeholders.
visited_ops: A set of operations which were visited in a prior pass.
op_outputs: A defaultdict containing the outputs of an op which are to be
copied into the new subgraph.
add_sources: A boolean indicating whether placeholders which are not in
sources should be allowed.
Returns:
The set of placeholders upon which init_tensor depends and are not in
sources.
Raises:
UnliftableError: if init_tensor depends on a placeholder which is not in
sources and add_sources is False.
"""
ops_to_visit = [_as_operation(init_tensor)]
extra_sources = object_identity.ObjectIdentitySet()
while ops_to_visit:
op = ops_to_visit.pop()
if op in visited_ops:
continue
visited_ops.add(op)
should_raise = False
if disallowed_placeholders is not None and op in disallowed_placeholders:
should_raise = True
elif op.type == "Placeholder":
if disallowed_placeholders is None and not add_sources:
should_raise = True
extra_sources.update(op.outputs)
if should_raise:
raise UnliftableError(
"Unable to lift tensor %s because it depends transitively on "
"placeholder %s via at least one path, e.g.: %s" %
(repr(init_tensor), repr(op), show_path(op, init_tensor, sources)))
for inp in graph_inputs(op):
op_outputs[inp].add(op)
if inp not in visited_ops and inp not in (sources or extra_sources):
ops_to_visit.append(inp)
return extra_sources